A note on Euclidean spheres

Sharief Deshmukh

Abstract

For an orientable compact and connected hypersurface in the Euclidean space R^{n+1} with scalar curvature S, mean curvature α and sectional curvatures bounded below by a constant $\delta>0$, it is shown that the inequality $$
S \leq n(n-1) \alpha^{2}-(n-1) \delta^{-1}\|\nabla \alpha\|^{2}
$$ implies that the hypersurface is a sphere, where $\nabla \alpha$ is the gradient of α.

Mathematics Subject Classification: 53C42, 53C45.
Key words: hypersurfaces, mean curvature, scalar curvature, gradient, shape operator.

1 Introduction

The class of positively curved compact hypersurfaces in the Euclidean space R^{n+1} is quite large and therefore it is an interesting question in Geometry to obtain conditions which characterize the spheres in this class. For any hypersurface in R^{n+1} its scalar curvature S is given by $S=n^{2} \alpha^{2}-\|A\|^{2}$, where $\|A\|$ is the length of the shape operator A and α is the mean curvature. In light of the Schwarz inequality $\|A\|^{2} \geq n \alpha^{2}$, the scalar curvature S satisfies $S \leq n(n-1) \alpha^{2}$ for any hypersurface of R^{n+1}, and in case of a hypersphere the equality holds. It is therefore suggestive that in the inequality $S \leq n(n-1) \alpha^{2}$ the right hand side be decreased by a factor so that it forces the hypersurface to be a sphere. In this paper for a compact and connected hypersurface with sectional curvatures bounded below by a constant $\delta>0$, we show that this factor is $(n-1) \delta^{-1}\|\nabla \alpha\|^{2}$. Indeed we prove the following:

Theorem 1.1. Let M be an orientable compact and connected hypersurface of the Euclidean space R^{n+1} whose sectional curvatures are bounded below by a constant $\delta>0$ If the scalar curvature S and the mean curvature α of M satisfy

$$
S \leq n(n-1) \alpha^{2}-(n-1) \delta^{-1}\|\nabla \alpha\|^{2}
$$

then α is a constant and $M=S^{n}\left(\alpha^{2}\right)$.

2 Preliminaries

Let M be an orientable hypersurface of the Euclidean space R^{n+1}. We denote the induced metric on M by g. Let $\bar{\nabla}$ be the Euclidean connection and ∇ be the Riemannian connection on M with respect to the induced metric g. Let N be the unit normal vector field and A be the shape operator. Then the Gauss and Weingarten formulas for the hypersurface are

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \bar{\nabla}_{X} N=-A X, \quad X, Y \in \mathfrak{X}(M) \tag{2.1}
\end{equation*}
$$

where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. We also have the following Codazzi equation

$$
\begin{equation*}
(\nabla A)(X, Y)=(\nabla A)(Y, X), \quad X, Y \in \mathfrak{X}(M) \tag{2.2}
\end{equation*}
$$

where $(\nabla A)(X, Y)=\nabla_{X} A Y-A \nabla_{X} Y$. The mean curvature α of the hypersurface is given by $n \alpha=\sum_{i} g\left(A e_{i}, e_{i}\right)$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M. The square of the length of the shape operator A is given by

$$
\|A\|^{2}=\sum_{i j} g\left(A e_{i}, e_{j}\right)^{2}=t r . A^{2}
$$

The scalar curvature S of the hypersurface is given by

$$
\begin{equation*}
S=n^{2} \alpha^{2}-\|A\|^{2} \tag{2.3}
\end{equation*}
$$

3 Some Lemmas

Let M be a hypersurface of R^{n+1}. We define a symmetric operator $B: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by $B=A-\alpha I$. Let $\nabla \alpha$ be the gradient of the mean curvature function α.

Lemma 3.1. The operator B satisfies
(i) $\operatorname{tr} B=0$,
(ii) $g((\nabla B)(X, Y), Z)=g(Y,(\nabla B)(X, Z))$
(iii) $(\nabla B)(X, Y)=(\nabla B)(Y, X)+R_{0}(X, Y) \nabla \alpha$, where $R_{0}(X, Y) Z=g(Y, Z) X-g(X, Z) Y, X, Y, Z \in \chi(M)$.

The proof is straightforward and follows from the definition of B and the equation (2.2).

Lemma 3.2. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame on the hypersurface M. Then

$$
\sum_{i}(\nabla B)\left(e_{i}, e_{i}\right)=(n-1) \nabla \alpha
$$

Proof. Since tr. $B=0$, choosing a pointwise constant local orthonormal frame, for $X \in \mathfrak{X}(M)$ we have

$$
\begin{aligned}
0 & =\sum_{i} X g\left(B e_{i}, e_{i}\right)=\sum_{i} g\left((\nabla B)\left(X, e_{i}\right), e_{i}\right) \\
& =\sum_{i}\left[g\left((\nabla B)\left(e_{i}, X\right)+R_{0}\left(X, e_{i}\right) \nabla \alpha, e_{i}\right)\right] \\
& =-(n-1) g(\nabla \alpha, X)+\sum_{i} g\left((\nabla B)\left(e_{i}, e_{i}\right), X\right)
\end{aligned}
$$

and the Lemma is proved.
We define the second covariant derivative $\left(\nabla^{2} B\right)(X, Y, Z)$ as

$$
\left(\nabla^{2} B\right)(X, Y, Z)=\nabla_{X}(\nabla B)(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right)
$$

Then using Lemma 3.1, we immediately obtain the following
Lemma 3.3. $\left(\nabla^{2} B\right)(X, Y, Z)=\left(\nabla^{2} B\right)(X, Z, Y)+H_{\alpha}(X, Z) Y-H_{\alpha}(X, Y) Z, X, Y, Z \in$ $\chi(M)$, where $H_{\alpha}(X, Y)=g\left(\nabla_{X}(\nabla \alpha), Y\right)$ is the Hessian of α.

Lemma 3.4. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame that diagonalizes B. If $B e_{i}=\lambda_{i} e_{i}$, then

$$
\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=n\|A\|^{2}-n^{2} \alpha^{2}
$$

Proof. We have $\sum_{i} \lambda_{i}=0$ by Lemma 3.1, and consequently we get

$$
\begin{aligned}
\sum_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} & =\sum_{i j} \lambda_{i}^{2}+\sum_{i j} \lambda_{j}^{2}-2 \sum_{i j} \lambda_{i} \lambda_{j} \\
& =2 n\|B\|^{2}-2 \sum_{i}\left(\sum_{j} \lambda_{j}\right) \lambda_{i} \\
& =2 n\|B\|^{2}
\end{aligned}
$$

Since $\sum_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=2 \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}$, we get $\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=n\|B\|^{2}=$ $n\|A\|^{2}-n^{2} \alpha^{2}$.

Lemma 3.5. Let M be an orientable compact hypersurface of the Euclidean space R^{n+1}. Then

$$
\int_{M}\left(\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), B e_{i}\right)\right) d V=-(n-1) \int_{M}\|\nabla \alpha\|^{2} d V
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M.

Proof. Choosing a point wise covariant constant local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M, we compute

$$
\begin{aligned}
\operatorname{div}(B(\nabla \alpha))=\sum_{i} e_{i} g\left(\nabla \alpha, B e_{i}\right) & =\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), B e_{i}\right)+\sum_{i} g\left(\nabla \alpha,(\nabla B)\left(e_{i}, e_{i}\right)\right) \\
& =\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), B e_{i}\right)+(n-1)\|\nabla \alpha\|^{2}
\end{aligned}
$$

Integrating this equation we get the Lemma.

4 Proof of the Theorem 1.1

Let M be an orientable compact and connected hypersurface of the Euclidean space R^{n+1}. Define a function $f: M \rightarrow R$ by $f=\frac{1}{2}\|B\|^{2}$. Then by a straightforward computation we get the Laplacian Δf of the smooth function f as

$$
\begin{equation*}
\Delta f=\|\nabla B\|^{2}+\sum_{i j} g\left(\left(\nabla^{2} B\right)\left(e_{j}, e_{j}, e_{i}\right), B e_{i}\right) \tag{4.1}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is local orthonormal frame on M.
Using Lemma 3.3 and (i) in Lemma 3.1, we arrive at

$$
\begin{align*}
g\left(\left(\nabla^{2} B\right)\left(e_{j}, e_{j}, e_{i}\right), B e_{i}\right) & =g\left(\left(\nabla^{2} B\right)\left(e_{j}, e_{i}, e_{j}\right), B e_{i}\right) \\
& +H_{\alpha}\left(e_{j}, e_{i}\right) g\left(e_{j}, B e_{i}\right) \tag{4.2}
\end{align*}
$$

Now using the Ricci identity

$$
\left(\nabla^{2} B\right)(X, Y, Z)=\left(\nabla^{2} B\right)(Y, X, Z)+R(X, Y) B Z-B R(X, Y) Z, X, Y, Z \in \chi(M)
$$

where R is the curvature tensor field of M, in equation (4.2) we get

$$
\begin{aligned}
g\left(\left(\nabla^{2} B\right)\left(e_{j}, e_{j}, e_{i}\right), B e_{i}\right) & =g\left(\left(\nabla^{2} B\right)\left(e_{i}, e_{j}, e_{j}\right), B e_{i}\right)+g\left(R\left(e_{j}, e_{i}\right) B e_{j}, B e_{i}\right) \\
& -g\left(R\left(e_{j}, e_{i}\right) e_{j}, B^{2} e_{i}\right)+H_{\alpha}\left(e_{j}, e_{i}\right) g\left(e_{j}, B e_{i}\right) .
\end{aligned}
$$

Thus in light of this equation the equation (4.1) takes the form

$$
\begin{align*}
\Delta f & =\|\nabla B\|^{2}+\sum_{i j} g\left(\left(\nabla^{2} B\right)\left(e_{i}, e_{j}, e_{j}\right), B e_{i}\right)+\sum_{i} H_{\alpha}\left(e_{i}, B e_{i}\right) \\
& +\sum_{i j}\left[g\left(R\left(e_{j}, e_{i}\right) B e_{j}, B e_{i}\right)-g\left(R\left(e_{j}, e_{i}\right) e_{j}, B^{2} e_{i}\right)\right] \tag{4.3}
\end{align*}
$$

Using Lemma 3.2, we get

$$
\begin{equation*}
\sum_{i}\left(\nabla^{2} B\right)\left(e_{i}, e_{j}, e_{j}\right)=(n-1) \nabla_{e_{i}}(\nabla \alpha) . \tag{4.4}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
H_{\alpha}\left(e_{i}, B e_{i}\right)=g\left(\nabla_{e_{i}}(\nabla \alpha), B e_{i}\right) \tag{4.5}
\end{equation*}
$$

We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ that diagonalizes B with $B e_{i}=$ $\lambda_{i} e_{i}$ to compute

$$
\begin{aligned}
\sum_{i j} & {\left[g\left(R\left(e_{j}, e_{i}\right) B e_{j}, B e_{i}\right)-g\left(R\left(e_{j}, e_{i}\right) e_{j}, B^{2} e_{i}\right)\right] } \\
= & -\sum_{i j} \lambda_{i} \lambda_{j} K_{i j}+\sum_{i j} \lambda_{i}^{2} K_{i j} \\
= & \frac{1}{2}\left[2 \sum_{i j} \lambda_{i}^{2} K_{i j}\right]-\sum_{i j} \lambda_{i} \lambda_{j} K_{i j} \\
= & \frac{1}{2}\left[\sum_{i j} \lambda_{i}^{2} K_{i j}+\sum_{i j} \lambda_{j}^{2} K_{i j}-2 \sum_{i j} \lambda_{i} \lambda_{j} K_{i j}\right] \\
= & \frac{1}{2} \sum_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}=\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}
\end{aligned}
$$

where $K_{i j}=g\left(R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)$ is the sectional curvature of the plane section spanned by $\left\{e_{i}, e_{j}\right\}$. Using this last equation together with (4.4) and (4.5) in (4.3), we arrive at

$$
\Delta f=\|\nabla B\|^{2}+n \sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), B e_{i}\right)+\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}
$$

Integrating this equation and using $K_{i j}>\delta$, together with Lemmas 3.4 and 3.5, we arrive at

$$
\begin{equation*}
\int_{M}\left\{\|\nabla B\|^{2}-n(n-1)\|\nabla \alpha\|^{2}+\delta\left(n\|A\|^{2}-n^{2} \alpha^{2}\right)\right\} d V \leq 0 \tag{4.6}
\end{equation*}
$$

The condition $S \leq n(n-1) \alpha^{2}-(n-1) \delta^{-1}\|\nabla \alpha\|^{2}$ in the statement of the theorem together with equation (2.3) yields

$$
n^{2} \alpha^{2}-\|A\|^{2} \leq n(n-1) \alpha^{2}-(n-1) \delta^{-1}\|\nabla \alpha\|^{2}
$$

that is,

$$
n \alpha^{2}-\lambda \mid A\left\|^{2} \leq-(n-1) \delta^{-1}\right\| \nabla \alpha \|^{2}
$$

which takes the form

$$
-n(n-1)\|\nabla \alpha\|^{2}+\delta\left(n\|A\|^{2}-n^{2} \alpha^{2}\right) \geq 0
$$

Consequently, from the integral inequality (4.6) we conclude that $\nabla B=0$, and since M is irreducible (being of positive curvature), we must have $B=\lambda I$ for some λ. However, $\operatorname{tr} . B=0$ gives $\lambda=0$ and consequently that $B=0$, that is $A=\alpha I$. Hence by equation (2.2) we get that α is a constant and M is a totally umbilical hypersurface and it is therefore the sphere $S^{n}\left(\alpha^{2}\right)$ of constant curvature α^{2}.

Finally we note that exactly on the similar lines the following theorem can be proved for hypersurfaces of a real space form $\bar{M}(c)$ (A Riemannian manifold of constant sectional curvature)

Theorem 4.1. Let M be an n-dimensional compact hypersurface of a real space form $\bar{M}(c)$ with sectional curvatures bounded below by a constant $\delta>0$. If the scalar curvature S and the mean curvature α of M satisfy

$$
S \leq n(n-1)\left(c+\alpha^{2}\right)-(n-1) \delta^{-1}\|\nabla \alpha\|^{2}
$$

then M is totally umbilical.

References

[1] B.Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific, 1983.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, WileyInterscience, 1969.

Author's address:
Sharief Deshmukh
Department of Mathematics, College of Science,
King Saud University, P.O. Box \# 2455, Riyadh-11451, Saudi Arabia
email: shariefd@ksu.edu.sa

