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Abstract. In this paper, we first give a definition of pseudo-Riemannian
quasi constant curvature manifold and then generalize T.Ishihara’s results.

Mathematics Subject Classification: 53C42.
Key words: maximal spacelike submanifold, quasi constant curvature, pseudo-
Riemannian manifold.

1 Introduction

Let Np*P(c) be an (n + p)-dimensional pseudo-Riemannian manifold of constant cur-
vature ¢, whose index is p. Let M™ be an n-dimensional complete spacelike submani-
fold isometrically immersed in Np*?(c). Noting that the codimension is equal to the
index. Its curvature tensor satisfies

Rapcp = ceaep(0acdpp — 04pdBC)-

T.Ishihara [7] proved:

Theorem A. Let M™ be a complete maximal spacelike submanifold in Ngﬂ’(c).
Then either M™ is totally geodesic (¢ > 0) or 0 < S < —npc(c < 0), where S is
the square of the length of the second fundamental form of M™. Here, similar to the
definition of the quasi constant curvature manifold defined by [2], we give the following
definition:

Definition. An (n + p)-dimensional pseudo-Riemannian manifold N;H‘p with in-
dex p is said to be a pseudo-Reimannian quasi constant curvature manifold, if its
curvature tensor satisfies

(11.1) Kapcep =acaep(0acdpp — 0apdpc) +beacp(dacvpup
o — 0ApUBUC + 0BPVAVC — OBCVAUD),
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where a,b are real functions and va is the component of a unit vector field which is
called the generator of the manifold.

Remark 1. When b = 0, NJ*? = N}*P(a). From now on, we make use of the
following convention on the range of the indices:

1<AB,....<n+p;1<4,j,....,.<n;n+1<a,8,..., <n+p.

In this paper, we study the case that the ambient space is a pseudo-Riemannian quasi
constant curvature manifold N;,”rp and generalize Theorem A. We obtain:

Theorem 1. Let M™ be an n-dimensional complete maximal spacelike submani-
fold in an (n+ p)-dimensional pseudo-Riemannian quasi constant curvature manifold
N[,‘“’, whose index is p. We suppose a,b are constant. (1): If the generator is orthog-
onal to M™, then M™ is totally geodesic (a > 0) or 0 < S < —nap(a < 0). (2):If
the generator is parallel to M™, then M™ is totally geodesic (na + b — n|b| > 0) or
0< S < —p(na+b—nlb])(na+b—nlb| <0).

Remark 2. When b = 0, from Theorem 1, we can obtain Theorem A immediately.

Theorem 2. Let M™ be an n-dimensional maximal spacelike submanifold with
parallel second fundamental form in an (n+ p)-dimensional pseudo-Riemannian quasi
constant curvature manifold NI’]‘“’. We suppose that a,b are constant. (1): If a < 0
and the generator is orthogonal to M™, then M™ is totally geodesic or S > —na/[1 +
1sgn(p—1)]. (2): If na+b—n|b| < 0 and the generator is parallel to M™, then M™
is totally geodesic or S > —(na+b—n|b|)/[1 + Lsgn(p — 1)].

In particular, taking b = 0 in Theorem 2 and using the results in [7] and [4] we
can obtain easily:

Corollary. Let M™ be an n-dimensional maximal spacelike submanifold with par-
allel second fundamental form in N}*P(a)(a < 0), then M™ is totally geodesic or
S > —na/[l + 3sgn(p — 1)].

In particular, when the equality holds, M™ is the product of hyperbolic spheres
or n =p =2, M?> = H*(y/—a) is a hyperbolic Veronese surface in Hj(,/—%), where

H*(v—a) = {x € R}, (v,x) = 23 + 23 — 23 = a,a < 0},
Hi(\[-3) = {v € B}, (a,2) =} + 2} —af — ] 2l = Z.a <0},

2 Local Formulas

Let Np”er be an (n + p)-dimensional pseudo-Riemannian quasi constant curvature
manifold, whose index is p. Let M™ be an n-dimensional Riemannian manifold iso-
metrically immersed in N;"”’ . As the pseudo-Riemannian metric of N;}"‘p induces the
Riemannian metric of M™, the immersion is called spacelike. We choose a local field

of orthogonal frames eq,... ,en4p in N;,”’p, such that eq,... e, are tangent to M".
Let w4 be the dual frames so that the pseudo-Riemannian metric of N;*p is given by
dSJQV:M =Y, w? =Y w2 =3 ,cawk, where ¢; = 1,6, = —1. Then the structure

equations of NJ'*? are given by
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dwy = E €BwaB Nwp, wap+wpa =0,
B

1
dwap = E Ecwac NweB — 5 E ecepKapepwe AWwp,
C CD

where K apcp satisfies (1.1.1).
Restricting these forms to M™, then

it

_ _ [e% a _ jp«
wo =0, Wiq = E hiswj, hi; =h
J

dwi: E wij/\wj,
J

1
dwi; = Zwik A wgj — 3 ZRijklwk A wy,
% kl

(2.2.1) Riju = Kijri — Z(h?k 51— hihy),

[e3%

dwe = —Zwag Awg,
B

1
dweg = — Zwm ANwyg — 3 ZRagijwi A wj,
¥ ij

(2.2.2) Ropij = Kapij + Z(hgihfj - (l:jhgi)'
k

We denote by H = £ 3. h&%e, the mean curvature vector of M™. Then M™ is
maximal if its mean curvature vector vanishes identically. Denote by h = 3, hijwiwjeq
(hgy)? the square of

the second fundamental form of the immersion and by S = >_
the length of h. hf}) and hfj,, are defined by

K k K 8

ijo

and
> hSwr = dhSy + > hSwi + Y hSwi + Y hfw — > b wsa
1 1 1 1 8
respectively,
Where
(223) h%’k - h?kj = Kaikj = _Kaijka
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and

(2.2.4) WS — hie = > B Rt + Y 0 Rirt + > i Ragia.
m m Jé]

Noting M™ is maximal, from (2.2.1) we have

(2.2.5) R, = (n — 1)ad;; + b[ Z’U dir. + (n — 2)v;v] Z R Ry

[

From (2.2.5), we see that the scalar curvature of M™ satisfies

(2.2.6) R=an(n—1)+bn—1)+ S =(n—1)(na+b)+ 5.

From (2.2.6), we obtain

Proposition. Let M"™ be an n-dimensional mazximal spacelike submanifold in
Np*PIf
R < (n—1)(na+b),

then M™ is totally geodesic.

3 Proof of Theorems

In order to prove our Theorems, we need the following:

Lemma 1. [3,6] Let M™ be a complete Riemannian manifold with Ricci curvature
bounded from below. Let f be a C?-function which is bounded from above on M™. Then
for all € > 0, there exists a point x in M™ such that, at x

|V fl<e Af>-e flz)<inff+e.

Lemma 2. Let M™ be an n-dimensional maximal spacelike submanifold in N;“’.
Then the Ricci curvature of M™ satisfies

Rix > [(n — Da — b} — (n — 2)|b].

Proof of Theorem 1: In the first, we have

ZU Oi + (n — 2) vlvk<ZUA§lk+ Z’UA+ZUA

:6ik+n_2,

(3.3.1)

and then, for fixed o, we choose eq,... ,e, such that

he; = hb,;.
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Thus
Zh” & = hSh o > 0,

and so

(3.3.2) Zh” o >

Combining (3.3.1), (3.3.2) and (2.2.5), we obtain Lemma 2.
Lemma 3. [1, 5] Let H;,i > 2 be symmetric (nxn)-matrizes, S =Y, trH2. Then

1
— " tr(H;H, — H,;H,;) +Z trH?)? < (1+ gsgn(p - 1))5°.
ij
Let Sap = >_;; hij U, then (Sqp) can be assumed to be diagonal for a suitable choice
of engi,. .. s enyp,i.e., 848 = Sabap, Sa = Zl](hf})Q Since M™ is maximal, when a, b
are constant, from (2.2.1)—(2.2.4), we can get

(3 3.3)
fAS D (hg)? + > g AR

ijka ijo
Z zyk + Z hz mkleJk + Z hah m Akl + Z h%hZiRaﬁjk
ijka ijkmao ijkmao ijkaf

+ Z hiajVjKakki + Z h%kaaikj
ijka ijka

= (hgy) +naS+ZS2 — > tr(HoHg — HgHo)? + Sy v}
ijka aff k

+nb Z h% R UmUj — M Z h$5V i (buav;).

ijma ijo

It is clear that
—> tr(HoHp — HgH,)? > 0.

af
Putting
Poy = ZS =8, plp—1)oz=2_ S.5,
a<f
then we have
(3.3.4) P’(p—1)(0F —02) = > (Sa — )"

a<f

Substituting (3.3.4) into (3.3.3), we get
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(3. 3 5)
1 1
—AS D ()’ +naS+ =8+ = (S0 = Sp)* = > _tr(HeHp — HyHa)”
jk b P s B
ijka oY «
+ bSZ v, +nb Z hiihivmvy —n Z h$5V 5 (bvav;).
'ij(l 'L]Ot

Now, we assume that the generator v = ) , vae4 is orthogonal to M", then we
see that v; = 0 and (3.3.5) becomes

(3.3.6)
1 W 1., 1
FO5 = Z(hijk) +naS+BS +];Z(S — 8p)? = > tr(HoHg — HgH,)?
ijka a<f af
1
> naS + = 52.
p

Let f = \/S%C for any positive constant ¢, then f is bounded ¢*°-function on M™.
By calculation, we get

1
(337) VR = s,
and
(3.3.8) Af = —%fi”AS + Zf5|VS|2.

From (3.3.7) and (3.3.8), we get

(3.3.9) fAINS = 6|V f|2 —2fAf.

Combining (3.3.6) and (3.3.9), we get

(3.3.10) (naSJr}%Sz)f‘l < 3|VS? — AL

When v; = 0 and a is constant, from (2.2.5) we see that R;; > a(n — 1)d;;. Thus,
from Lemma 1 and (3.3.10) we will get at point z,

(nasS + %52)# < 3e+e(inff +e).

So

3.3.11 naS_F%SQ <3 ;
( .O. ) W < €+5(anf+5).
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Since when ¢ — 0, f(z) goes to the infimum and S(z) goes to the supremum.
Thus letting ¢ — 0, from (3.3.11) we get

1
(3.3.12) (na + —supS)supS < 0.
p

(3.3.12) implies that when a > 0,5 = 0, i.e., M" is totally geodesic; when a < 0,
S < —npa. On the other hand, we assume that the generator v =73 , vaey is parallel
to M™, then we see that v, = 0 and >, v? = 1. Since for fixed o, we can choose
€1, ... ,en such that h; = hfd;;, then

E hf;hf‘mvmvj: E 2U2 E g U = § 2
ijm % ©j

and so

(3.3.13) > hEhg,vmu; <Y (B =S

1yma 1jo

Substituting (3.3.13) into (3.3.5), we get

(3. i 14)
1 1
—AS> > (hg) +naS+ o574+ > (Sa—85)* = > tr(HoHg — HgH,)?
ijka a<p af
+bS —nlb|S

1
> naS +bS — n|b|S + ];SQ.

When a, b are constant, from Lemma 2 we see that the Ricci curvature of M™ is
bounded from below. Using the same arguments as above, we can get

1
(3.3.15) (na+b—nlbl + EsupS)supS <0.

(3.3.15) implies that when na 4+ b — n|b| > 0, M™ is totally geodesic; when na +
b—nlb] < 0,0 < S < —p(na+b—mn|b|). This completes the proof of Theorem 1. O

Taking b = 0 in Theorem 1, we can obtain Theorem A immediately.

Proof of Theorem 2: When the second fundamental form of M" is parallel, we
have h{ = 0 for all 7, j, k, o and S = constant. Therefore, when the generator v is
orthogonal to M™. From (3 3.3) using Lemma 3, we get

1
0<naS+I[1+ §sgn(p —1)]S%
So when a < 0, which implies S = 0. Namely, M™ is totally geodesic or S > —na/[1+

2sgn(p — 1)]. On the other hand, when the generator v is parallel to M™, combining
(3.3.13), (3.3.3) and Lemma 3 we get
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1
(3.3.16) 0 <naS+bS+n|bS+[1+ isgn(p —1))5%.

Thus, when na + b + nlb| < 0, (3.3.16) shows that M™ is totally geodesic or
S > —(na+ b+ nb|)/[1 + 3sign(p — 1)]. This completes the proof of Theorem 2.
Taking b = 0 in Theorem 2, when a < 0, we see that M™ is not totally geodesic
if S > —na/[1 + $sgn(p — 1)]. In particular, when the equality holds, we see that
S = —na(p=1) or S = —3a. Therefore, using the results in [7] and the Corollary in
[4], we obtain the Corollary in the Introduction. O
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