On the maximal spacelike submanifolds of a pseudo- Riemannian quasi constant curvature manifold

Xiaoyan Chen, Huafei Sun and Li Zhu

Abstract

In this paper, we first give a definition of pseudo-Riemannian quasi constant curvature manifold and then generalize T.Ishihara's results.

Mathematics Subject Classification: 53C42.

Key words: maximal spacelike submanifold, quasi constant curvature, pseudoRiemannian manifold.

1 Introduction

Let $N_{P}^{n+p}(c)$ be an $(n+p)$-dimensional pseudo-Riemannian manifold of constant curvature c, whose index is p. Let M^{n} be an n-dimensional complete spacelike submanifold isometrically immersed in $N_{P}^{n+p}(c)$. Noting that the codimension is equal to the index. Its curvature tensor satisfies

$$
R_{A B C D}=c \varepsilon_{A} \varepsilon_{B}\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)
$$

T.Ishihara [7] proved:

Theorem A. Let M^{n} be a complete maximal spacelike submanifold in $N_{P}^{n+p}(c)$. Then either M^{n} is totally geodesic $(c \geq 0)$ or $0 \leq S \leq-n p c(c<0)$, where S is the square of the length of the second fundamental form of M^{n}. Here, similar to the definition of the quasi constant curvature manifold defined by [2], we give the following definition:

Definition. An $(n+p)$-dimensional pseudo-Riemannian manifold N_{p}^{n+p} with index p is said to be a pseudo-Reimannian quasi constant curvature manifold, if its curvature tensor satisfies

$$
\begin{align*}
K_{A B C D}= & a \varepsilon_{A} \varepsilon_{B}\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)+b \varepsilon_{A} \varepsilon_{B}\left(\delta_{A C} v_{B} v_{D}\right. \tag{1.1.1}\\
& \left.-\delta_{A D} v_{B} v_{C}+\delta_{B D} v_{A} v_{C}-\delta_{B C} v_{A} v_{D}\right),
\end{align*}
$$

[^0]where a, b are real functions and v_{A} is the component of a unit vector field which is called the generator of the manifold.

Remark 1. When $b \equiv 0, N_{p}^{n+p}=N_{p}^{n+p}(a)$. From now on, we make use of the following convention on the range of the indices:

$$
1 \leq A, B, \ldots, \leq n+p ; 1 \leq i, j, \ldots, \leq n ; n+1 \leq \alpha, \beta, \ldots, \leq n+p
$$

In this paper, we study the case that the ambient space is a pseudo-Riemannian quasi constant curvature manifold N_{p}^{n+p} and generalize Theorem A. We obtain:

Theorem 1. Let M^{n} be an n-dimensional complete maximal spacelike submanifold in an $(n+p)$-dimensional pseudo-Riemannian quasi constant curvature manifold N_{p}^{n+p}, whose index is p. We suppose a, b are constant. (1): If the generator is orthogonal to M^{n}, then M^{n} is totally geodesic $(a \geq 0)$ or $0 \leq S \leq-n a p(a<0)$. (2):If the generator is parallel to M^{n}, then M^{n} is totally geodesic ($n a+b-n|b| \geq 0$) or $0 \leq S \leq-p(n a+b-n|b|)(n a+b-n|b|<0)$.

Remark 2. When $b=0$, from Theorem 1, we can obtain Theorem A immediately.
Theorem 2. Let M^{n} be an n-dimensional maximal spacelike submanifold with parallel second fundamental form in an $(n+p)$-dimensional pseudo-Riemannian quasi constant curvature manifold N_{p}^{n+p}. We suppose that a, b are constant. (1): If $a<0$ and the generator is orthogonal to M^{n}, then M^{n} is totally geodesic or $S \geq-n a /[1+$ $\left.\frac{1}{2} \operatorname{sgn}(p-1)\right]$. (2): If $n a+b-n|b|<0$ and the generator is parallel to M^{n}, then M^{n} is totally geodesic or $S \geq-(n a+b-n|b|) /\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right]$.

In particular, taking $b=0$ in Theorem 2 and using the results in [7] and [4] we can obtain easily:

Corollary. Let M^{n} be an n-dimensional maximal spacelike submanifold with parallel second fundamental form in $N_{p}^{n+p}(a)(a<0)$, then M^{n} is totally geodesic or $S \geq-n a /\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right]$.

In particular, when the equality holds, M^{n} is the product of hyperbolic spheres or $n=p=2, M^{2}=H^{2}(\sqrt{-a})$ is a hyperbolic Veronese surface in $H_{2}^{4}\left(\sqrt{-\frac{a}{3}}\right)$, where

$$
\begin{gathered}
H^{2}(\sqrt{-a})=\left\{x \in R_{1}^{3},\langle x, x\rangle=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a, a<0\right\} \\
H_{2}^{4}\left(\sqrt{-\frac{a}{3}}\right)=\left\{x \in R_{3}^{5},\langle x, x\rangle=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{5}^{2}=\frac{a}{3}, a<0\right\} .
\end{gathered}
$$

2 Local Formulas

Let N_{p}^{n+p} be an $(n+p)$-dimensional pseudo-Riemannian quasi constant curvature manifold, whose index is p. Let M^{n} be an n-dimensional Riemannian manifold isometrically immersed in N_{p}^{n+p}. As the pseudo-Riemannian metric of N_{p}^{n+p} induces the Riemannian metric of M^{n}, the immersion is called spacelike. We choose a local field of orthogonal frames e_{1}, \ldots, e_{n+p} in N_{p}^{n+p}, such that e_{1}, \ldots, e_{n} are tangent to M^{n}. Let ω_{A} be the dual frames so that the pseudo-Riemannian metric of N_{p}^{n+p} is given by $d S_{N_{p}^{n+p}}^{2}=\sum_{i} \omega_{i}^{2}-\sum_{\alpha} \omega_{\alpha}^{2}=\sum_{A} \varepsilon_{A} \omega_{A}^{2}$, where $\varepsilon_{i}=1, \varepsilon_{\alpha}=-1$. Then the structure equations of N_{p}^{n+p} are given by

$$
\begin{gathered}
d \omega_{A}=\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \\
d \omega_{A B}=\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C D} \varepsilon_{C} \varepsilon_{D} K_{A B C D} \omega_{C} \wedge \omega_{D},
\end{gathered}
$$

where $K_{A B C D}$ satisfies (1.1.1).
Restricting these forms to M^{n}, then

$$
\begin{gathered}
\omega_{\alpha}=0, \omega_{i \alpha}=\sum_{j} h_{i j}^{\alpha} \omega_{j}, h_{i j}^{\alpha}=h_{j i}^{\alpha}, \\
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \\
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k l} R_{i j k l} \omega_{k} \wedge \omega_{l},
\end{gathered}
$$

$$
\begin{gather*}
R_{i j k l}=K_{i j k l}-\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right), \tag{2.2.1}\\
d \omega_{\alpha}=-\sum_{\beta} \omega_{\alpha \beta} \wedge \omega_{\beta}, \\
d \omega_{\alpha \beta}=-\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}-\frac{1}{2} \sum_{i j} R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j}, \\
R_{\alpha \beta i j}=K_{\alpha \beta i j}+\sum_{k}\left(h_{k i}^{\alpha} h_{k j}^{\beta}-h_{k j}^{\alpha} h_{k i}^{\beta}\right) . \tag{2.2.2}
\end{gather*}
$$

We denote by $H=\frac{1}{n} \sum_{i \alpha} h_{i i}^{\alpha} e_{\alpha}$ the mean curvature vector of M^{n}. Then M^{n} is maximal if its mean curvature vector vanishes identically. Denote by $h=\sum_{i j \alpha} h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}$ the second fundamental form of the immersion and by $S=\sum_{i j \alpha}\left(h_{i j}^{\alpha}\right)^{2}$ the square of the length of $h . h_{i j k}^{\alpha}$ and $h_{i j k l}^{\alpha}$ are defined by

$$
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\sum_{k} h_{i k}^{\alpha} \omega_{k j}+\sum_{k} h_{k j}^{\alpha} \omega_{k i}-\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha}
$$

and

$$
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}+\sum_{l} h_{i j l}^{\alpha} \omega_{l k}+\sum_{l} h_{i l k}^{\alpha} \omega_{l j}+\sum_{l} h_{l j k}^{\alpha} \omega_{l i}-\sum_{\beta} h_{i j k}^{\beta} \omega_{\beta \alpha}
$$

respectively,
Where

$$
\begin{equation*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=K_{\alpha i k j}=-K_{\alpha i j k}, \tag{2.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{i m}^{\alpha} R_{m j k l}+\sum_{m} h_{m j}^{\alpha} R_{m i k l}+\sum_{\beta} h_{i j}^{\beta} R_{\alpha \beta k l} . \tag{2.2.4}
\end{equation*}
$$

Noting M^{n} is maximal, from (2.2.1) we have

$$
\begin{equation*}
R_{i k}=(n-1) a \delta_{i j}+b\left[\sum_{i} v_{i}^{2} \delta_{i k}+(n-2) v_{i} v_{k}\right]+\sum_{j \alpha} h_{i j}^{\alpha} h_{j k}^{\alpha} . \tag{2.2.5}
\end{equation*}
$$

From (2.2.5), we see that the scalar curvature of M^{n} satisfies

$$
\begin{equation*}
R=a n(n-1)+b(n-1)+S=(n-1)(n a+b)+S \tag{2.2.6}
\end{equation*}
$$

From (2.2.6), we obtain
Proposition. Let M^{n} be an n-dimensional maximal spacelike submanifold in N_{p}^{n+p}. If

$$
R \leq(n-1)(n a+b)
$$

then M^{n} is totally geodesic.

3 Proof of Theorems

In order to prove our Theorems, we need the following:
Lemma 1. $[3,6]$ Let M^{n} be a complete Riemannian manifold with Ricci curvature bounded from below. Let f be a C^{2}-function which is bounded from above on M^{n}. Then for all $\varepsilon>0$, there exists a point x in M^{n} such that, at x

$$
|\nabla f|<\varepsilon, \quad \triangle f>-\varepsilon, \quad f(x)<\operatorname{inff}+\varepsilon
$$

Lemma 2. Let M^{n} be an n-dimensional maximal spacelike submanifold in N_{p}^{n+p}. Then the Ricci curvature of M^{n} satisfies

$$
R_{i k} \geq[(n-1) a-|b|] \delta_{i k}-(n-2)|b| .
$$

Proof of Theorem 1: In the first, we have

$$
\begin{align*}
\sum_{i} v_{i}^{2} \delta_{i k}+(n-2) v_{i} v_{k} & \leq \sum_{A} v_{A}^{2} \delta_{i k}+\frac{1}{2}(n-2)\left(\sum_{A} v_{A}^{2}+\sum_{A} v_{A}^{2}\right) \tag{3.3.1}\\
& =\delta_{i k}+n-2
\end{align*}
$$

and then, for fixed α, we choose e_{1}, \ldots, e_{n} such that

$$
h_{i j}^{\alpha}=h_{i i}^{\alpha} \delta_{i j} .
$$

Thus

$$
\sum_{j} h_{i j}^{\alpha} h_{j k}^{\alpha}=h_{i i}^{\alpha} h_{k k}^{\alpha} \delta_{i k} \geq 0
$$

and so

$$
\begin{equation*}
\sum_{j \alpha} h_{i j}^{\alpha} h_{j k}^{\alpha} \geq 0 . \tag{3.3.2}
\end{equation*}
$$

Combining (3.3.1), (3.3.2) and (2.2.5), we obtain Lemma 2.
Lemma 3. [1, 5] Let $H_{i}, i \geq 2$ be symmetric $(n \times n)$-matrixes, $S=\sum_{i} \operatorname{tr} H_{i}^{2}$. Then

$$
-\sum_{i j} \operatorname{tr}\left(H_{i} H_{j}-H_{j} H_{i}\right)^{2}+\sum_{i}\left(\operatorname{tr} H_{i}^{2}\right)^{2} \leq\left(1+\frac{1}{2} \operatorname{sgn}(p-1)\right) S^{2}
$$

Let $S_{\alpha \beta}=\sum_{i j} h_{i j}^{\alpha} h_{i j}^{\beta}$, then $\left(S_{\alpha \beta}\right)$ can be assumed to be diagonal for a suitable choice of $e_{n+1}, \ldots, e_{n+p}, i . e ., S_{\alpha \beta}=S_{\alpha} \delta_{\alpha \beta}, S_{\alpha}=\sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}$. Since M^{n} is maximal, when a, b are constant, from (2.2.1)-(2.2.4), we can get

$$
\begin{align*}
\frac{1}{2} \triangle S & =\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j \alpha} h_{i j}^{\alpha} \triangle h_{i j}^{\alpha} \tag{3.3.3}\\
& =\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j k m \alpha} h_{i j}^{\alpha} h_{m k}^{\alpha} R_{m i j k}+\sum_{i j k m \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} R_{m k j k}+\sum_{i j k \alpha \beta} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\alpha \beta j k} \\
& +\sum_{i j k \alpha} h_{i j}^{\alpha} \nabla_{j} K_{\alpha k k i}+\sum_{i j k \alpha} h_{i j}^{\alpha} \nabla_{k} K_{\alpha i k j} \\
& =\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+\sum_{\alpha} S_{\alpha}^{2}-\sum_{\alpha \beta} t r\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}+b S \sum_{k} v_{k}^{2} \\
& +n b \sum_{i j m \alpha} h_{i j}^{\alpha} h_{m i}^{\alpha} v_{m} v_{j}-n \sum_{i j \alpha} h_{i j}^{\alpha} \nabla_{j}\left(b v_{\alpha} v_{i}\right) .
\end{align*}
$$

It is clear that

$$
-\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \geq 0
$$

Putting

$$
P \sigma_{1}=\sum_{\alpha} S_{\alpha}=S, \quad p(p-1) \sigma_{2}=2 \sum_{\alpha<\beta} S_{\alpha} S_{\beta}
$$

then we have

$$
\begin{equation*}
p^{2}(p-1)\left(\sigma_{1}^{2}-\sigma_{2}\right)=\sum_{\alpha<\beta}\left(S_{\alpha}-S_{\beta}\right)^{2} \tag{3.3.4}
\end{equation*}
$$

Substituting (3.3.4) into (3.3.3), we get

$$
\begin{align*}
\frac{1}{2} \triangle S & =\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+\frac{1}{p} S^{2}+\frac{1}{p} \sum_{\alpha<\beta}\left(S_{\alpha}-S_{\beta}\right)^{2}-\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{3.3.5}\\
& +b S \sum_{k} v_{k}^{2}+n b \sum_{i j m \alpha} h_{i j}^{\alpha} h_{m i}^{\alpha} v_{m} v_{j}-n \sum_{i j \alpha} h_{i j}^{\alpha} \nabla_{j}\left(b v_{\alpha} v_{i}\right)
\end{align*}
$$

Now, we assume that the generator $v=\sum_{A} v_{A} e_{A}$ is orthogonal to M^{n}, then we see that $v_{i}=0$ and (3.3.5) becomes

$$
\begin{align*}
\frac{1}{2} \triangle S & =\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+\frac{1}{p} S^{2}+\frac{1}{p} \sum_{\alpha<\beta}\left(S_{\alpha}-S_{\beta}\right)^{2}-\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{3.3.6}\\
& \geq n a S+\frac{1}{p} S^{2}
\end{align*}
$$

Let $f=\frac{1}{\sqrt{S+c}}$ for any positive constant c, then f is bounded c^{∞}-function on M^{n}. By calculation, we get

$$
\begin{equation*}
|\nabla f|^{2}=\frac{1}{4} f^{6}|\nabla S|^{2} \tag{3.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\triangle f=-\frac{1}{2} f^{3} \triangle S+\frac{3}{4} f^{5}|\nabla S|^{2} \tag{3.3.8}
\end{equation*}
$$

From (3.3.7) and (3.3.8), we get

$$
\begin{equation*}
f^{4} \triangle S=6|\nabla f|^{2}-2 f \triangle f \tag{3.3.9}
\end{equation*}
$$

Combining (3.3.6) and (3.3.9), we get

$$
\begin{equation*}
\left(n a S+\frac{1}{p} S^{2}\right) f^{4} \leq 3|\nabla f|^{2}-f \triangle f \tag{3.3.10}
\end{equation*}
$$

When $v_{i}=0$ and a is constant, from (2.2.5) we see that $R_{i k} \geq a(n-1) \delta_{i k}$. Thus, from Lemma 1 and (3.3.10) we will get at point x,

$$
\left(n a S+\frac{1}{p} S^{2}\right) f^{4} \leq 3 \varepsilon+\varepsilon(i n f f+\varepsilon)
$$

So

$$
\begin{equation*}
\frac{n a S+\frac{1}{p} S^{2}}{(S+c)^{2}} \leq 3 \varepsilon+\varepsilon(i n f f+\varepsilon) \tag{3.3.11}
\end{equation*}
$$

Since when $\varepsilon \rightarrow 0, f(x)$ goes to the infimum and $S(x)$ goes to the supremum. Thus letting $\varepsilon \rightarrow 0$, from (3.3.11) we get

$$
\begin{equation*}
\left(n a+\frac{1}{p} \sup S\right) \sup S \leq 0 \tag{3.3.12}
\end{equation*}
$$

(3.3.12) implies that when $a \geq 0, S \equiv 0$, i.e., M^{n} is totally geodesic; when $a<0$, $S \leq-n p a$. On the other hand, we assume that the generator $v=\sum_{A} v_{A} e_{A}$ is parallel to M^{n}, then we see that $v_{\alpha}=0$ and $\sum_{i} v_{i}^{2}=1$. Since for fixed α, we can choose e_{1}, \ldots, e_{n} such that $h_{i j}^{\alpha}=h_{i i}^{\alpha} \delta_{i j}$, then

$$
\sum_{i j m} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j}=\sum_{i}\left(h_{i i}^{\alpha}\right)^{2} v_{i}^{2} \leq \sum_{i j}\left(h_{i j}^{\alpha}\right)^{2} \sum_{i} v_{i}^{2}=\sum_{i j}\left(h_{i j}^{\alpha}\right)^{2}
$$

and so

$$
\begin{equation*}
\sum_{i j m \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} v_{m} v_{j} \leq \sum_{i j \alpha}\left(h_{i j}^{\alpha}\right)^{2}=S \tag{3.3.13}
\end{equation*}
$$

Substituting (3.3.13) into (3.3.5), we get

$$
\begin{align*}
\frac{1}{2} \triangle S & \geq \sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n a S+\frac{1}{p} S^{2}+\frac{1}{p} \sum_{\alpha<\beta}\left(S_{\alpha}-S_{\beta}\right)^{2}-\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{3.3.14}\\
& +b S-n|b| S \\
& \geq n a S+b S-n|b| S+\frac{1}{p} S^{2}
\end{align*}
$$

When a, b are constant, from Lemma 2 we see that the Ricci curvature of M^{n} is bounded from below. Using the same arguments as above, we can get

$$
\begin{equation*}
\left(n a+b-n|b|+\frac{1}{p} \sup S\right) \sup S \leq 0 \tag{3.3.15}
\end{equation*}
$$

(3.3.15) implies that when $n a+b-n|b| \geq 0, M^{n}$ is totally geodesic; when $n a+$ $b-n|b|<0,0 \leq S \leq-p(n a+b-n|b|)$. This completes the proof of Theorem 1.

Taking $b=0$ in Theorem 1, we can obtain Theorem A immediately.
Proof of Theorem 2: When the second fundamental form of M^{n} is parallel, we have $h_{i j k}^{\alpha}=0$ for all i, j, k, α and $S=$ constant. Therefore, when the generator v is orthogonal to M^{n}. From (3.3.3) using Lemma 3, we get

$$
0 \leq n a S+\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2}
$$

So when $a<0$, which implies $S=0$. Namely, M^{n} is totally geodesic or $S \geq-n a /[1+$ $\left.\frac{1}{2} \operatorname{sgn}(p-1)\right]$. On the other hand, when the generator v is parallel to M^{n}, combining (3.3.13), (3.3.3) and Lemma 3 we get

$$
\begin{equation*}
0 \leq n a S+b S+n|b| S+\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right] S^{2} \tag{3.3.16}
\end{equation*}
$$

Thus, when $n a+b+n|b|<0$, (3.3.16) shows that M^{n} is totally geodesic or $S \geq-(n a+b+n|b|) /\left[1+\frac{1}{2} \operatorname{sign}(p-1)\right]$. This completes the proof of Theorem 2. Taking $b=0$ in Theorem 2, when $a<0$, we see that M^{n} is not totally geodesic if $S \geq-n a /\left[1+\frac{1}{2} \operatorname{sgn}(p-1)\right]$. In particular, when the equality holds, we see that $S=-n a(p=1)$ or $S=-\frac{3}{2} a$. Therefore, using the results in [7] and the Corollary in [4], we obtain the Corollary in the Introduction.

Acknowledgement. This subject is supported partially by the Found of China Education Ministry.

References

[1] A.M.Li and J.M.Li, An intrinsic rigidety theorem for minimal submanifolds in a sphere, Arch.Math, 58(1992), 582-594.
[2] B.Y.Chen and K.Yano,Hyperfaces of a conformally flat space, Tensor N.S.26(1972), 318-322.
[3] H.Omori, Isometric immersions of Riemannian manifolds, J.Math.Soc.Japan, 19(1976), 205-214.
[4] H.Sun, On spacelike submanifold of a pseudo-Riemannian space form, Note di Math, 15(1995), 215-224.
[5] S.S.Chern,M.do carmo and S.Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, In Functional Analysis and Related Fields, Springer-Verlag,New York, 1970: 60-75.
[6] S.T.Yau, Harmornic function on complete Riemannian manifolds, Comm.Pure Appl.Math,28(1975), 201-228.
[7] T.Ishihara, Maximal spacelike submanifolds of a pseudo-riemannian space of curvature,Michigan Math, J.35(1988), 345-352.

Authors' address:
Xiaoyan Chen, Huafei Sun and Li Zhu
Dept. of Methematics, Beijing Institute of Technology, Beijing, 100081, China email: xychen810528@163.com, sunhuafei@263.net and david_8229@yahoo.com.cn

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 36-43.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2006.

