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Abstract. To any (0,2)-tensor field on the tangent and cotangent bundles
of a Fedosov manifold, we associate a global matrix function ‘mutatis
mutandis’ as in the semi-Riemannian case. Based on this fact, natural
(0,2)-tensor fields on these bundles are defined and characterized.
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1 Introduction

Let M be a manifold of dimension 2n, ω ∈ Ω2(M) a non-degenerate closed 2−form
on M and ∇ a free of torsion linear connection compatible with ω; i.e., Xω(Y, Z) =
ω(∇XY, Z) + ω(Y,∇XZ) for any vector fields on M , X, Y, Z ∈ X(M).

The triple (M,ω,∇) is called a Fedosov manifold. For a detailed study of these
manifolds we refer to [3]. Fedosov manifolds constitute a natural generalization of
Kähler manifolds. In fact, let <,> be a semi-Riemannian metric on M with Levi-
Civita connection ∇ and J an almost complex structure on M which satisfies
< J(X), J(Y ) >=< X, Y > and J(∇XY ) = ∇XJY for any X, Y ∈ X(M); i.e.,
(M, <,>, J) is a Kähler manifold.

By defining ω(X, Y ) =< J(X), Y >, it follows that (M, ω,∇) is a Fedosov mani-
fold.

In contrast, there are Fedosov manifolds which do not admit Kähler structure
([2]).

In [1], we lifted to suitable bundles (0,2)-tensor fields defined on tangent and
cotangent bundles over manifolds endowed with semi-Riemannian metrics so as to
look at them as global matrix functions. These matrix representations allowed us
to define and classify natural (0,2)-tensor fields with respect to semi-Riemannian
metrics. The main result that lets us characterize these tensor fields is Theorem 2.1 of
[1]. In this paper, the main result is Theorem 2.1. We apply this result to characterize
natural (0,2)-tensor fields on tangent (Proposition 3.1) and cotangent (Proposition
4.1) bundles over Fedosov manifolds.

Throughout, all geometric objects are assumed to be differentiable, i.e. C∞.
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2 The main result

For any integer n > 1, let S = (sij) ∈ R2n×2n be the matrix

S =
(

0 In

−In 0

)

where In ∈ Rn×n is the unit matrix. Hence,

sij =





−1 if i− j = n

1 if j − i = n

0 otherwise

Let G = Sp(2n) be the real symplectic group ; i.e., a ∈ G if and only if a.S.at = S.

Theorem 2.1. Let A : R2n −→ R2n×2n be a differentiable map which satisfies

A(x) = a.A(x.a).at

for any a ∈ G and x ∈ R2n. Then, there exist α, β ∈ R such that

A(x) = α.S + β.(x.S)t.(x.S)

where yty = (yij) ∈ R2n×2n is the matrix defined by yij = yi.yj, if y = (y1, . . . , y2n).

We will prove this theorem using the following two results

Proposition 2.2. If x, y ∈ R2n are non-zero vectors, there exists a ∈ G such that
y = x.a.

Proof. Let e1, . . . , e2n ∈ R2n be the canonical basis. We need only to check the case
when x = e1.

It is well known (see [4]) that there exists a symplectic basis v1, . . . , v2n of R2n;
i.e.,

viSvt
j = sij , 1 6 i, j 6 2n(2.2.1)

such that v1 = y.
Let us define a ∈ GL(2n,R) by ei.a = vi if 1 6 i 6 2n, hence from (2.2.1) it

follows that a ∈ G.

Proposition 2.3. Let G1 be the stabilizer of e1 in G; i.e., G1 = {a ∈ G/e1.a = e1}.
The centralizer Z of G1 in R2n×2n is the set

Z = {α.I2n + β.et
n+1.e1/α, β ∈ R}

Proof. Let σ ∈ Z. Hence, for any a ∈ G1 we have

a.σ = σ.a(2.2.2)

Let D ⊂ GL(2n,R) be the set of diagonal matrices d = (dij) such that d11 = 1 and
d(n+i)(n+i) = d−1

ii for 1 6 i 6 n.
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Let S be the set of matrices a ∈ R2n×2n such that

a =
(

In 0
s In

)

where s ∈ Rn×n is s symmetric matrix.
Clearly D ⊂ G1 and S ⊂ G1. Writing σ ∈ Z in the block form

σ =
(

σ1 σ2

σ4 σ3

)

where σi ∈ Rn×n, 1 6 i 6 4, condition (2.2.2) applied to any a ∈ S implies that
σ2 = 0 and σ1 = σ3 = α.In for some α ∈ R.

Now, condition (2.2.2) applied to any a ∈ D implies that σ4 = (aij) satisfies
aij = 0 if (i, j) 6= (1, 1). Writing β = a11, one gets

σ = α.I2n + β.et
n+1.e1(2.2.3)

Conversely, if σ is of the form (2.2.3), it is clear that σ ∈ Z if and only if et
n+1.e1 ∈ Z.

Let a ∈ G1, then

a.et
n+1.e1 = a.(e1.S)t.e1 = a.St.et

1.e1 = −a.S.et
1.e1

= −S(a−1)t.et
1.e1 = −S(e1.a

−1)t.e1

= −S.et
1.e1 = et

n+1.e1 = et
n+1.e1.a

Proof of Theorem 2.1. Let A : R2n −→ R2n×2n be a differentiable function satisfying

A(x) = a.A(x.a).at(2.2.4)

for any a ∈ G and x ∈ R2n.
Let x ∈ R2n be a non zero vector. According to Proposition 2.2, there exists b ∈ G

such that x.b = e1; hence,

A(x) = b.A(e1).bt(2.2.5)

Equality (2.2.4) applied to any a ∈ G1 implies that A(e1) = a.A(e1).at. Since a.S.at =
S, it follows that at = S−1.a−1.S; and consequently

A(e1).S−1.a = a.A(e1).S−1(2.2.6)

Equality (2.2.6) shows that A(e1).S−1 ∈ Z; hence, by Proposition 2.3, there exist
α, β ∈ R such that A(e1).S−1 = α.I2n + β.et

n+1.e1; or, equivalently

A(e1) = α.S + β.et
n+1.e1.S(2.2.7)

Since e1.S = en+1, from (2.2.5) and (2.2.6) one gets

A(x) = b.(α.S + β.et
n+1.e1.S).bt = α.b.S.bt + β.b.et

n+1.e1.S.bt

= α.S + β.b(e1.S)t.e1.b
−1.b.S.bt

= α.S + β.b.St.et
1.e1.b

−1.S
= α.S + β(e1.b

−1.S)t.e1.b
−1.S
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Since x.b = e1, it follows that

A(x) = α.S + β.(x.S)t.(x.S)(2.2.8)

Continuity of A implies that (2.2.8) holds for any x ∈ R2n.
2

3 Natural (0,2)-tensor fields on tangent bundles

Let (M, ω,∇) be a Fedosov manifold of dimension 2n and π : TM −→ M be the
tangent bundle over M .

If L(M) denotes the frame bundle over M , let

S(M) = {(p, u1, . . . , u2n) ∈ L(M)/ω(p)(ui, uj) = sij}

be the symplectic frame bundle over M and ψ : N = S(M)× R2n −→ TM the map

defined by ψ(p, u, ξ) =
2n∑

i=1

ξi.ui where (p, u) = (p, u1, . . . , u2n) and ξ = (ξ1, . . . , ξ2n).

The family of maps Ra : N −→ N, a ∈ G, given by

Ra(p, u, ξ) = (p, ua, ξ.(at)−1)

where

ua =

(
2n∑

i=1

ai
1.ui, . . . ,

2n∑

i=1

ai
2n.ui

)
, a =




a1
1 · · · a1

2n
...

...
a2n
1 · · · a2n

2n




define the action of G on N. Clearly ψ ◦Ra = ψ.
Let K : TTM −→ TM be the connection map induced by ∇ and for any p ∈ M

and any v ∈ Mp, let π∗v : (TM)v −→ Mp be the differential map of π at v, and
Kv : (TM)v −→ Mp the restriction of K to (TM)v.

Since the linear map π∗v ×Kv : (TM)v −→ Mp ×Mp defined by π∗v ×Kv(b) =
(π∗v(b),Kv) is an isomorphism that maps isomorphically the horizontal subspace Hv

(= kernel of Kv) onto Mp × (0p) and the vertical subspace Vv (= kernel of π∗v) onto
(0p) ×Mp, where 0p denotes the zero vector, we define –as in [1]– the differentiable
mappings ei, e2n+i : N −→ TTM for 1 6 i 6 2n by

ei(p, u, ξ) = (π∗v ×Kv)−1(ui, 0p) and e2n+i(p, u, ξ) = (π∗v ×Kv)−1(0p, ui)

where v = ψ(p, u, ξ).
Since (TM)v = Hv ⊕ Vv, any vector field X on TM may be written in the form

X = Xh + Xv, where

Xh(v) = (π∗v ×Kv)−1(π∗v(X(v)), 0p) , Xv(v) = (π∗v ×Kv)−1(0p,Kv(X(v)))

if v ∈ Mp. Hence, the mappings ei, e2n+i let us view X as the function ∇X =
(x1, . . . , x4n) : N −→ R4n where x` : N −→ R are determined –for v = ψ(p, u, ξ)– by
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xi(p, u, ξ) = ω(p)(π∗v(X(v)), un+i)
xn+i(p, u, ξ) = ω(p)(π∗v(X(v)), ui)

(3.3.1)

and

x2n+i(p, u, ξ) = ω(p)(Kv(X(v)), un+i)
x3n+i(p, u, ξ) = −ω(p)(Kv(X(v)), ui)

(3.3.2)

for 1 6 i 6 n.
¿From (3.3.1) and (3.3.2) one gets that

∇X ◦Ra = ∇X .

(
(at)−1 0

0 (at)−1

)
(3.3.3)

for any a ∈ G.
As in [1], for any (0, 2)−tensor field G on TM we define the differentiable function

∇G =
(

A1 A2

A4 A3

)
: N −→ R4n×4n

as follows: if (p, u, ξ) ∈ N and v = ψ(p, u, ξ), let ∇G(p, u, ξ) be the matrix of the
bilinear form Gv : (TM)v × (TM)v −→ R induced by G on (TM)v with respect to
the basis {e1(p, u, ξ), . . . , e4n(p, u, ξ)}. Hence, for any pair of vector fields X, Y on TM
one gets

G(X,Y ) ◦ ψ = ∇X.∇G.(∇Y )t(3.3.4)

Equalities (3.3.3) and (3.3.4) imply that each Ai : N −→ R2n×2n satisfies the following
G−invariance property

Ai ◦Ra = at.Ai.a (i = 1, 2, 3, 4)(3.3.5)

We shall call ∇G the matrix of G with respect to (ω,∇). Hence, we get a one
to one correspondence “∇G ←→ T ′′ between (0, 2)−tensor fields on TM and differ-

entiable functions T =
(

A1 A2

A4 A3

)
: N −→ R4n×4n where each Ai satisfies (3.3.5).

The differentiability of G –for T given– follows from (3.3.4) and the fact that ψ is a
submersion.

Just as we did in [1], we define G to be natural with respect to (ω,∇) if ∇G only
depends on ξ.

Proposition 3.1. Let G be a (0, 2)−tensor field on TM and ∇G =
(

A1 A2

A4 A3

)
the

matrix of G with respect to (ω,∇). Then G is natural with respect to (ω,∇) if there
exist real numbers αi, βi ∈ R (i = 1, 2, 3, 4) such that

Ai(p, u, ξ) = αi.S + βi.(ξ.S)t.(ξ.S)

or, equivalently, if for any vector fields X, Y on TM , the following equalities are
satisfied
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G(Xh, Y h)(v) = α1 . ω(p)(π∗v(X(v)), π∗v(Y (v)))
+β1 . ω(p)(v, π∗v(X(v))) . ω(p)(v, π∗v(Y (v)))

G(Xh, Y v)(v) = α2 . ω(p)(π∗v(X(v)),Kv(Y (v)))
+β2 . ω(p)(v, π∗v(X(v))) . ω(p)(v, Kv(Y (v)))

G(Xv, Y h)(v) = α4 . ω(p)(Kv(X(v)), π∗v(Y (v)))
+β4 . ω(p)(v, Kv(X(v))) . ω(p)(v, π∗v(Y (v)))

G(Xv, Y v)(v) = α3 . ω(p)(Kv(X(v)), Kv(Y (v)))
+β3 . ω(p)(v, Kv(X(v))) . ω(p)(v, Kv(Y (v)))

Proof. According to (3.3.5), if G is natural, each matrix function Ai can be viewed
as a function B : R2n −→ R2n×2n which satisfies B(ξ.(a−1)t) = at.B(ξ).a for any
ξ ∈ R2n and any a ∈ G; or, equivalently, B(ξ) = (a−1)t.B(ξ.(a−1)t).a−1.

Since b ∈ G implies that bt ∈ G, it follows that B(ξ) = aB(ξ.a)at for any a ∈ G.
Consequently, by Theorem 2.1, there exist αi, βi ∈ R (i = 1, 2, 3, 4) such that

Ai(p, u, ξ) = αi.S + βi(ξ.S)t, (ξ.S)

The expression of G applied to vector fields is now a consequence of (3.3.1), (3.3.2)
and (3.3.4).

4 Natural (0, 2)−tensor fields on cotangent bundles

For any p ∈ M , let M∗
p be the dual space of Mp and let π : T ∗M −→ M be the

cotangent bundle of M .
For any (p, u) ∈ S(M), we denote with (p, u∗) the dual basis and S∗(M) the

bundle consisting of all those ordered dual basis. Set N = S∗(M) × R2n and let
ψ : N −→ T ∗M be the map defined by

ψ(p, u∗, ξ) =
2n∑

i=1

ξi.u
i

if u∗ = {u1, . . . , u2n} and ξ = (ξ1, . . . , ξ2n).
The family of maps Ra : N −→ N , a ∈ G , given by

Ra(p, u∗, ξ) = (p, (ua)∗, ξ.a)

defines the action of G on N . Clearly, ψ ◦ Ra = ψ. Let K∗ : T (T ∗M) −→ T ∗M be
the dual connection map. We’ll recall that for any p ∈ M and any co-vector w ∈ M∗

p ,
the restriction K∗

w : (T ∗M)w −→ M∗
p of K∗ to (T ∗M)w is a surjective linear map

characterized by the fact that for any 1−form θ on M such that θ(p) = w and any
vector v ∈ Mp, it satisfies K∗

w(θ∗p(v)) = ∇vθ where θ∗p : Mp −→ (T ∗M)w denotes
the differential map of θ at p.

Since the linear map π∗w×K∗
w : (T ∗M)w −→ Mp×M∗

p defined by π∗w×K∗
w(b) =

(π∗w(b),K∗
w(b)) is an isomorphism that maps the horizontal subspace Hw (= kernel

of K∗
w) onto Mp × (0p) and the vertical subspace Vw (= kernel of π∗w), where 0p

denotes indistinctly the zero vector and the zero co-vector, we define –as in [1]– the
differentiable mappings ei, e2n+i : N −→ T (T ∗M) for 1 6 i 6 2n by
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ei(p, u∗, ξ) = (π∗w×K∗
w)−1(ui, 0p) and e2n+i(p, u∗, ξ) = (π∗w×K∗

w)−1(0p, u
i)

where w − ψ(p, u∗, ξ).
Since (T ∗M)w = Hw⊕Vw, any vector field X on T ∗M may be written in the form

X = Xh + Xv, where

Xh(w) = (π∗w×K∗
w)−1(π∗w(X(w)), 0p) , Xv(w) = (π∗w×K∗

w)−1(0p,K
∗
w(X(w)))

if w ∈ M∗
p . Hence, the mappings ei, e2n+i let us view X as the function ∇X =

(x1, . . . , x4n) : N −→ R4n, where x` : N −→ R are determined –for w = ψ(p, u∗, ξ)–
by

xi(p, u∗, ξ) = ui(π∗w(X(w)))
x2n+i(p, u∗, ξ) = K∗

w(X(v))(ui)
(4.4.1)

for 1 6 i 6 2n.
¿From (4.4.1), one gets that

∇X ◦Ra = ∇X.

(
(at)−1 0

0 a

)
(4.4.2)

for any a ∈ G.
As in [1], for any (0, 2)−tensor field G on T ∗M , we define the differentiable function

∇G =
(

A1 A2

A4 A3

)
: N −→ R4n×4n

as follows: if (p, u∗, ξ) ∈ N and w = ψ(p, u∗, ξ), let ∇G(p, u∗, ξ) be the matrix of the
bilinear form Gw : (T ∗M)w × (T ∗M)w −→ R induced by G on (T ∗M)w with respect
to the basis {e1(p, u∗, ξ), . . . , e4n(p, u∗, ξ)}.

Hence, for any pair of vector fields X,Y on T ∗M one gets

G(X,Y ) ◦ ψ = ∇X.∇G.(∇Y )t(4.4.3)

Equalities (4.4.2) and (4.4.3) imply that each Ai : N −→ R2n×2n satisfies the following
G−invariance property

A1 ◦Ra = at.A1.a
A2 ◦Ra = at.A2.(at)−1

A3 ◦Ra = a−1.A3.(a−1)t

A4 ◦Ra = a−1.A4.a
(4.4.4)

We shall call ∇G the matrix of G with respect to (ω,∇). Hence, we get a one to one
correspondence “∇G ←→ T ′′ between (0, 2)−tensor fields on T ∗M and differentiable

functions T =
(

A1 A2

A4 A3

)
: N −→ R4n×4n where Ai satisfies (4.4.4). The differentia-

bility of G –for T given– follows from (4.4.3) and the fact that ψ is a submersion.
We define G to be natural with respect to (ω,∇) if ∇G only depends on ξ.
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Proposition 4.1. Let G be a (0, 2)−tensor field on T ∗M and ∇G =
(

A1 A2

A4 A3

)
the

matrix of G with respect to (ω,∇). Then, G is natural wigh respect to (ω,∇) if there
exist real numbers αi, βi ∈ R (i = 1, 2, 3, 4) such that

A1(p, u∗, ξ) = α1.S + β1.(ξt).ξ(4.4.5)

A2(p, u∗, ξ) = α2.I2n + β2.(ξt).(ξ.S)(4.4.6)

A3(p, u∗, ξ) = α3.S + β3.(ξ.S)t.(ξ.S)(4.4.7)

A4(p, u∗, ξ) = α4.I2n + β4.(ξ.S)t.ξ(4.4.8)

Proof. By setting Bi(ξ) = Ai(p, u∗, ξ), from (4.4.4) it follows that the functions Bi :
R2n −→ R2n×2n satisfy

B1(ξ.a) = at.B1(ξ).a(4.4.9)

B2(ξ.a) = at.B2(ξ).(at)−1(4.4.10)

B3(ξ.a) = a−1.B3(ξ).(a−1)t(4.4.11)

B4(ξ.a) = a−1.B4(ξ).a(4.4.12)

Since a−1 = −S.at.S if a ∈ G, equalities (4.4.9) to (4.4.12) imply that the matrix
functions S.B1.S , S.B2 , B3 and B4.S satisfy Theorem 2.1. This implies equalities
(4.4.5) to (4.4.8).

Remark 4.1. Let θ be the canonical 1−form on T ∗M which is defined for any vector
field X on T ∗M an any co-vector w ∈ T ∗M by

θ(X)(w) = w(π∗w(X(w)))(4.4.13)

On the other hand, for any p ∈ M , let Lp : Mp −→ M∗
p be the isomorphism induced

by ω; i.e.,
Lp(v)(u) = ω(p)(v, u) for any v, u ∈ Mp

Hence, ω induces a (2, 0)−tensor field ω∗ on M by defining

ω∗(p)(w, γ)− ω(p)(L−1
p (w), L−1

p (γ))(4.4.14)

for any w, γ ∈ M∗
p .

In terms of θ, ω and ω∗, one gets

Corollary 4.2. Let G be a (0, 2)−tensor field on T ∗M . Then, G is natural if there
exist real numbers αi, βi ∈ R such that for any vector fields X, Y on T ∗M , the fol-
lowing equalities hold

G(Xh, Y h)(w) = α1 . ω(p)(π∗w(X(w)), π∗w(Y (w)))
+β1 . θ(X)(w) . θ(Y )(w)

G(Xh, Y v)(w) = α2 . K∗
w(Y (w))(π∗w(X(w)))

+β2 . θ(X)(w) . ω∗(p)(w,K∗
w(Y (w)))

G(Xv, Y h)(w) = α4 . K∗
w(X(w))(π∗w(Y (w)))

+β4 . θ(Y )(w) . ω∗(p)(w, K∗
w(X(w)))

G(Xv, Y v)(w) = α3 . ω∗(p)(K∗
w(X(w)),K∗

w(Y (w)))
+β3 . ω∗(p)(w,K∗

w(X(w))) . ω∗(p)(w,K∗
w(Y (w)))

if w ∈ M∗
p
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Remark 4.2. Let φ : TM −→ T ∗M be the diffeomorphism induced by ω; i.e.,
φ(v)(u) = ω(p)(v, u) if v, u ∈ Mp.

Since the diagram
(TM)v

Kv−→ Mp

φ∗v↓ ↓LP

(T ∗M)w −→
K∗

w

M∗
p

commutes, where w = φ(v). From Proposition 3.1 and Corollary 4.2, it follows that
naturatily of (0, 2)−tensor fields on TM and T ∗M is preserved under the pull-back
of φ.

Remark 4.3. Assume that (M,<, >, J) is a Semi-Riemannian Kähler manifold. As we
pointed out in the Introduction, (M, ω, J) is then a Fedosov manifold. ¿From Proposi-
tion 3.1 and Proposition 3.1 of [1], it follows —after a straightforward computation—
that the only (0, 2)−tensor field on TM which is natural with respect to (M, <, >)
and (M,ω) is the null tensor. Consequently, by Remark above, this is also true for
(0, 2)−tensor fields on T ∗M .
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