Natural tensor fields of type $(0,2)$ on the tangent and cotangent bundles of a Fedosov manifold

José Araujo and Guillermo Keilhauer

Abstract

To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized.

Mathematics Subject Classification: 53C99; 53C50.
Key words: connection map, tangent bundle, tensor field.

1 Introduction

Let M be a manifold of dimension $2 n, \omega \in \Omega^{2}(M)$ a non-degenerate closed 2 -form on M and ∇ a free of torsion linear connection compatible with ω; i.e., $X \omega(Y, Z)=$ $\omega\left(\nabla_{X} Y, Z\right)+\omega\left(Y, \nabla_{X} Z\right)$ for any vector fields on $M, X, Y, Z \in \mathfrak{X}(M)$.

The triple (M, ω, ∇) is called a Fedosov manifold. For a detailed study of these manifolds we refer to [3]. Fedosov manifolds constitute a natural generalization of Kähler manifolds. In fact, let $<$,$\rangle be a semi-Riemannian metric on M$ with LeviCivita connection ∇ and J an almost complex structure on M which satisfies $<J(X), J(Y)>=<X, Y>$ and $J\left(\nabla_{X} Y\right)=\nabla_{X} J Y$ for any $X, Y \in \mathfrak{X}(M)$; i.e., $(M,<,>, J)$ is a Kähler manifold.

By defining $\omega(X, Y)=<J(X), Y>$, it follows that (M, ω, ∇) is a Fedosov manifold.

In contrast, there are Fedosov manifolds which do not admit Kähler structure ([2]).

In [1], we lifted to suitable bundles $(0,2)$-tensor fields defined on tangent and cotangent bundles over manifolds endowed with semi-Riemannian metrics so as to look at them as global matrix functions. These matrix representations allowed us to define and classify natural (0,2)-tensor fields with respect to semi-Riemannian metrics. The main result that lets us characterize these tensor fields is Theorem 2.1 of [1]. In this paper, the main result is Theorem 2.1. We apply this result to characterize natural (0,2)-tensor fields on tangent (Proposition 3.1) and cotangent (Proposition 4.1) bundles over Fedosov manifolds.

Throughout, all geometric objects are assumed to be differentiable, i.e. C^{∞}.

[^0](c) Balkan Society of Geometers, Geometry Balkan Press 2006.

2 The main result

For any integer $n \geqslant 1$, let $S=\left(s_{i j}\right) \in \mathbb{R}^{2 n \times 2 n}$ be the matrix

$$
S=\left(\begin{array}{c|c}
0 & I_{n} \\
\hline-I_{n} & 0
\end{array}\right)
$$

where $I_{n} \in \mathbb{R}^{n \times n}$ is the unit matrix. Hence,

$$
s_{i j}=\left\{\begin{aligned}
-1 & \text { if } i-j=n \\
1 & \text { if } j-i=n \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Let $\mathcal{G}=S_{p}(2 n)$ be the real symplectic group ; i.e., $a \in \mathcal{G}$ if and only if $a . S . a^{t}=S$.
Theorem 2.1. Let $A: \mathbb{R}^{2 n} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ be a differentiable map which satisfies

$$
A(x)=a \cdot A(x \cdot a) \cdot a^{t}
$$

for any $a \in \mathcal{G}$ and $x \in \mathbb{R}^{2 n}$. Then, there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
A(x)=\alpha \cdot S+\beta \cdot(x \cdot S)^{t} \cdot(x . S)
$$

where $y^{t} y=\left(y_{i j}\right) \in \mathbb{R}^{2 n \times 2 n}$ is the matrix defined by $y_{i j}=y_{i} . y_{j}$, if $y=\left(y_{1}, \ldots, y_{2 n}\right)$.
We will prove this theorem using the following two results
Proposition 2.2. If $x, y \in \mathbb{R}^{2 n}$ are non-zero vectors, there exists $a \in \mathcal{G}$ such that $y=x . a$.

Proof. Let $e_{1}, \ldots, e_{2 n} \in \mathbb{R}^{2 n}$ be the canonical basis. We need only to check the case when $x=e_{1}$.

It is well known (see [4]) that there exists a symplectic basis $v_{1}, \ldots, v_{2 n}$ of $\mathbb{R}^{2 n}$; i.e.,

$$
\begin{equation*}
v_{i} S v_{j}^{t}=s_{i j} \quad, \quad 1 \leqslant i, j \leqslant 2 n \tag{2.2.1}
\end{equation*}
$$

such that $v_{1}=y$.
Let us define $a \in G L(2 n, \mathbb{R})$ by $e_{i} \cdot a=v_{i}$ if $1 \leqslant i \leqslant 2 n$, hence from (2.2.1) it follows that $a \in \mathcal{G}$.

Proposition 2.3. Let \mathcal{G}_{1} be the stabilizer of e_{1} in \mathcal{G}; i.e., $\mathcal{G}_{1}=\left\{a \in \mathcal{G} / e_{1} . a=e_{1}\right\}$. The centralizer Z of \mathcal{G}_{1} in $\mathbb{R}^{2 n \times 2 n}$ is the set

$$
Z=\left\{\alpha \cdot I_{2 n}+\beta \cdot e_{n+1}^{t} \cdot e_{1} / \alpha, \beta \in \mathbb{R}\right\}
$$

Proof. Let $\sigma \in Z$. Hence, for any $a \in \mathcal{G}_{1}$ we have

$$
\begin{equation*}
a . \sigma=\sigma . a \tag{2.2.2}
\end{equation*}
$$

Let $\mathcal{D} \subset G L(2 n, \mathbb{R})$ be the set of diagonal matrices $d=\left(d_{i j}\right)$ such that $d_{11}=1$ and $d_{(n+i)(n+i)}=d_{i i}^{-1}$ for $1 \leqslant i \leqslant n$.

Let \mathcal{S} be the set of matrices $a \in \mathbb{R}^{2 n \times 2 n}$ such that

$$
a=\left(\begin{array}{c|c}
I_{n} & 0 \\
\hline \mathrm{~s} & I_{n}
\end{array}\right)
$$

where $s \in \mathbb{R}^{n \times n}$ is s symmetric matrix.
Clearly $\mathcal{D} \subset \mathcal{G}_{1}$ and $\mathcal{S} \subset \mathcal{G}_{1}$. Writing $\sigma \in Z$ in the block form

$$
\sigma=\left(\begin{array}{c|c}
\sigma_{1} & \sigma_{2} \\
\hline \sigma_{4} & \sigma_{3}
\end{array}\right)
$$

where $\sigma_{i} \in \mathbb{R}^{n \times n}, 1 \leqslant i \leqslant 4$, condition (2.2.2) applied to any $a \in \mathcal{S}$ implies that $\sigma_{2}=0$ and $\sigma_{1}=\sigma_{3}=\alpha . I_{n}$ for some $\alpha \in \mathbb{R}$.

Now, condition (2.2.2) applied to any $a \in \mathcal{D}$ implies that $\sigma_{4}=\left(a_{i j}\right)$ satisfies $a_{i j}=0$ if $(i, j) \neq(1,1)$. Writing $\beta=a_{11}$, one gets

$$
\begin{equation*}
\sigma=\alpha \cdot I_{2 n}+\beta \cdot e_{n+1}^{t} \cdot e_{1} \tag{2.2.3}
\end{equation*}
$$

Conversely, if σ is of the form (2.2.3), it is clear that $\sigma \in Z$ if and only if $e_{n+1}^{t} \cdot e_{1} \in Z$.
Let $a \in \mathcal{G}_{1}$, then

$$
\begin{aligned}
a \cdot e_{n+1}^{t} \cdot e_{1} & =a \cdot\left(e_{1} \cdot S\right)^{t} \cdot e_{1}=a \cdot S^{t} \cdot e_{1}^{t} \cdot e_{1}=-a \cdot S \cdot e_{1}^{t} \cdot e_{1} \\
& =-S\left(a^{-1}\right)^{t} \cdot e_{1}^{t} \cdot e_{1}=-S\left(e_{1} \cdot a^{-1}\right)^{t} \cdot e_{1} \\
& =-S \cdot e_{1}^{t} \cdot e_{1}=e_{n+1}^{t} \cdot e_{1}=e_{n+1}^{t} \cdot e_{1} \cdot a
\end{aligned}
$$

Proof of Theorem 2.1. Let $A: \mathbb{R}^{2 n} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ be a differentiable function satisfying

$$
\begin{equation*}
A(x)=a \cdot A(x \cdot a) \cdot a^{t} \tag{2.2.4}
\end{equation*}
$$

for any $a \in \mathcal{G}$ and $x \in \mathbb{R}^{2 n}$.
Let $x \in \mathbb{R}^{2 n}$ be a non zero vector. According to Proposition 2.2, there exists $b \in \mathcal{G}$ such that $x . b=e_{1}$; hence,

$$
\begin{equation*}
A(x)=b \cdot A\left(e_{1}\right) \cdot b^{t} \tag{2.2.5}
\end{equation*}
$$

Equality (2.2.4) applied to any $a \in \mathcal{G}_{1}$ implies that $A\left(e_{1}\right)=a \cdot A\left(e_{1}\right) \cdot a^{t}$. Since $a . S . a^{t}=$ S, it follows that $a^{t}=S^{-1} \cdot a^{-1} \cdot S$; and consequently

$$
\begin{equation*}
A\left(e_{1}\right) \cdot S^{-1} \cdot a=a \cdot A\left(e_{1}\right) \cdot S^{-1} \tag{2.2.6}
\end{equation*}
$$

Equality (2.2.6) shows that $A\left(e_{1}\right) \cdot S^{-1} \in Z$; hence, by Proposition 2.3 , there exist $\alpha, \beta \in \mathbb{R}$ such that $A\left(e_{1}\right) \cdot S^{-1}=\alpha \cdot I_{2 n}+\beta \cdot e_{n+1}^{t} \cdot e_{1} ;$ or, equivalently

$$
\begin{equation*}
A\left(e_{1}\right)=\alpha \cdot S+\beta \cdot e_{n+1}^{t} \cdot e_{1} \cdot S \tag{2.2.7}
\end{equation*}
$$

Since $e_{1} \cdot S=e_{n+1}$, from (2.2.5) and (2.2.6) one gets

$$
\begin{aligned}
A(x) & =b \cdot\left(\alpha \cdot S+\beta \cdot e_{n+1}^{t} \cdot e_{1} \cdot S\right) \cdot b^{t}=\alpha \cdot b \cdot S \cdot b^{t}+\beta \cdot b \cdot e_{n+1}^{t} \cdot e_{1} \cdot S \cdot b^{t} \\
& =\alpha \cdot S+\beta \cdot b\left(e_{1} \cdot S\right)^{t} \cdot e_{1} \cdot b^{-1} \cdot b \cdot S \cdot b^{t} \\
& =\alpha \cdot S+\beta \cdot b \cdot S^{t} \cdot e_{1}^{t} \cdot e_{1} \cdot b^{-1} \cdot S \\
& =\alpha \cdot S+\beta\left(e_{1} \cdot b^{-1} \cdot S\right)^{t} \cdot e_{1} \cdot b^{-1} \cdot S
\end{aligned}
$$

Since $x . b=e_{1}$, it follows that

$$
\begin{equation*}
A(x)=\alpha . S+\beta .(x . S)^{t} \cdot(x . S) \tag{2.2.8}
\end{equation*}
$$

Continuity of A implies that (2.2.8) holds for any $x \in \mathbb{R}^{2 n}$.

3 Natural (0,2)-tensor fields on tangent bundles

Let (M, ω, ∇) be a Fedosov manifold of dimension $2 n$ and $\pi: T M \longrightarrow M$ be the tangent bundle over M.

If $\mathcal{L}(M)$ denotes the frame bundle over M, let

$$
\mathcal{S}(M)=\left\{\left(p, u_{1}, \ldots, u_{2 n}\right) \in \mathcal{L}(M) / \omega(p)\left(u_{i}, u_{j}\right)=s_{i j}\right\}
$$

be the symplectic frame bundle over M and $\psi: \mathbf{N}=\mathcal{S}(M) \times \mathbb{R}^{2 n} \longrightarrow T M$ the map defined by $\psi(p, u, \xi)=\sum_{i=1}^{2 n} \xi^{i} \cdot u_{i}$ where $(p, u)=\left(p, u_{1}, \ldots, u_{2 n}\right)$ and $\xi=\left(\xi^{1}, \ldots, \xi^{2 n}\right)$. The family of maps $R_{a}: \mathbf{N} \longrightarrow \mathbf{N}, a \in \mathcal{G}$, given by

$$
R_{a}(p, u, \xi)=\left(p, u a, \xi \cdot\left(a^{t}\right)^{-1}\right)
$$

where

$$
u a=\left(\sum_{i=1}^{2 n} a_{1}^{i} \cdot u_{i}, \ldots, \sum_{i=1}^{2 n} a_{2 n}^{i} \cdot u_{i}\right) \quad, \quad a=\left(\begin{array}{ccc}
a_{1}^{1} & \cdots & a_{2 n}^{1} \\
\vdots & & \vdots \\
a_{1}^{2 n} & \cdots & a_{2 n}^{2 n}
\end{array}\right)
$$

define the action of \mathcal{G} on \mathbf{N}. Clearly $\psi \circ R_{a}=\psi$.
Let $K: T T M \longrightarrow T M$ be the connection map induced by ∇ and for any $p \in M$ and any $v \in M_{p}$, let $\pi_{* v}:(T M)_{v} \longrightarrow M_{p}$ be the differential map of π at v, and $K_{v}:(T M)_{v} \longrightarrow M_{p}$ the restriction of K to $(T M)_{v}$.

Since the linear map $\pi_{* v} \times K_{v}:(T M)_{v} \longrightarrow M_{p} \times M_{p}$ defined by $\pi_{* v} \times K_{v}(b)=$ $\left(\pi_{* v}(b), K_{v}\right)$ is an isomorphism that maps isomorphically the horizontal subspace H_{v} ($=$ kernel of K_{v}) onto $M_{p} \times\left(0_{p}\right)$ and the vertical subspace $V_{v}\left(=\right.$ kernel of $\left.\pi_{* v}\right)$ onto $\left(0_{p}\right) \times M_{p}$, where 0_{p} denotes the zero vector, we define -as in [1]- the differentiable mappings $e_{i}, e_{2 n+i}: \mathbf{N} \longrightarrow T T M$ for $1 \leqslant i \leqslant 2 n$ by

$$
e_{i}(p, u, \xi)=\left(\pi_{* v} \times K_{v}\right)^{-1}\left(u_{i}, 0_{p}\right) \quad \text { and } \quad e_{2 n+i}(p, u, \xi)=\left(\pi_{* v} \times K_{v}\right)^{-1}\left(0_{p}, u_{i}\right)
$$

where $v=\psi(p, u, \xi)$.
Since $(T M)_{v}=H_{v} \oplus V_{v}$, any vector field X on $T M$ may be written in the form $X=X^{h}+X^{v}$, where

$$
X^{h}(v)=\left(\pi_{* v} \times K_{v}\right)^{-1}\left(\pi_{* v}(X(v)), 0_{p}\right) \quad, \quad X^{v}(v)=\left(\pi_{* v} \times K_{v}\right)^{-1}\left(0_{p}, K_{v}(X(v))\right)
$$

if $v \in M_{p}$. Hence, the mappings $e_{i}, e_{2 n+i}$ let us view X as the function ${ }^{\nabla} X=$ $\left(x^{1}, \ldots, x^{4 n}\right): \mathbf{N} \longrightarrow \mathbb{R}^{4 n}$ where $x^{\ell}: \mathbf{N} \longrightarrow \mathbb{R}$ are determined -for $v=\psi(p, u, \xi)$ - by

$$
\begin{align*}
x^{i}(p, u, \xi) & =\omega(p)\left(\pi_{* v}(X(v)), u_{n+i}\right) \\
x^{n+i}(p, u, \xi) & =\omega(p)\left(\pi_{* v}(X(v)), u_{i}\right) \tag{3.3.1}
\end{align*}
$$

and

$$
\begin{align*}
x^{2 n+i}(p, u, \xi) & =\omega(p)\left(K_{v}(X(v)), u_{n+i}\right) \\
x^{3 n+i}(p, u, \xi) & =-\omega(p)\left(K_{v}(X(v)), u_{i}\right) \tag{3.3.2}
\end{align*}
$$

for $1 \leqslant i \leqslant n$.
¿From (3.3.1) and (3.3.2) one gets that

$$
\nabla_{X} \circ R_{a}=\nabla_{X} \cdot\left(\begin{array}{cc}
\left(a^{t}\right)^{-1} & 0 \tag{3.3.3}\\
0 & \left(a^{t}\right)^{-1}
\end{array}\right)
$$

for any $a \in \mathcal{G}$.
As in [1], for any $(0,2)$-tensor field G on $T M$ we define the differentiable function

$$
\nabla_{G}=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{4} & A_{3}
\end{array}\right): \mathbf{N} \longrightarrow \mathbb{R}^{4 n \times 4 n}
$$

as follows: if $(p, u, \xi) \in \mathbf{N}$ and $v=\psi(p, u, \xi)$, let $\nabla_{G}(p, u, \xi)$ be the matrix of the bilinear form $G_{v}:(T M)_{v} \times(T M)_{v} \longrightarrow \mathbb{R}$ induced by G on $(T M)_{v}$ with respect to the basis $\left\{e_{1}(p, u, \xi), \ldots, e_{4 n}(p, u, \xi)\right\}$. Hence, for any pair of vector fields X, Y on $T M$ one gets

$$
\begin{equation*}
G(X, Y) \circ \psi={ }^{\nabla} X \cdot{ }^{\nabla} G \cdot\left({ }^{\nabla} Y\right)^{t} \tag{3.3.4}
\end{equation*}
$$

Equalities (3.3.3) and (3.3.4) imply that each $A_{i}: \mathbf{N} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ satisfies the following \mathcal{G}-invariance property

$$
\begin{equation*}
A_{i} \circ R_{a}=a^{t} \cdot A_{i} \cdot a \quad(i=1,2,3,4) \tag{3.3.5}
\end{equation*}
$$

We shall call ${ }^{\nabla} G$ the matrix of G with respect to (ω, ∇). Hence, we get a one to one correspondence " $\nabla G \longleftrightarrow T^{\prime \prime}$ between $(0,2)$-tensor fields on $T M$ and differentiable functions $T=\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{4} & A_{3}\end{array}\right): \mathbf{N} \longrightarrow \mathbb{R}^{4 n \times 4 n}$ where each A_{i} satisfies (3.3.5). The differentiability of G-for T given- follows from (3.3.4) and the fact that ψ is a submersion.

Just as we did in [1], we define G to be natural with respect to (ω, ∇) if ∇G only depends on ξ.
Proposition 3.1. Let G be a $(0,2)$-tensor field on $T M$ and ${ }^{\nabla} G=\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{4} & A_{3}\end{array}\right)$ the matrix of G with respect to (ω, ∇). Then G is natural with respect to (ω, ∇) if there exist real numbers $\alpha_{i}, \beta_{i} \in \mathbb{R}(i=1,2,3,4)$ such that

$$
A_{i}(p, u, \xi)=\alpha_{i} \cdot S+\beta_{i} \cdot(\xi \cdot S)^{t} \cdot(\xi \cdot S)
$$

or, equivalently, if for any vector fields X, Y on $T M$, the following equalities are satisfied

$$
\begin{aligned}
G\left(X^{h}, Y^{h}\right)(v)= & \alpha_{1} \cdot \omega(p)\left(\pi_{* v}(X(v)), \pi_{* v}(Y(v))\right) \\
& +\beta_{1} \cdot \omega(p)\left(v, \pi_{* v}(X(v))\right) \cdot \omega(p)\left(v, \pi_{* v}(Y(v))\right) \\
G\left(X^{h}, Y^{v}\right)(v)= & \alpha_{2} \cdot \omega(p)\left(\pi_{* v}(X(v)), K_{v}(Y(v))\right) \\
& +\beta_{2} \cdot \omega(p)\left(v, \pi_{* v}(X(v))\right) \cdot \omega(p)\left(v, K_{v}(Y(v))\right) \\
G\left(X^{v}, Y^{h}\right)(v)= & \alpha_{4} \cdot \omega(p)\left(K_{v}(X(v)), \pi_{* v}(Y(v))\right) \\
& +\beta_{4} \cdot \omega(p)\left(v, K_{v}(X(v))\right) \cdot \omega(p)\left(v, \pi_{* v}(Y(v))\right) \\
G\left(X^{v}, Y^{v}\right)(v)= & \alpha_{3} \cdot \omega(p)\left(K_{v}(X(v)), K_{v}(Y(v))\right) \\
& +\beta_{3} \cdot \omega(p)\left(v, K_{v}(X(v))\right) \cdot \omega(p)\left(v, K_{v}(Y(v))\right)
\end{aligned}
$$

Proof. According to (3.3.5), if G is natural, each matrix function A_{i} can be viewed as a function $B: \mathbb{R}^{2 n} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ which satisfies $B\left(\xi .\left(a^{-1}\right)^{t}\right)=a^{t} \cdot B(\xi) . a$ for any $\xi \in \mathbb{R}^{2 n}$ and any $a \in \mathcal{G}$; or, equivalently, $B(\xi)=\left(a^{-1}\right)^{t} \cdot B\left(\xi \cdot\left(a^{-1}\right)^{t}\right) \cdot a^{-1}$.

Since $b \in \mathcal{G}$ implies that $b^{t} \in \mathcal{G}$, it follows that $B(\xi)=a B(\xi . a) a^{t}$ for any $a \in \mathcal{G}$. Consequently, by Theorem 2.1, there exist $\alpha_{i}, \beta_{i} \in \mathbb{R}(i=1,2,3,4)$ such that

$$
A_{i}(p, u, \xi)=\alpha_{i} . S+\beta_{i}(\xi . S)^{t},(\xi . S)
$$

The expression of G applied to vector fields is now a consequence of (3.3.1), (3.3.2) and (3.3.4).

4 Natural (0,2)-tensor fields on cotangent bundles

For any $p \in M$, let M_{p}^{*} be the dual space of M_{p} and let $\pi: T^{*} M \longrightarrow M$ be the cotangent bundle of M.

For any $(p, u) \in \mathcal{S}(M)$, we denote with $\left(p, u^{*}\right)$ the dual basis and $\mathcal{S}^{*}(M)$ the bundle consisting of all those ordered dual basis. Set $\mathcal{N}=\mathcal{S}^{*}(M) \times \mathbb{R}^{2 n}$ and let $\psi: \mathcal{N} \longrightarrow T^{*} M$ be the map defined by

$$
\psi\left(p, u^{*}, \xi\right)=\sum_{i=1}^{2 n} \xi_{i} \cdot u^{i}
$$

if $u^{*}=\left\{u^{1}, \ldots, u^{2 n}\right\}$ and $\xi=\left(\xi_{1}, \ldots, \xi_{2 n}\right)$.
The family of maps $R_{a}: \mathcal{N} \longrightarrow \mathcal{N}, a \in \mathcal{G}$, given by

$$
R_{a}\left(p, u^{*}, \xi\right)=\left(p,(u a)^{*}, \xi \cdot a\right)
$$

defines the action of \mathcal{G} on \mathcal{N}. Clearly, $\psi \circ R_{a}=\psi$. Let $K^{*}: T\left(T^{*} M\right) \longrightarrow T^{*} M$ be the dual connection map. We'll recall that for any $p \in M$ and any co-vector $w \in M_{p}^{*}$, the restriction $K_{w}^{*}:\left(T^{*} M\right)_{w} \longrightarrow M_{p}^{*}$ of K^{*} to $\left(T^{*} M\right)_{w}$ is a surjective linear map characterized by the fact that for any 1 -form θ on M such that $\theta(p)=w$ and any vector $v \in M_{p}$, it satisfies $K_{w}^{*}\left(\theta_{* p}(v)\right)=\nabla_{v} \theta$ where $\theta_{* p}: M_{p} \longrightarrow\left(T^{*} M\right)_{w}$ denotes the differential map of θ at p.

Since the linear map $\pi_{* w} \times K_{w}^{*}:\left(T^{*} M\right)_{w} \longrightarrow M_{p} \times M_{p}^{*}$ defined by $\pi_{* w} \times K_{w}^{*}(b)=$ $\left(\pi_{* w}(b), K_{w}^{*}(b)\right)$ is an isomorphism that maps the horizontal subspace $H_{w}(=$ kernel of K_{w}^{*}) onto $M_{p} \times\left(0_{p}\right)$ and the vertical subspace $V_{w}\left(=\right.$ kernel of $\left.\pi_{* w}\right)$, where 0_{p} denotes indistinctly the zero vector and the zero co-vector, we define -as in [1]- the differentiable mappings $e_{i}, e_{2 n+i}: \mathcal{N} \longrightarrow T\left(T^{*} M\right)$ for $1 \leqslant i \leqslant 2 n$ by
$e_{i}\left(p, u^{*}, \xi\right)=\left(\pi_{* w} \times K_{w}^{*}\right)^{-1}\left(u_{i}, 0_{p}\right) \quad$ and $\quad e_{2 n+i}\left(p, u^{*}, \xi\right)=\left(\pi_{* w} \times K_{w}^{*}\right)^{-1}\left(0_{p}, u^{i}\right)$
where $w-\psi\left(p, u^{*}, \xi\right)$.
Since $\left(T^{*} M\right)_{w}=H_{w} \oplus V_{w}$, any vector field X on $T^{*} M$ may be written in the form $X=X^{h}+X^{v}$, where
$X^{h}(w)=\left(\pi_{* w} \times K_{w}^{*}\right)^{-1}\left(\pi_{* w}(X(w)), 0_{p}\right) \quad, \quad X^{v}(w)=\left(\pi_{* w} \times K_{w}^{*}\right)^{-1}\left(0_{p}, K_{w}^{*}(X(w))\right)$
if $w \in M_{p}^{*}$. Hence, the mappings $e_{i}, e_{2 n+i}$ let us view X as the function ${ }^{\nabla} X=$ $\left(x^{1}, \ldots, x^{4 n}\right): \mathcal{N} \longrightarrow \mathbb{R}^{4 n}$, where $x^{\ell}: \mathcal{N} \longrightarrow \mathbb{R}$ are determined -for $w=\psi\left(p, u^{*}, \xi\right)$ by

$$
\begin{align*}
x^{i}\left(p, u^{*}, \xi\right) & =u^{i}\left(\pi_{* w}(X(w))\right) \tag{4.4.1}\\
x^{2 n+i}\left(p, u^{*}, \xi\right) & =K_{w}^{*}(X(v))\left(u_{i}\right)
\end{align*}
$$

for $1 \leqslant i \leqslant 2 n$.
¿From (4.4.1), one gets that

$$
\nabla_{X} \circ R_{a}=\nabla_{X} .\left(\begin{array}{cc}
\left(a^{t}\right)^{-1} & 0 \tag{4.4.2}\\
0 & a
\end{array}\right)
$$

for any $a \in \mathcal{G}$.
As in [1], for any $(0,2)-$ tensor field G on $T^{*} M$, we define the differentiable function

$$
\nabla_{G}=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{4} & A_{3}
\end{array}\right): \mathcal{N} \longrightarrow \mathbb{R}^{4 n \times 4 n}
$$

as follows: if $\left(p, u^{*}, \xi\right) \in \mathcal{N}$ and $w=\psi\left(p, u^{*}, \xi\right)$, let $\nabla G\left(p, u^{*}, \xi\right)$ be the matrix of the bilinear form $G_{w}:\left(T^{*} M\right)_{w} \times\left(T^{*} M\right)_{w} \longrightarrow \mathbb{R}$ induced by G on $\left(T^{*} M\right)_{w}$ with respect to the basis $\left\{e_{1}\left(p, u^{*}, \xi\right), \ldots, e_{4 n}\left(p, u^{*}, \xi\right)\right\}$.

Hence, for any pair of vector fields X, Y on $T^{*} M$ one gets

$$
\begin{equation*}
G(X, Y) \circ \psi={ }^{\nabla} X .{ }^{\nabla} G \cdot\left(\nabla_{Y}\right)^{t} \tag{4.4.3}
\end{equation*}
$$

Equalities (4.4.2) and (4.4.3) imply that each $A_{i}: \mathcal{N} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ satisfies the following \mathcal{G}-invariance property

$$
\begin{align*}
& A_{1} \circ R_{a}=a^{t} \cdot A_{1} \cdot a \\
& A_{2} \circ R_{a}=a^{t} \cdot A_{2} \cdot\left(a^{t}\right)^{-1} \\
& A_{3} \circ R_{a}=a^{-1} \cdot A_{3} \cdot\left(a^{-1}\right)^{t} \tag{4.4.4}\\
& A_{4} \circ R_{a}=a^{-1} \cdot A_{4} \cdot a
\end{align*}
$$

We shall call ${ }^{\nabla} G$ the matrix of G with respect to (ω, ∇). Hence, we get a one to one correspondence " $\nabla^{*} G \longleftrightarrow T^{\prime \prime}$ between $(0,2)$-tensor fields on $T^{*} M$ and differentiable functions $T=\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{4} & A_{3}\end{array}\right): \mathcal{N} \longrightarrow \mathbb{R}^{4 n \times 4 n}$ where A_{i} satisfies (4.4.4). The differentiability of G-for T given- follows from (4.4.3) and the fact that ψ is a submersion.

We define G to be natural with respect to (ω, ∇) if ${ }^{\nabla} G$ only depends on ξ.

Proposition 4.1. Let G be a $(0,2)$-tensor field on $T^{*} M$ and $\nabla^{\nabla} G=\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{4} & A_{3}\end{array}\right)$ the matrix of G with respect to (ω, ∇). Then, G is natural wigh respect to (ω, ∇) if there exist real numbers $\alpha_{i}, \beta_{i} \in \mathbb{R}(i=1,2,3,4)$ such that

$$
\begin{align*}
& A_{1}\left(p, u^{*}, \xi\right)=\alpha_{1} \cdot S+\beta_{1} \cdot\left(\xi^{t}\right) \cdot \xi \tag{4.4.5}\\
& A_{2}\left(p, u^{*}, \xi\right)=\alpha_{2} \cdot I_{2 n}+\beta_{2} \cdot\left(\xi^{t}\right) \cdot(\xi \cdot S) \tag{4.4.6}\\
& A_{3}\left(p, u^{*}, \xi\right)=\alpha_{3} \cdot S+\beta_{3} \cdot(\xi \cdot S)^{t} \cdot(\xi \cdot S) \tag{4.4.7}\\
& A_{4}\left(p, u^{*}, \xi\right)=\alpha_{4} \cdot I_{2 n}+\beta_{4} \cdot(\xi \cdot S)^{t} \cdot \xi \tag{4.4.8}
\end{align*}
$$

Proof. By setting $B_{i}(\xi)=A_{i}\left(p, u^{*}, \xi\right)$, from (4.4.4) it follows that the functions B_{i} : $\mathbb{R}^{2 n} \longrightarrow \mathbb{R}^{2 n \times 2 n}$ satisfy

$$
\begin{align*}
& B_{1}(\xi \cdot a)=a^{t} \cdot B_{1}(\xi) \cdot a \tag{4.4.9}\\
& B_{2}(\xi \cdot a)=a^{t} \cdot B_{2}(\xi) \cdot\left(a^{t}\right)^{-1} \tag{4.4.10}\\
& B_{3}(\xi \cdot a)=a^{-1} \cdot B_{3}(\xi) \cdot\left(a^{-1}\right)^{t} \tag{4.4.11}\\
& B_{4}(\xi \cdot a)=a^{-1} \cdot B_{4}(\xi) \cdot a \tag{4.4.12}
\end{align*}
$$

Since $a^{-1}=-S . a^{t} . S$ if $a \in \mathcal{G}$, equalities (4.4.9) to (4.4.12) imply that the matrix functions $S . B_{1} . S, S . B_{2}, B_{3}$ and $B_{4} . S$ satisfy Theorem 2.1. This implies equalities (4.4.5) to (4.4.8).

Remark 4.1. Let θ be the canonical 1-form on $T^{*} M$ which is defined for any vector field X on $T^{*} M$ an any co-vector $w \in T^{*} M$ by

$$
\begin{equation*}
\theta(X)(w)=w\left(\pi_{* w}(X(w))\right) \tag{4.4.13}
\end{equation*}
$$

On the other hand, for any $p \in M$, let $L_{p}: M_{p} \longrightarrow M_{p}^{*}$ be the isomorphism induced by ω; i.e.,

$$
L_{p}(v)(u)=\omega(p)(v, u) \quad \text { for any } v, u \in M_{p}
$$

Hence, ω induces a $(2,0)$-tensor field ω^{*} on M by defining

$$
\begin{equation*}
\omega^{*}(p)(w, \gamma)-\omega(p)\left(L_{p}^{-1}(w), L_{p}^{-1}(\gamma)\right) \tag{4.4.14}
\end{equation*}
$$

for any $w, \gamma \in M_{p}^{*}$.
In terms of θ, ω and ω^{*}, one gets
Corollary 4.2. Let G be a $(0,2)$-tensor field on $T^{*} M$. Then, G is natural if there exist real numbers $\alpha_{i}, \beta_{i} \in \mathbb{R}$ such that for any vector fields X, Y on $T^{*} M$, the following equalities hold

$$
\begin{aligned}
& G\left(X^{h}, Y^{h}\right)(w)=\alpha_{1} \cdot \omega(p)\left(\pi_{* w}(X(w)), \pi_{* w}(Y(w))\right) \\
& +\beta_{1} \cdot \theta(X)(w) \cdot \theta(Y)(w) \\
& G\left(X^{h}, Y^{v}\right)(w)=\alpha_{2} \cdot K_{w}^{*}(Y(w))\left(\pi_{* w}(X(w))\right) \\
& +\beta_{2} \cdot \theta(X)(w) \cdot \omega^{*}(p)\left(w, K_{w}^{*}(Y(w))\right) \\
& G\left(X^{v}, Y^{h}\right)(w)=\alpha_{4} \cdot K_{w}^{*}(X(w))\left(\pi_{* w}(Y(w))\right) \\
& +\beta_{4} \cdot \theta(Y)(w) \cdot \omega^{*}(p)\left(w, K_{w}^{*}(X(w))\right) \\
& G\left(X^{v}, Y^{v}\right)(w)=\alpha_{3} \cdot \omega^{*}(p)\left(K_{w}^{*}(X(w)), K_{w}^{*}(Y(w))\right) \\
& +\beta_{3} \cdot \omega^{*}(p)\left(w, K_{w}^{*}(X(w))\right) \cdot \omega^{*}(p)\left(w, K_{w}^{*}(Y(w))\right)
\end{aligned}
$$

if $w \in M_{p}^{*}$

Remark 4.2. Let $\phi: T M \longrightarrow T^{*} M$ be the diffeomorphism induced by ω; i.e., $\phi(v)(u)=\omega(p)(v, u)$ if $v, u \in M_{p}$.

Since the diagram

commutes, where $w=\phi(v)$. From Proposition 3.1 and Corollary 4.2, it follows that naturatily of $(0,2)$-tensor fields on $T M$ and $T^{*} M$ is preserved under the pull-back of ϕ.

Remark 4.3. Assume that $(M,<,>, J)$ is a Semi-Riemannian Kähler manifold. As we pointed out in the Introduction, (M, ω, J) is then a Fedosov manifold. ¿From Proposition 3.1 and Proposition 3.1 of [1], it follows -after a straightforward computationthat the only $(0,2)$-tensor field on $T M$ which is natural with respect to $(M,<,>)$ and (M, ω) is the null tensor. Consequently, by Remark above, this is also true for $(0,2)$-tensor fields on $T^{*} M$.

References

[1] J. Araujo, G.G.R Keilhauer, Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a semi-Riemannian manifold, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 39 (2002), 7-16.
[2] R.L. Bryant, An Introduction to Lie Groups and Symplectic Geometry, in Geometry and Quantum Field Theory (D.S. Freed and K.Uhlenbeck, Ens.), IAS / Park City Mathematics Series, vol. 1, 7-181, Am. Math. Society, Institute for Advanced Study, Providence, 1995.
[3] I. Gelfand, V. Retakh, M. Shubin, Fedosov Manifolds, Advances in Mathematics 136 (1998), 104-140.
[4] H. Weyl, The Classical Groups, their Invariance and Representations, Princeton Landmarks in Mathematics, 1997.

Authors' addresses:

José Araujo
Departamento de Matemática, Facultad de Ciencias Exactas, Campus Universitario, UNICEN, (7000) Tandil - Buenos Aires, Argentina.
email: araujo@exa.unicen.edu.ar

Guillermo Keilhauer
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
Pabellón I, 1428 Buenos Aires, Argentina.
email: wkeilh@dm.uba.ar

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 11-19.

