Natural tensor fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold

José Araujo and Guillermo Keilhauer

Abstract. To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function 'mutatis mutandis' as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized.

Mathematics Subject Classification: 53C99; 53C50. Key words: connection map, tangent bundle, tensor field.

1 Introduction

Let M be a manifold of dimension 2n, $\omega \in \Omega^2(M)$ a non-degenerate closed 2-form on M and ∇ a free of torsion linear connection compatible with ω ; i.e., $X\omega(Y,Z) = \omega(\nabla_X Y, Z) + \omega(Y, \nabla_X Z)$ for any vector fields on M, $X, Y, Z \in \mathfrak{X}(M)$.

The triple (M, ω, ∇) is called a Fedosov manifold. For a detailed study of these manifolds we refer to [3]. Fedosov manifolds constitute a natural generalization of Kähler manifolds. In fact, let \langle , \rangle be a semi-Riemannian metric on M with Levi-Civita connection ∇ and J an almost complex structure on M which satisfies $\langle J(X), J(Y) \rangle = \langle X, Y \rangle$ and $J(\nabla_X Y) = \nabla_X JY$ for any $X, Y \in \mathfrak{X}(M)$; i.e., $(M, \langle , \rangle, J)$ is a Kähler manifold.

By defining $\omega(X,Y) = \langle J(X), Y \rangle$, it follows that (M, ω, ∇) is a Fedosov manifold.

In contrast, there are Fedosov manifolds which do not admit Kähler structure ([2]).

In [1], we lifted to suitable bundles (0,2)-tensor fields defined on tangent and cotangent bundles over manifolds endowed with semi-Riemannian metrics so as to look at them as global matrix functions. These matrix representations allowed us to define and classify natural (0,2)-tensor fields with respect to semi-Riemannian metrics. The main result that lets us characterize these tensor fields is Theorem 2.1 of [1]. In this paper, the main result is Theorem 2.1. We apply this result to characterize natural (0,2)-tensor fields on tangent (Proposition 3.1) and cotangent (Proposition 4.1) bundles over Fedosov manifolds.

Throughout, all geometric objects are assumed to be differentiable, i.e. C^{∞} .

Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 11-19.

[©] Balkan Society of Geometers, Geometry Balkan Press 2006.

2 The main result

For any integer $n \ge 1$, let $S = (s_{ij}) \in \mathbb{R}^{2n \times 2n}$ be the matrix

$$S = \begin{pmatrix} 0 & I_n \\ \hline -I_n & 0 \end{pmatrix}$$

where $I_n \in \mathbb{R}^{n \times n}$ is the unit matrix. Hence,

$$s_{ij} = \begin{cases} -1 & \text{if } i-j=n\\ 1 & \text{if } j-i=n\\ 0 & \text{otherwise} \end{cases}$$

Let $\mathcal{G} = S_p(2n)$ be the real symplectic group ; i.e., $a \in \mathcal{G}$ if and only if $a.S.a^t = S$.

Theorem 2.1. Let $A : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n \times 2n}$ be a differentiable map which satisfies

$$A(x) = a.A(x.a).a^t$$

for any $a \in \mathcal{G}$ and $x \in \mathbb{R}^{2n}$. Then, there exist $\alpha, \beta \in \mathbb{R}$ such that

$$A(x) = \alpha . S + \beta . (x.S)^t . (x.S)$$

where $y^t y = (y_{ij}) \in \mathbb{R}^{2n \times 2n}$ is the matrix defined by $y_{ij} = y_i \cdot y_j$, if $y = (y_1, \ldots, y_{2n})$.

We will prove this theorem using the following two results

Proposition 2.2. If $x, y \in \mathbb{R}^{2n}$ are non-zero vectors, there exists $a \in \mathcal{G}$ such that y = x.a.

Proof. Let $e_1, \ldots, e_{2n} \in \mathbb{R}^{2n}$ be the canonical basis. We need only to check the case when $x = e_1$.

It is well known (see [4]) that there exists a symplectic basis v_1, \ldots, v_{2n} of \mathbb{R}^{2n} ; i.e.,

(2.2.1)
$$v_i S v_j^t = s_{ij}$$
 , $1 \leq i, j \leq 2n$

such that $v_1 = y$.

Let us define $a \in GL(2n, \mathbb{R})$ by $e_i a = v_i$ if $1 \leq i \leq 2n$, hence from (2.2.1) it follows that $a \in \mathcal{G}$.

Proposition 2.3. Let \mathcal{G}_1 be the stabilizer of e_1 in \mathcal{G} ; i.e., $\mathcal{G}_1 = \{a \in \mathcal{G}/e_1 . a = e_1\}$. The centralizer Z of \mathcal{G}_1 in $\mathbb{R}^{2n \times 2n}$ is the set

$$Z = \{ \alpha . I_{2n} + \beta . e_{n+1}^t . e_1 / \alpha, \beta \in \mathbb{R} \}$$

Proof. Let $\sigma \in Z$. Hence, for any $a \in \mathcal{G}_1$ we have

Let $\mathcal{D} \subset GL(2n,\mathbb{R})$ be the set of diagonal matrices $d = (d_{ij})$ such that $d_{11} = 1$ and $d_{(n+i)(n+i)} = d_{ii}^{-1}$ for $1 \leq i \leq n$.

Let \mathcal{S} be the set of matrices $a \in \mathbb{R}^{2n \times 2n}$ such that

$$a = \left(\begin{array}{c|c} I_n & 0\\ \hline \mathbf{s} & I_n \end{array}\right)$$

where $s \in \mathbb{R}^{n \times n}$ is symmetric matrix.

Clearly $\mathcal{D} \subset \mathcal{G}_1$ and $\mathcal{S} \subset \mathcal{G}_1$. Writing $\sigma \in Z$ in the block form

$$\sigma = \left(\begin{array}{c|c} \sigma_1 & \sigma_2 \\ \hline \sigma_4 & \sigma_3 \end{array}\right)$$

where $\sigma_i \in \mathbb{R}^{n \times n}$, $1 \leq i \leq 4$, condition (2.2.2) applied to any $a \in S$ implies that $\sigma_2 = 0$ and $\sigma_1 = \sigma_3 = \alpha I_n$ for some $\alpha \in \mathbb{R}$.

Now, condition (2.2.2) applied to any $a \in \mathcal{D}$ implies that $\sigma_4 = (a_{ij})$ satisfies $a_{ij} = 0$ if $(i, j) \neq (1, 1)$. Writing $\beta = a_{11}$, one gets

(2.2.3)
$$\sigma = \alpha I_{2n} + \beta . e_{n+1}^t . e_1$$

Conversely, if σ is of the form (2.2.3), it is clear that $\sigma \in Z$ if and only if $e_{n+1}^t \cdot e_1 \in Z$. Let $a \in \mathcal{G}_1$, then

$$\begin{array}{rcl} a.e_{n+1}^t.e_1 &=& a.(e_1.S)^t.e_1 = a.S^t.e_1^t.e_1 = -a.S.e_1^t.e_1 \\ &=& -S(a^{-1})^t.e_1^t.e_1 = -S(e_1.a^{-1})^t.e_1 \\ &=& -S.e_1^t.e_1 = e_{n+1}^t.e_1 = e_{n+1}^t.e_1.a \end{array}$$

Proof of Theorem 2.1. Let $A: \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n \times 2n}$ be a differentiable function satisfying

for any $a \in \mathcal{G}$ and $x \in \mathbb{R}^{2n}$.

Let $x \in \mathbb{R}^{2n}$ be a non zero vector. According to Proposition 2.2, there exists $b \in \mathcal{G}$ such that $x.b = e_1$; hence,

(2.2.5)
$$A(x) = b.A(e_1).b^t$$

Equality (2.2.4) applied to any $a \in \mathcal{G}_1$ implies that $A(e_1) = a.A(e_1).a^t$. Since $a.S.a^t = S$, it follows that $a^t = S^{-1}.a^{-1}.S$; and consequently

(2.2.6)
$$A(e_1).S^{-1}.a = a.A(e_1).S^{-1}$$

Equality (2.2.6) shows that $A(e_1).S^{-1} \in Z$; hence, by Proposition 2.3, there exist $\alpha, \beta \in \mathbb{R}$ such that $A(e_1).S^{-1} = \alpha . I_{2n} + \beta . e_{n+1}^t . e_1$; or, equivalently

(2.2.7)
$$A(e_1) = \alpha . S + \beta . e_{n+1}^t . e_1 . S$$

Since $e_1 S = e_{n+1}$, from (2.2.5) and (2.2.6) one gets

$$\begin{aligned} A(x) &= b.(\alpha.S + \beta.e_{n+1}^{t}.e_{1}.S).b^{t} = \alpha.b.S.b^{t} + \beta.b.e_{n+1}^{t}.e_{1}.S.b^{t} \\ &= \alpha.S + \beta.b(e_{1}.S)^{t}.e_{1}.b^{-1}.b.S.b^{t} \\ &= \alpha.S + \beta.b.S^{t}.e_{1}^{t}.e_{1}.b^{-1}.S \\ &= \alpha.S + \beta(e_{1}.b^{-1}.S)^{t}.e_{1}.b^{-1}.S \end{aligned}$$

Since $x.b = e_1$, it follows that

(2.2.8)
$$A(x) = \alpha . S + \beta . (x.S)^t . (x.S)$$

Continuity of A implies that (2.2.8) holds for any $x \in \mathbb{R}^{2n}$.

3 Natural (0,2)-tensor fields on tangent bundles

Let (M, ω, ∇) be a Fedosov manifold of dimension 2n and $\pi : TM \longrightarrow M$ be the tangent bundle over M.

If $\mathcal{L}(M)$ denotes the frame bundle over M, let

$$\mathcal{S}(M) = \{(p, u_1, \dots, u_{2n}) \in \mathcal{L}(M) / \omega(p)(u_i, u_j) = s_{ij}\}$$

be the symplectic frame bundle over M and $\psi : \mathbf{N} = \mathcal{S}(M) \times \mathbb{R}^{2n} \longrightarrow TM$ the map defined by $\psi(p, u, \xi) = \sum_{i=1}^{2n} \xi^i . u_i$ where $(p, u) = (p, u_1, ..., u_{2n})$ and $\xi = (\xi^1, ..., \xi^{2n})$. The family of maps $R_a : \mathbf{N} \longrightarrow \mathbf{N}, a \in \mathcal{G}$, given by

$$R_a(p, u, \xi) = (p, ua, \xi. (a^t)^{-1})$$

where

$$ua = \left(\sum_{i=1}^{2n} a_1^i . u_i, \dots, \sum_{i=1}^{2n} a_{2n}^i . u_i\right) \quad , \quad a = \left(\begin{array}{ccc} a_1^1 & \cdots & a_{2n}^1 \\ \vdots & & \vdots \\ a_1^{2n} & \cdots & a_{2n}^{2n} \end{array}\right)$$

define the action of \mathcal{G} on **N**. Clearly $\psi \circ R_a = \psi$.

Let $K: TTM \longrightarrow TM$ be the connection map induced by ∇ and for any $p \in M$ and any $v \in M_p$, let $\pi_{*v}: (TM)_v \longrightarrow M_p$ be the differential map of π at v, and $K_v: (TM)_v \longrightarrow M_p$ the restriction of K to $(TM)_v$.

Since the linear map $\pi_{*v} \times K_v : (TM)_v \longrightarrow M_p \times M_p$ defined by $\pi_{*v} \times K_v(b) = (\pi_{*v}(b), K_v)$ is an isomorphism that maps isomorphically the horizontal subspace H_v (= kernel of K_v) onto $M_p \times (0_p)$ and the vertical subspace V_v (= kernel of π_{*v}) onto $(0_p) \times M_p$, where 0_p denotes the zero vector, we define –as in [1]– the differentiable mappings $e_i, e_{2n+i} : \mathbf{N} \longrightarrow TTM$ for $1 \leq i \leq 2n$ by

$$e_i(p, u, \xi) = (\pi_{*v} \times K_v)^{-1}(u_i, 0_p)$$
 and $e_{2n+i}(p, u, \xi) = (\pi_{*v} \times K_v)^{-1}(0_p, u_i)$

where $v = \psi(p, u, \xi)$.

Since $(TM)_v = H_v \oplus V_v$, any vector field X on TM may be written in the form $X = X^h + X^v$, where

$$X^{h}(v) = (\pi_{*v} \times K_{v})^{-1}(\pi_{*v}(X(v)), 0_{p}) \quad , \quad X^{v}(v) = (\pi_{*v} \times K_{v})^{-1}(0_{p}, K_{v}(X(v)))$$

if $v \in M_p$. Hence, the mappings e_i, e_{2n+i} let us view X as the function $\nabla X = (x^1, \ldots, x^{4n}) : \mathbf{N} \longrightarrow \mathbb{R}^{4n}$ where $x^{\ell} : \mathbf{N} \longrightarrow \mathbb{R}$ are determined –for $v = \psi(p, u, \xi)$ – by

(3.3.1)
$$\begin{aligned} x^{i}(p, u, \xi) &= \omega(p)(\pi_{*v}(X(v)), u_{n+i}) \\ x^{n+i}(p, u, \xi) &= \omega(p)(\pi_{*v}(X(v)), u_{i}) \end{aligned}$$

and

(3.3.2)
$$\begin{aligned} x^{2n+i}(p,u,\xi) &= \omega(p)(K_v(X(v)),u_{n+i}) \\ x^{3n+i}(p,u,\xi) &= -\omega(p)(K_v(X(v)),u_i) \end{aligned}$$

for $1 \leq i \leq n$.

From (3.3.1) and (3.3.2) one gets that

(3.3.3)
$$\nabla X \circ R_a = \nabla X \cdot \begin{pmatrix} (a^t)^{-1} & 0\\ 0 & (a^t)^{-1} \end{pmatrix}$$

for any $a \in \mathcal{G}$.

As in [1], for any (0,2)-tensor field G on TM we define the differentiable function

$$\nabla G = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix} : \mathbf{N} \longrightarrow \mathbb{R}^{4n \times 4n}$$

as follows: if $(p, u, \xi) \in \mathbf{N}$ and $v = \psi(p, u, \xi)$, let $\nabla G(p, u, \xi)$ be the matrix of the bilinear form $G_v : (TM)_v \times (TM)_v \longrightarrow \mathbb{R}$ induced by G on $(TM)_v$ with respect to the basis $\{e_1(p, u, \xi), \ldots, e_{4n}(p, u, \xi)\}$. Hence, for any pair of vector fields X, Y on TM one gets

(3.3.4)
$$G(X,Y) \circ \psi = \nabla X \cdot \nabla G \cdot (\nabla Y)^t$$

Equalities (3.3.3) and (3.3.4) imply that each $A_i : \mathbf{N} \longrightarrow \mathbb{R}^{2n \times 2n}$ satisfies the following \mathcal{G} -invariance property

(3.3.5)
$$A_i \circ R_a = a^t A_i a$$
 $(i = 1, 2, 3, 4)$

We shall call ∇G the matrix of G with respect to (ω, ∇) . Hence, we get a one to one correspondence " $\nabla G \longleftrightarrow T$ " between (0,2)-tensor fields on TM and differentiable functions $T = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix}$: $\mathbf{N} \longrightarrow \mathbb{R}^{4n \times 4n}$ where each A_i satisfies (3.3.5). The differentiability of G-for T given- follows from (3.3.4) and the fact that ψ is a submersion.

Just as we did in [1], we define G to be natural with respect to (ω, ∇) if ∇G only depends on ξ .

Proposition 3.1. Let G be a (0,2)-tensor field on TM and $\nabla G = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix}$ the matrix of G with respect to (ω, ∇) . Then G is natural with respect to (ω, ∇) if there exist real numbers $\alpha_i, \beta_i \in \mathbb{R}$ (i = 1, 2, 3, 4) such that

$$A_i(p, u, \xi) = \alpha_i \cdot S + \beta_i \cdot (\xi \cdot S)^t \cdot (\xi \cdot S)$$

or, equivalently, if for any vector fields X, Y on TM, the following equalities are satisfied

$$\begin{array}{rcl}
G(X^{h},Y^{h})(v) &= & \alpha_{1} \cdot \omega(p)(\pi_{*v}(X(v)),\pi_{*v}(Y(v))) \\ &+ \beta_{1} \cdot \omega(p)(v,\pi_{*v}(X(v))) \cdot \omega(p)(v,\pi_{*v}(Y(v))) \\ G(X^{h},Y^{v})(v) &= & \alpha_{2} \cdot \omega(p)(\pi_{*v}(X(v)),K_{v}(Y(v))) \\ &+ \beta_{2} \cdot \omega(p)(v,\pi_{*v}(X(v))) \cdot \omega(p)(v,K_{v}(Y(v))) \\ G(X^{v},Y^{h})(v) &= & \alpha_{4} \cdot \omega(p)(K_{v}(X(v)),\pi_{*v}(Y(v))) \\ &+ \beta_{4} \cdot \omega(p)(v,K_{v}(X(v))) \cdot \omega(p)(v,\pi_{*v}(Y(v))) \\ G(X^{v},Y^{v})(v) &= & \alpha_{3} \cdot \omega(p)(K_{v}(X(v)),K_{v}(Y(v))) \\ &+ \beta_{3} \cdot \omega(p)(v,K_{v}(X(v))) \cdot \omega(p)(v,K_{v}(Y(v))) \\ \end{array}$$

Proof. According to (3.3.5), if G is natural, each matrix function A_i can be viewed as a function $B : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n \times 2n}$ which satisfies $B(\xi.(a^{-1})^t) = a^t.B(\xi).a$ for any $\xi \in \mathbb{R}^{2n}$ and any $a \in \mathcal{G}$; or, equivalently, $B(\xi) = (a^{-1})^t.B(\xi.(a^{-1})^t).a^{-1}$.

Since $b \in \mathcal{G}$ implies that $b^t \in \mathcal{G}$, it follows that $B(\xi) = aB(\xi.a)a^t$ for any $a \in \mathcal{G}$. Consequently, by Theorem 2.1, there exist $\alpha_i, \beta_i \in \mathbb{R}$ (i = 1, 2, 3, 4) such that

$$A_i(p, u, \xi) = \alpha_i S + \beta_i (\xi S)^t, (\xi S)$$

The expression of G applied to vector fields is now a consequence of (3.3.1), (3.3.2) and (3.3.4).

4 Natural (0,2)-tensor fields on cotangent bundles

For any $p \in M$, let M_p^* be the dual space of M_p and let $\pi : T^*M \longrightarrow M$ be the cotangent bundle of M.

For any $(p, u) \in \mathcal{S}(M)$, we denote with (p, u^*) the dual basis and $\mathcal{S}^*(M)$ the bundle consisting of all those ordered dual basis. Set $\mathcal{N} = \mathcal{S}^*(M) \times \mathbb{R}^{2n}$ and let $\psi : \mathcal{N} \longrightarrow T^*M$ be the map defined by

$$\psi(p, u^*, \xi) = \sum_{i=1}^{2n} \xi_i . u^i$$

if $u^* = \{u^1, \dots, u^{2n}\}$ and $\xi = (\xi_1, \dots, \xi_{2n})$.

The family of maps $R_a : \mathcal{N} \longrightarrow \mathcal{N}$, $a \in \mathcal{G}$, given by

$$R_a(p, u^*, \xi) = (p, (ua)^*, \xi.a)$$

defines the action of \mathcal{G} on \mathcal{N} . Clearly, $\psi \circ R_a = \psi$. Let $K^* : T(T^*M) \longrightarrow T^*M$ be the dual connection map. We'll recall that for any $p \in M$ and any co-vector $w \in M_p^*$, the restriction $K_w^* : (T^*M)_w \longrightarrow M_p^*$ of K^* to $(T^*M)_w$ is a surjective linear map characterized by the fact that for any 1-form θ on M such that $\theta(p) = w$ and any vector $v \in M_p$, it satisfies $K_w^*(\theta_{*p}(v)) = \nabla_v \theta$ where $\theta_{*p} : M_p \longrightarrow (T^*M)_w$ denotes the differential map of θ at p.

Since the linear map $\pi_{*w} \times K_w^* : (T^*M)_w \longrightarrow M_p \times M_p^*$ defined by $\pi_{*w} \times K_w^*(b) = (\pi_{*w}(b), K_w^*(b))$ is an isomorphism that maps the horizontal subspace H_w (= kernel of K_w^*) onto $M_p \times (0_p)$ and the vertical subspace V_w (= kernel of π_{*w}), where 0_p denotes indistinctly the zero vector and the zero co-vector, we define –as in [1]– the differentiable mappings $e_i, e_{2n+i} : \mathcal{N} \longrightarrow T(T^*M)$ for $1 \leq i \leq 2n$ by

$$e_i(p, u^*, \xi) = (\pi_{*w} \times K_w^*)^{-1}(u_i, 0_p)$$
 and $e_{2n+i}(p, u^*, \xi) = (\pi_{*w} \times K_w^*)^{-1}(0_p, u^i)$

where $w - \psi(p, u^*, \xi)$.

Since $(T^*M)_w = H_w \oplus V_w$, any vector field X on T^*M may be written in the form $X = X^h + X^v$, where

$$X^{h}(w) = (\pi_{*w} \times K_{w}^{*})^{-1}(\pi_{*w}(X(w)), 0_{p}) \quad , \quad X^{v}(w) = (\pi_{*w} \times K_{w}^{*})^{-1}(0_{p}, K_{w}^{*}(X(w)))$$

if $w \in M_p^*$. Hence, the mappings e_i, e_{2n+i} let us view X as the function $\nabla X = (x^1, \ldots, x^{4n}) : \mathcal{N} \longrightarrow \mathbb{R}^{4n}$, where $x^{\ell} : \mathcal{N} \longrightarrow \mathbb{R}$ are determined –for $w = \psi(p, u^*, \xi)$ –by

(4.4.1)
$$\begin{aligned} x^{i}(p, u^{*}, \xi) &= u^{i}(\pi_{*w}(X(w))) \\ x^{2n+i}(p, u^{*}, \xi) &= K^{*}_{w}(X(v))(u_{i}) \end{aligned}$$

for $1 \leq i \leq 2n$.

From (4.4.1), one gets that

(4.4.2)
$$\nabla X \circ R_a = \nabla X. \begin{pmatrix} (a^t)^{-1} & 0\\ 0 & a \end{pmatrix}$$

for any $a \in \mathcal{G}$.

As in [1], for any (0, 2)-tensor field G on T^*M , we define the differentiable function

$$\nabla G = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix} : \mathcal{N} \longrightarrow \mathbb{R}^{4n \times 4n}$$

as follows: if $(p, u^*, \xi) \in \mathcal{N}$ and $w = \psi(p, u^*, \xi)$, let $\nabla G(p, u^*, \xi)$ be the matrix of the bilinear form $G_w : (T^*M)_w \times (T^*M)_w \longrightarrow \mathbb{R}$ induced by G on $(T^*M)_w$ with respect to the basis $\{e_1(p, u^*, \xi), \ldots, e_{4n}(p, u^*, \xi)\}$.

Hence, for any pair of vector fields X, Y on T^*M one gets

(4.4.3)
$$G(X,Y) \circ \psi = \nabla X \cdot \nabla G \cdot (\nabla Y)^t$$

Equalities (4.4.2) and (4.4.3) imply that each $A_i : \mathcal{N} \longrightarrow \mathbb{R}^{2n \times 2n}$ satisfies the following \mathcal{G} -invariance property

(4.4.4)
$$A_{1} \circ R_{a} = a^{t}.A_{1.a} \\ A_{2} \circ R_{a} = a^{t}.A_{2.}(a^{t})^{-1} \\ A_{3} \circ R_{a} = a^{-1}.A_{3.}(a^{-1})^{t} \\ A_{4} \circ R_{a} = a^{-1}.A_{4.a}$$

We shall call ∇G the matrix of G with respect to (ω, ∇) . Hence, we get a one to one correspondence " $\nabla G \longleftrightarrow T$ " between (0,2)-tensor fields on T^*M and differentiable functions $T = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix} : \mathcal{N} \longrightarrow \mathbb{R}^{4n \times 4n}$ where A_i satisfies (4.4.4). The differentiable bility of G-for T given- follows from (4.4.3) and the fact that ψ is a submersion.

We define G to be natural with respect to (ω, ∇) if ∇G only depends on ξ .

Proposition 4.1. Let G be a (0,2)-tensor field on T^*M and $\nabla G = \begin{pmatrix} A_1 & A_2 \\ A_4 & A_3 \end{pmatrix}$ the matrix of G with respect to (ω, ∇) . Then, G is natural wigh respect to (ω, ∇) if there exist real numbers $\alpha_i, \beta_i \in \mathbb{R}$ (i = 1, 2, 3, 4) such that

- (4.4.5) $A_1(p, u^*, \xi) = \alpha_1 \cdot S + \beta_1 \cdot (\xi^t) \cdot \xi$
- (4.4.6) $A_2(p, u^*, \xi) = \alpha_2 I_{2n} + \beta_2 (\xi^t) (\xi S)$
- (4.4.7) $A_3(p, u^*, \xi) = \alpha_3 \cdot S + \beta_3 \cdot (\xi \cdot S)^t \cdot (\xi \cdot S)$
- (4.4.8) $A_4(p, u^*, \xi) = \alpha_4 I_{2n} + \beta_4 (\xi S)^t \xi$

Proof. By setting $B_i(\xi) = A_i(p, u^*, \xi)$, from (4.4.4) it follows that the functions $B_i : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n \times 2n}$ satisfy

(4.4.9) $B_1(\xi.a) = a^t \cdot B_1(\xi) \cdot a$

(4.4.10)
$$B_2(\xi.a) = a^t \cdot B_2(\xi) \cdot (a^t)^{-1}$$

(4.4.11)
$$B_3(\xi .a) = a^{-1} .B_3(\xi) .(a^{-1})^t$$

 $(4.4.12) B_4(\xi.a) = a^{-1}.B_4(\xi).a$

Since $a^{-1} = -S.a^t.S$ if $a \in \mathcal{G}$, equalities (4.4.9) to (4.4.12) imply that the matrix functions $S.B_1.S$, $S.B_2$, B_3 and $B_4.S$ satisfy Theorem 2.1. This implies equalities (4.4.5) to (4.4.8).

Remark 4.1. Let θ be the canonical 1-form on T^*M which is defined for any vector field X on T^*M and any co-vector $w \in T^*M$ by

(4.4.13)
$$\theta(X)(w) = w(\pi_{*w}(X(w)))$$

On the other hand, for any $p \in M$, let $L_p : M_p \longrightarrow M_p^*$ be the isomorphism induced by ω ; i.e.,

$$L_p(v)(u) = \omega(p)(v, u)$$
 for any $v, u \in M_p$

Hence, ω induces a (2,0)-tensor field ω^* on M by defining

(4.4.14)
$$\omega^*(p)(w,\gamma) - \omega(p)(L_p^{-1}(w), L_p^{-1}(\gamma))$$

for any $w, \gamma \in M_p^*$. In terms of θ, ω and ω^* , one gets

Corollary 4.2. Let G be a (0,2)-tensor field on T^*M . Then, G is natural if there exist real numbers $\alpha_i, \beta_i \in \mathbb{R}$ such that for any vector fields X, Y on T^*M , the following equalities hold

$$\begin{array}{rcl} G(X^{h},Y^{h})(w) &=& \alpha_{1} \,.\,\omega(p)(\pi_{*w}(X(w)),\pi_{*w}(Y(w))) \\ && +\beta_{1} \,.\,\theta(X)(w) \,.\,\theta(Y)(w) \\ G(X^{h},Y^{v})(w) &=& \alpha_{2} \,.\,K_{w}^{*}(Y(w))(\pi_{*w}(X(w))) \\ && +\beta_{2} \,.\,\theta(X)(w) \,.\,\omega^{*}(p)(w,K_{w}^{*}(Y(w))) \\ G(X^{v},Y^{h})(w) &=& \alpha_{4} \,.\,K_{w}^{*}(X(w))(\pi_{*w}(Y(w))) \\ && +\beta_{4} \,.\,\theta(Y)(w) \,.\,\omega^{*}(p)(w,K_{w}^{*}(X(w))) \\ G(X^{v},Y^{v})(w) &=& \alpha_{3} \,.\,\omega^{*}(p)(K_{w}^{*}(X(w)),K_{w}^{*}(Y(w))) \\ && +\beta_{3} \,.\,\omega^{*}(p)(w,K_{w}^{*}(X(w))) \,.\,\omega^{*}(p)(w,K_{w}^{*}(Y(w))) \end{array}$$

if $w \in M_p^*$

Remark 4.2. Let $\phi : TM \longrightarrow T^*M$ be the diffeomorphism induced by ω ; i.e., $\phi(v)(u) = \omega(p)(v, u)$ if $v, u \in M_p$.

× 7

Since the diagram

$$(TM)_v \xrightarrow{K_v} M_p$$

$$\phi_{*v\downarrow} \qquad \downarrow L_P$$

$$(T^*M)_w \xrightarrow{K^*} M_p^*$$

commutes, where $w = \phi(v)$. From Proposition 3.1 and Corollary 4.2, it follows that naturatily of (0, 2)-tensor fields on TM and T^*M is preserved under the pull-back of ϕ .

Remark 4.3. Assume that (M, <, >, J) is a Semi-Riemannian Kähler manifold. As we pointed out in the Introduction, (M, ω, J) is then a Fedosov manifold. From Proposition 3.1 and Proposition 3.1 of [1], it follows —after a straightforward computation—that the only (0, 2)-tensor field on TM which is natural with respect to (M, <, >) and (M, ω) is the null tensor. Consequently, by Remark above, this is also true for (0, 2)-tensor fields on T^*M .

References

- J. Araujo, G.G.R Keilhauer, Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a semi-Riemannian manifold, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 39 (2002), 7-16.
- [2] R.L. Bryant, An Introduction to Lie Groups and Symplectic Geometry, in Geometry and Quantum Field Theory (D.S. Freed and K.Uhlenbeck, Ens.), IAS / Park City Mathematics Series, vol. 1, 7-181, Am. Math. Society, Institute for Advanced Study, Providence, 1995.
- [3] I. Gelfand, V. Retakh, M. Shubin, *Fedosov Manifolds*, Advances in Mathematics 136 (1998), 104-140.
- [4] H. Weyl, The Classical Groups, their Invariance and Representations, Princeton Landmarks in Mathematics, 1997.

Authors' addresses:

José Araujo Departamento de Matemática, Facultad de Ciencias Exactas,

Campus Universitario, UNICEN, (7000) Tandil - Buenos Aires, Argentina. email: araujo@exa.unicen.edu.ar

Guillermo Keilhauer Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina. email: wkeilh@dm.uba.ar