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Abstract. In this paper we start developing the so-called Klein’s for-
malism on dual Lie algebroids. The nonlinear connection associated to a
regular section is naturally obtained. Particularly, this connection is found
for the Hamiltonian case.
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1 Preliminaries on Lie algebroids

The notion of Lie algebroid is a generalization of the concepts of Lie algebra and
integrable distribution. In [8] A. Weinstein gives a generalized theory of Lagrangian
on Lie algebroids and obtains the Fuler-Lagrange equations. The same equations
were later obtained by E. Martinez [5] using the symplectic formalism and the notion
of prolongation of Lie algebra over a mapping introduced by P.J. Higgins and K.
Mackenzie [3]. In this paper Klein’s formalism in the case of dual Lie algebroids is
investigated. It should be mentioned that our approach is new even for the particular
case of the cotangent bundle.

Let M be a differentiable, n-dimensional manifold and (T'M,my;, M) its tangent
bundle. A Lie algebroid over the manifold M is the triple (E, [-,-],0) where 7 : E — M
is a vector bundle of rank m over M, whose C°°(M)-module of sections Sec(E) is
equipped with a Lie algebra structure [-,-] and o : E — TM is a vector bundle
homomorphism (called the anchor) which induces a Lie algebra homomorphism (also
denoted o) from Sec(E) to x(M), satisfying the compatibility conditions

[s1, fs2] = f[s1,s2] + (o(s1)f)s2

for every f € C°(M) and s, so € Sec(E). From the above definition we easily get
[0(51),0(s2)] = ols1,82], [s1,[s2,83]] + [s2, [s3, 51]] + [53, [51, 52]] = 0.

For f € C*°(M) the differential df(z) € E} is defined by (df(z),u) = o(u)f, for
every u € E, and for differentiable k -form w € A\"(E) = Sec((E*)* — M), k > 0 its
exterior derivative dw € A\PT'(E) is defined as follows:
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k+1 R
dw(sla"'ask-i-l) = Z (—1)Z+1U(Si)0](51,...,Si,...,8k+1) +
=1

+ Z (—1)i+jw([si,sj],31,...,51»,...75]»,...sk+1).
1<i<j<k+1

Also, for £ € Sec(E) on can define the Lie derivative with respect to £ by L =
i¢g o d 4 d o i¢, where i¢ is the contraction with . If we take the local coordinates
(%) on an open U C M, a local basis {s,} of sections of the bundle #=1(U) — U
generates local coordinates (x%,4%) on E. The local functions o’ (z), L)s(x) on M
given by

O(Sa) = 03%7 [Sonsﬁ] = L’Oyéﬂs’ya 27.7 = 17n7 0475 = 17m7

capture the properties which define the Lie algebroid structure over M in so called
structure equations:

. &Ti . ao'i . . 3L6
B i9%a _ _igy i By L /N
Ui@_aﬁﬁ _O"YLQ[W Z (Ua axz +L0¢"]L5"Y —0
(e.3,7)
Locally, if f € C°°(M) then df = 2L0% s* and if § € Sec(E*), § = 0,5 then
89ﬁ i 1 o 8
(1.1) do = (8xi ol — 597Llﬁ)s AP,

where {s*} is the dual basis of {s,}. Particularly, we have dz® = 0! s* and ds® =
—%Lgvsﬂ A s7.

2 Dual Lie algebroids

Let 7: E* — M be the dual of 7 : E — M and (E, [-,],0) a Lie algebroid structure
over M. One can construct a Lie algebroid structure over E*, by taking the prolon-
gation of (E,[-,-],0) over E* (see [3],[4],[5]). This structure is given by the following
objects:

e The associated vector bundle is (7 E*, 7y, E*) where T E* = Uy«ecp=Ty» E* with
T E* = {(tg,Vy+) € Ep X Ty« E*|0(uy) = Tys 7(Vy ), 7 (u*) = x € M}

and the projection 7 : TE* — E*| 71 (Ug, Vyr) = u™.

e The Lie algebra structure [,-] on Sec(r;) is defined in the following way:
if p1,p2 € Sec(ry) are such that p;(u*) = (X;(7 (u*)),U;(u*)) where X; €
Sec(n),U; € x(E*) and o(X;(7 (u*)) = Ty 7(U; (u*)), i = 1,2, then

[p1, p2](u®) = ([X1, Xo](7 (u7)), [Ur, Uz](u"))

e The anchor is the projection o' : TE* — TE*, o' (u,v) = v.
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Notice that if 77 : TE* — E, T1(u,v) = wthen (VT E*, 7y 7g-, E*) with VT E* :=
KerTr is a subbundle of (7 E*, 1, E*), called the vertical subbundle. If (2%, i) are
local coordinates on E* at u*and {s,} is a local basis of sections of 7 : E — M then
a local basis of Sec(7T E*) is {X,, P*} where

20 ) = (salr@t sl ) P = (0.5

The Lie brackets on the elements of this basis are:
(2:2) (X Xg] = L1 X, [Xa, PP =0, [P P]=0
and therefore
) . 1
de' = ol X, dug =Pa, dX7= —iLlﬂX‘l ANXB dP, =0

where {X®, Py} is the dual basis of {X,, P*}. Also if p = p* X, + paP* is a section
of TE*, then o'(p) = ot p* aii + pa%. The canonical symplectic structure of a Lie
algebroid 7 E* is given by w = —df where 0 = p,X?* is the Liouville form. In local

coordinates we get

« 1 «
(2.3) w=X*AP,+ i,u,aLmXﬁ AXTY.

We remark that V7 E* is Lagrangian for w, i.e. w(p1,p2) = 0, for every vertical
sections pq, p2.

3 Nonlinear connection on 7 E*

Definition 1. A nonlinear connection (or connection) on 7 E* is an almost product
structure A" on 71 : TE* — E*(i.e. a bundle morphism N : TE* — 7 E*, such that
N? =id ) smooth on TE*\{0} such that VT E* = Ker(id + N).

(i) If AV is a connection on T E* then HT E* = Ker(id — N) is the horizontal
subbundle associated to N and TE* = VT E* @ HTE*. Each p € Sec(m1) can be
written as p = p + p¥ where p”, pYare sections in the horizontal and respective
vertical subbundles. If p" = 0 then p is called wertical and if p’ = 0 then p is called
horizontal. The section C given locally by C = pu,P® defines a global vertical section
that is called Liouwville section.

(i) A connection N on E* induces two projectors h,v : TE* — TE* such that
h(p) = p" and v(p) = pv for every p € Sec(r1). We have

(3.1) h= %(z‘dJrN), v = %(z’df/\/),

(3.2) kerh = Imv=VTE*, Imh=kerv=HTE".
(iii) Locally a connection can be expressed as

(3:3) N(Xo) = Xo +2NogP?, N(P%) = —P?,
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where Ny = Nyg(x, ) are the local coefficients of /. The vector fields
(3.4) 5 = h(Xy) = Xy + NoupP?

generate a basis of HT E*. The frame {67, P} is a local basis of 7 E* called adapted.
The dual adapted basis is {X®, 0P, } where §P, =Py — NopXP.

Definition 2. A connection A" on 7 E* is called symmetric if H7 E* is Lagrangian
for w.

Proposition 1. A is symmetric iff locally

(3.5) Naﬂ - Nﬁa = :LL’YLZ[ﬁ'
Proposition 2. The Lie brackets of the adapted basis {5, P>} are
ON,

(3.6) 67,65 = Llﬁg; + RapyP7, (6%, PP = _WMP77 [P, PPl =0,
B
where
0Ny, ONay 0N, ONay
. = ? " — ? N . LE gy
(3.7) Rapy =04 Oxt 95 At + Nas s Nﬁ5 s + aﬁN’Y

Definition 3. The curvature of a connection ' on 7E* is given by Q = —N,,
where h is defined by (3.1), and N, = —3[h, h] is the Nijenhuis tensor of h.
In the local coordinates

1
Q= =S Rap, X A xP P

where R+ is given by (3.7) and is called the curvature tensor of N.

The curvature is an obstruction to the integrability of H7 E*. We have
Proposition 3. H7 E* is integrable if and only if the curvature vanishes.
Remark 1. Two connections N' on 7E* and N on TE* are called o'-related if

Nool =0l oN. In this case N(c1(6%)) = o1(6}) from which we easily obtain

ot (0%) = L0, Nap = 0L Nig,

where N;3 are the coefficients of N and ¢; = % + Nia% is a local adapted frame

of the horizontal subbundle HT E*. Also for the curvature tensors of two ol-related
connections we have:

Ragy = 0604 Rijy
where Rij’y = (;1(N] ) - 5](N1'y)

4 Almost tangent structures and connections

Definition 4. An almost tangent structure 7 on 7 E* is a bundle morphism 7 :
TE* - TE* of 7, : TE* — E*, of rank m, such that J2 = 0. An almost tangent
structure J on 7 E* is called adapted if ImJ = KerJ = VTE*.

Locally, an adapted almost tangent structure is given by J = togX* ® P# where
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the coefficients matrix (¢tqg(z, 1)) has rank m.
Proposition 4. J is an integrable if and only if

ot ot
Opp  Opa

(4.1)

where 7t 3 = 5.
Proof. J is an integrable if and only if the Nijenhuis tensor N 7 (p,v) = [T p, Jv]—
T[T p,v] — T[p, Jv] = 0. This is locally equivalent to

ot Ota
N 40) = (1o G = 0 P, N0 P) =N (P2, P7) =0
Oty Oy
Therefore J is integrable iff tav% =18y %’iff that is equivalent to (4.1). O

Remark 2. (i) An adapted almost tangent structure J on 7E* is called sym-
metric if w(Jp,v) = w(JTv, p). Locally, this requires the symmetry of the tensor t,g.
(ii) If g is a pseudo-Riemannian metric on the vertical bundle V7 E* then there exists
an unique symmetric adapted almost tangent structure on 7 E* such that

(4.2) 9(Tp, Tv) = —w(Tp,v).

In this case we say that J is induced by the metric g.
Locally if g(z, 1) = g*’P,®@Ps then t*¥ = g*#. In particular, any regular Hamiltonian

H : E* — R on E* induces a pseudo-Riemannian metric on V7 E* (the metric tensor
o’°H
Opadup
structure (denoted Jp ) such that (4.2) is verified. Moreover, this is a tangent structure

i.e., Jp is integrable.
(iii) Any symmetric adapted almost tangent structure J on 7 E* induces a pseudo-
Riemannian metric on the vertical bundle V7 E* as defined by (4.2).
Definition 5. The torsion of a connection A is the vector valued two form 7" :=
[J,h] where h is given by (3.1) and [, h] is the Frolicher-Nijenhuis bracket.
Remark 3. T is a semibasic vector-valued form. Its local expression is:

1 ( ON, By ON,

T == (tac —tge—2 4 5% (tay) — 0% (ta —L;tE>X"/\Xﬁ®P7.
D) 3#5 B 8,U5 (ﬁ“{) ﬂ( "/) Bley

is g8 = ) therefore, it induces an unique symmetric adapted almost tangent

Proposition 5. Let AV be a bundle morphism of 7 : TE* — E*, smooth on
TE*\{0}. Then N is a connection on 7 E* if and only if there exists an adapted
almost tangent structure J on 7 E* such that

IN=7J, NJ=-J.

Definition 6. Let 7 be an adapted almost tangent structure on 7 E*. A section
p of TE* is called J-regular if

J[p,jl/]:*jlj’

for every section v of 7 E*.
Locally p = p® X, + pgP? is J-regular iff
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008
(4.3) goB = 2P
Ole
Example 1. Let H be a regular Hamiltonian on E*. One can associate to H a
remarkable Jp -regular section p € Sec(r), locally given by

OH
4.4 = —&Xo + paP?,
(44) p= g XatpaP

which will be called a semi-Hamiltonian section. Moreover, the equation
(4.5) ipyw = dH,
defines an unique Jy —regular section pp € Sec(r1) (see [4]) locally given by

oH . OH , OH

4.6 =—X, — — — )P,
( ) PH ) (Uoz Ot + Hey af aﬂﬂ)
called the Hamilton section.
Theorem 1. Let J be an adapted almost tangent structure on 7 E*. If p is a
J-regular section of 7 E* then

is a connection on 7 E*.

Proof. Since N'(v) = —L,J (v) = —[p, Jv] + T [p,v] then TN (v) = =T [p, Tv] +
T?p,v] = Jv and NJ (v) = —[p, T*v] + T [p, Jv] = — Jv. By using Proposition 5
we get the proof of the theorem. O

Remark 4. The connection (4.7) is induced by J and p. Its local coefficients are
given by

Ip i, Op7
(4.8) Nag =3 (towauﬁ —Oalyp g 7~ Plap + p”twL%>
ol

Proposition 6. The torsion of the connection (4.7) vanishes.
Proof. We have T' = [7, h] = 5 ([7,id] + [T, —[p, T]]) = 317, [T, p]]. Using Jacobi

identity we obtain that T' = 0. O
Proposition 7. The connection N = —L,,, Jg is symmetric.
Proof. Use (4.6) and (4.8) after some computations we get (3.5). O

5 Homogeneous connections

Definition 7. An adapted almost tangent structure on 7 E* is called homogeneous
if LeTJ=-J.
Notice that J is homogeneous if the local components tog(z, i) are 0-homogeneous
with respect to pu.
Proposition 8. Let J be a homogeneous adapted tangent structure. A section
p € Sec(r) is J—regular if and only if Jp =C.

Proof. If p is J—regular then t*% = %7 hence p” must be 1-homogeneous with
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respect to u, therefore p1,t®? = p?, that is equivalent to Jp = C. Vice versa, if 7p = C
_ L p® ot _

then p® = pugt’* and thus 6% =17+ ug oy e, O

Remark 5. (i) Based on the above result, the local expression for a J— regular

section with J a homogeneous adapted tangent structure is

(5.1) p= uataﬁXg + pyP7.

(ii) Ju is homogeneous iff CH = 2H (i.e. H is 2-homogeneous on the fibres) and
therefore H = g% i, pug. Accordingly py = pag®® X5 + p,P7.

(iii) The coefficients of the connection (4.7) generated by p from (5.1) can be written
in the following form:

1 ot ot ap ot
i = = et (ot T2 i TaB )y PR B v s )
N B 9 (:u <Ja Ot On Ot + Va‘u’y p e + ABHya

(iv) If p € Sec(m) is given by (5.1) and N is any connection on 7 E* then { = h(p)
is a J-regular section of 71 and is independent of p. We call this section associated to
N. The local expression of £ is

€ = ot X + pat“® N, P7.

For example the [J-regular section associated to N' = —L£,7 is ¢ = 3(p + [C, p]) or
locally

1 0Op
€ = pat®®Xs + S po =P,
a B8 2 aalua
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