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Abstract. In this paper we start developing the so-called Klein’s for-
malism on dual Lie algebroids. The nonlinear connection associated to a
regular section is naturally obtained. Particularly, this connection is found
for the Hamiltonian case.
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1 Preliminaries on Lie algebroids

The notion of Lie algebroid is a generalization of the concepts of Lie algebra and
integrable distribution. In [8] A. Weinstein gives a generalized theory of Lagrangian
on Lie algebroids and obtains the Euler-Lagrange equations. The same equations
were later obtained by E. Martinez [5] using the symplectic formalism and the notion
of prolongation of Lie algebra over a mapping introduced by P.J. Higgins and K.
Mackenzie [3]. In this paper Klein’s formalism in the case of dual Lie algebroids is
investigated. It should be mentioned that our approach is new even for the particular
case of the cotangent bundle.

Let M be a differentiable, n-dimensional manifold and (TM, πM , M) its tangent
bundle. A Lie algebroid over the manifold M is the triple (E, [·, ·], σ) where π : E → M
is a vector bundle of rank m over M, whose C∞(M)-module of sections Sec(E) is
equipped with a Lie algebra structure [·, ·] and σ : E → TM is a vector bundle
homomorphism (called the anchor) which induces a Lie algebra homomorphism (also
denoted σ) from Sec(E) to χ(M), satisfying the compatibility conditions

[s1, fs2] = f [s1, s2] + (σ(s1)f)s2

for every f ∈ C∞(M) and s1, s2 ∈ Sec(E). From the above definition we easily get

[σ(s1), σ(s2)] = σ[s1, s2], [s1, [s2, s3]] + [s2, [s3, s1]] + [s3, [s1, s2]] = 0.

For f ∈ C∞(M) the differential df(x) ∈ E∗
x is defined by 〈df(x), u〉 = σ(u)f , for

every u ∈ Ex and for differentiable k -form ω ∈ ∧k(E) = Sec((E∗)k → M), k > 0 its
exterior derivative dω ∈ ∧p+1(E) is defined as follows:
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dω(s1, ..., sk+1) =
k+1∑

i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1) +

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ], s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

Also, for ξ ∈ Sec(E) on can define the Lie derivative with respect to ξ by Lξ =
iξ ◦ d + d ◦ iξ, where iξ is the contraction with ξ. If we take the local coordinates
(xi) on an open U ⊂ M , a local basis {sα} of sections of the bundle π−1(U) → U
generates local coordinates (xi, yα) on E. The local functions σi

α(x), Lγ
αβ(x) on M

given by

σ(sα) = σi
α

∂

∂xi
, [sα, sβ ] = Lγ

αβsγ , i, j = 1, n, α, β = 1,m,

capture the properties which define the Lie algebroid structure over M in so called
structure equations:

σj
α

∂σi
β

∂xj
− σj

β

∂σi
α

∂xj
= σi

γLγ
αβ ,

∑

(α,β,γ)

(
σi

α

∂Lδ
βγ

∂xi
+ Lδ

αηLη
βγ

)
= 0.

Locally, if f ∈ C∞(M) then df = ∂f
∂xi σ

i
αsα and if θ ∈ Sec(E∗), θ = θαsα then

dθ = (
∂θβ

∂xi
σi

α −
1
2
θγLγ

αβ)sα ∧ sβ ,(1.1)

where {sα} is the dual basis of {sα}. Particularly, we have dxi = σi
αsα and dsα =

− 1
2Lα

βγsβ ∧ sγ .

2 Dual Lie algebroids

Let τ : E∗ → M be the dual of π : E → M and (E, [·, ·], σ) a Lie algebroid structure
over M. One can construct a Lie algebroid structure over E∗, by taking the prolon-
gation of (E, [·, ·], σ) over E∗ (see [3],[4],[5]). This structure is given by the following
objects:

• The associated vector bundle is (T E∗, τ1, E
∗) where T E∗ = ∪u∗∈E∗Tu∗E

∗ with

Tu∗E
∗ = {(ux, vu∗) ∈ Ex × Tu∗E

∗|σ(ux) = Tu∗τ(vu∗), τ (u∗) = x ∈ M}

and the projection τ1 : T E∗ → E∗, τ1(ux, vu∗) = u∗.

• The Lie algebra structure [·, ·] on Sec(τ1) is defined in the following way:
if ρ1, ρ2 ∈ Sec(τ1) are such that ρi(u∗) = (Xi(τ (u∗)), Ui(u∗)) where Xi ∈
Sec(π), Ui ∈ χ(E∗) and σ(Xi(τ (u∗)) = Tu∗τ(Ui (u∗)), i = 1, 2, then

[ρ1, ρ2](u∗) = ([X1, X2](τ (u∗)), [U1, U2](u∗))

• The anchor is the projection σ1 : T E∗ → TE∗, σ1(u, v) = v.
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Notice that if T τ : T E∗ → E, T τ(u, v) = u then (V T E∗, τ1|V T E∗ , E
∗) with V T E∗ :=

KerT τ is a subbundle of (T E∗, τ1, E
∗), called the vertical subbundle. If (xi, µα) are

local coordinates on E∗ at u∗and {sα} is a local basis of sections of π : E → M then
a local basis of Sec(T E∗) is {Xα,Pα} where

Xα(u∗) =
(

sα(τ(u∗)), σi
α

∂

∂xi
|u∗

)
, Pα(u∗) =

(
0,

∂

∂µα
|u∗

)
.(2.1)

The Lie brackets on the elements of this basis are:

[Xα,Xβ ] = Lγ
αβXγ , [Xα,Pα] = 0, [Pα,Pβ ] = 0(2.2)

and therefore

dxi = σi
αXα, dµα = Pα, dX γ = −1

2
Lγ

αβXα ∧ X β , dPα = 0

where {Xα,Pα} is the dual basis of {Xα,Pα}. Also if ρ = ραXα + ραPα is a section
of T E∗, then σ1(ρ) = σi

αρα ∂
∂xi + ρα

∂
∂µα

. The canonical symplectic structure of a Lie
algebroid T E∗ is given by ω = −dθ where θ = µαXα is the Liouville form. In local
coordinates we get

ω = Xα ∧ Pα +
1
2
µαLα

βγX β ∧ X γ .(2.3)

We remark that V T E∗ is Lagrangian for ω, i.e. ω(ρ1, ρ2) = 0, for every vertical
sections ρ1, ρ2.

3 Nonlinear connection on T E∗

Definition 1. A nonlinear connection (or connection) on T E∗ is an almost product
structure N on τ1 : T E∗ → E∗(i.e. a bundle morphism N : T E∗ → T E∗, such that
N 2 = id ) smooth on T E∗\{0} such that V T E∗ = Ker(id +N ).

(i) If N is a connection on T E∗ then HT E∗ = Ker(id − N ) is the horizontal
subbundle associated to N and T E∗ = V T E∗ ⊕ HT E∗. Each ρ ∈ Sec(τ1) can be
written as ρ = ρh + ρv where ρh, ρvare sections in the horizontal and respective
vertical subbundles. If ρh = 0 then ρ is called vertical and if ρv = 0 then ρ is called
horizontal. The section C given locally by C = µαPα defines a global vertical section
that is called Liouville section.
(ii) A connection N on E∗ induces two projectors h, v : T E∗ → T E∗ such that
h(ρ) = ρh and v(ρ) = ρv for every ρ ∈ Sec(τ1). We have

h =
1
2
(id +N ), v =

1
2
(id−N ),(3.1)

kerh = Imv = V T E∗, Imh = ker v = HT E∗.(3.2)

(iii) Locally a connection can be expressed as

N (Xα) = Xα + 2NαβPβ , N (Pα) = −Pα,(3.3)
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where Nαβ = Nαβ(x, µ) are the local coefficients of N . The vector fields

δ∗α = h(Xα) = Xα +NαβPβ(3.4)

generate a basis of HT E∗. The frame {δ∗α,Pα} is a local basis of T E∗ called adapted.
The dual adapted basis is {Xα, δPα} where δPα = Pα − NαβX β .

Definition 2. A connection N on T E∗ is called symmetric if HT E∗ is Lagrangian
for ω.

Proposition 1. N is symmetric iff locally

Nαβ −Nβα = µγLγ
αβ .(3.5)

Proposition 2. The Lie brackets of the adapted basis {δ∗α,Pα} are

[δ∗α, δ∗β ] = Lγ
αβδ∗γ +RαβγPγ , [δ∗α,Pβ ] = −∂Nαγ

∂µβ
Pγ , [Pα,Pβ ] = 0,(3.6)

where

Rαβγ = σi
α

∂Nβγ

∂xi
− σi

β

∂Nαγ

∂xi
+Nαδ

∂Nβγ

∂µδ
−N βδ

∂Nαγ

∂µδ
+ Lε

αβNεγ .(3.7)

Definition 3. The curvature of a connection N on T E∗ is given by Ω = −Nh

where h is defined by (3.1), and Nh = − 1
2 [h, h] is the Nijenhuis tensor of h.

In the local coordinates

Ω = −1
2
RαβγXα ∧ X β ⊗ Pγ

where Rαβγ is given by (3.7) and is called the curvature tensor of N .
The curvature is an obstruction to the integrability of HT E∗. We have

Proposition 3. HT E∗ is integrable if and only if the curvature vanishes.
Remark 1. Two connections N on T E∗ and N on TE∗ are called σ1-related if

N ◦ σ1 = σ1 ◦ N . In this case N(σ1(δ∗α)) = σ1(δ∗α) from which we easily obtain

σ1(δ∗α) = σi
αδi, Nαβ = σi

αNiβ ,

where Niβ are the coefficients of N and δi = ∂
∂xi + Niα

∂
∂µα

is a local adapted frame
of the horizontal subbundle HTE∗. Also for the curvature tensors of two σ1-related
connections we have:

Rαβγ = σi
ασj

βRijγ ,

where Rijγ = δi(Njγ)− δj(Niγ).

4 Almost tangent structures and connections

Definition 4. An almost tangent structure J on T E∗ is a bundle morphism J :
T E∗ → T E∗ of τ1 : T E∗ → E∗, of rank m, such that J 2 = 0. An almost tangent
structure J on T E∗ is called adapted if ImJ = KerJ = V T E∗.

Locally, an adapted almost tangent structure is given by J = tαβXα ⊗Pβ where
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the coefficients matrix (tαβ(x, µ)) has rank m.
Proposition 4. J is an integrable if and only if

∂tαγ

∂µβ
=

∂tβγ

∂µα
(4.1)

where tαγtγβ = δα
β .

Proof. J is an integrable if and only if the Nijenhuis tensor NJ (ρ, υ) = [J ρ, J υ]−
J [J ρ, υ]− J [ρ,J υ] = 0. This is locally equivalent to

NJ (Xα,Xβ) =
(

tαγ
∂tβε

∂µγ
− tβγ

∂tαε

∂µγ

)
Pε, NJ (Xα,Pβ) = NJ (Pα,Pβ) = 0.

Therefore J is integrable iff tαγ
∂tβε

∂µγ
= tβγ

∂tαε

∂µγ
that is equivalent to (4.1). ut

Remark 2. (i) An adapted almost tangent structure J on T E∗ is called sym-
metric if ω(J ρ, υ) = ω(J υ, ρ). Locally, this requires the symmetry of the tensor tαβ .
(ii) If g is a pseudo-Riemannian metric on the vertical bundle V T E∗ then there exists
an unique symmetric adapted almost tangent structure on T E∗ such that

g(J ρ,J υ) = −ω(J ρ, υ).(4.2)

In this case we say that J is induced by the metric g.
Locally if g(x, µ) = gαβPα⊗Pβ then tαβ = gαβ . In particular, any regular Hamiltonian
H : E∗ → R on E∗ induces a pseudo-Riemannian metric on V T E∗ (the metric tensor
is gαβ = ∂2H

∂µα∂µβ
) therefore, it induces an unique symmetric adapted almost tangent

structure (denoted JH) such that (4.2) is verified. Moreover, this is a tangent structure
i.e., JH is integrable.
(iii) Any symmetric adapted almost tangent structure J on T E∗ induces a pseudo-
Riemannian metric on the vertical bundle V T E∗ as defined by (4.2).

Definition 5. The torsion of a connection N is the vector valued two form T :=
[J , h] where h is given by (3.1) and [J , h] is the Frolicher-Nijenhuis bracket.

Remark 3. T is a semibasic vector-valued form. Its local expression is:

T =
1
2

(
tαε

∂Nβγ

∂µε
− tβε

∂Nαγ

∂µε
+ δ∗α(tβγ)− δ∗β(tαγ)− Lε

αβtεγ

)
Xα ∧ X β ⊗Pγ .

Proposition 5. Let N be a bundle morphism of τ1 : T E∗ → E∗, smooth on
T E∗\{0}. Then N is a connection on T E∗ if and only if there exists an adapted
almost tangent structure J on T E∗ such that

JN = J , NJ = −J .

Definition 6. Let J be an adapted almost tangent structure on T E∗. A section
ρ of T E∗ is called J -regular if

J [ρ,J ν] = −J ν,

for every section ν of T E∗.
Locally ρ = ραXα + ρβPβ is J -regular iff
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tαβ =
∂ρβ

∂µα
.(4.3)

Example 1. Let H be a regular Hamiltonian on E∗. One can associate to H a
remarkable JH -regular section ρ ∈ Sec(τ1), locally given by

ρ =
∂H

∂µα
Xα + ραPα,(4.4)

which will be called a semi-Hamiltonian section. Moreover, the equation

iρH
ω = dH,(4.5)

defines an unique JH −regular section ρH ∈ Sec(τ1) (see [4]) locally given by

ρH =
∂H

∂µα
Xα − (σi

α

∂H

∂xi
+ µγLγ

αβ

∂H

∂µβ
)Pα,(4.6)

called the Hamilton section.
Theorem 1. Let J be an adapted almost tangent structure on T E∗. If ρ is a

J -regular section of T E∗ then

N = −LρJ ,(4.7)

is a connection on T E∗.
Proof. Since N (υ) = −LρJ (υ) = −[ρ,J υ] + J [ρ, υ] then JN (υ) = −J [ρ,J υ] +

J 2[ρ, υ] = J ν and NJ (υ) = −[ρ,J 2υ] +J [ρ,J υ] = − J ν. By using Proposition 5
we get the proof of the theorem. ut

Remark 4. The connection (4.7) is induced by J and ρ. Its local coefficients are
given by

Nαβ =
1
2

(
tαγ

∂ρβ

∂µγ
− σi

αtγβ
∂ργ

∂xi
− ρtαβ + ργtλβLλ

γα

)
(4.8)

Proposition 6. The torsion of the connection (4.7) vanishes.
Proof. We have T = [J , h] = 1

2 ([J , id] + [J ,−[ρ,J ]]) = 1
2 [J , [J , ρ]]. Using Jacobi

identity we obtain that T = 0. ut
Proposition 7. The connection N = −LρHJH is symmetric.
Proof. Use (4.6) and (4.8) after some computations we get (3.5). ut

5 Homogeneous connections

Definition 7. An adapted almost tangent structure on T E∗ is called homogeneous
if LCJ = −J .

Notice that J is homogeneous if the local components tαβ(x, µ) are 0-homogeneous
with respect to µ.

Proposition 8. Let J be a homogeneous adapted tangent structure. A section
ρ ∈ Sec(τ1) is J−regular if and only if J ρ = C.

Proof. If ρ is J−regular then tαβ = ∂ρβ

∂µα
, hence ρβ must be 1-homogeneous with
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respect to µ, therefore µαtαβ = ρβ , that is equivalent to J ρ = C. Vice versa, if J ρ = C
then ρα = µβtβα and thus ∂ρα

∂µγ
= tγα + µβ

∂tγα

∂µβ
= tγα. ut

Remark 5. (i) Based on the above result, the local expression for a J− regular
section with J a homogeneous adapted tangent structure is

ρ = µαtαβXβ + ργPγ .(5.1)

(ii) JH is homogeneous iff CH = 2H (i.e. H is 2-homogeneous on the fibres) and
therefore H = 1

2gαβµαµβ . Accordingly ρH = µαgαβXβ + ργPγ .
(iii) The coefficients of the connection (4.7) generated by ρ from (5.1) can be written
in the following form:

Nαβ =
1
2

(
µεt

εγ

(
σi

α

∂tγβ

∂xi
− σi

γ

∂tαβ

∂xi

)
+ tαγ

∂ρβ

∂µγ
− ρε

∂tαβ

∂µε
+ µεt

εγtλβLλ
γα

)
.

(iv) If ρ ∈ Sec(τ1) is given by (5.1) and N is any connection on T E∗ then ξ = h(ρ)
is a J -regular section of τ1 and is independent of ρ. We call this section associated to
N . The local expression of ξ is

ξ = µαtαβXβ + µαtαβNβγPγ .

For example the J -regular section associated to N = −LρJ is ξ = 1
2 (ρ + [C, ρ]) or

locally

ξ = µαtαβXβ +
1
2
µα

∂ργ

∂µα
Pγ .
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