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1. Introduction

In this paper, all objects including manifolds, metrics, maps, and vector fields are
assumed to be smooth unless it is stated otherwise.

∞-harmonic functions are solutions of the so-called ∞-Laplace equation:

∆∞u :=
1

2
〈∇u,∇ |∇u|2〉 =

m∑
i,j=1

uijuiuj = 0,

where u : Ω ⊂ Rm −→ R, ui = ∂u
∂xi and uij = ∂2u

∂xi∂xj . The ∞-Laplace equation was
first found by G. Aronsson ([1], [2]) in his study of “optimal” Lipschitz extension
of functions in the late 1960s.
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The ∞-Laplace equation can be obtained as the formal limit, as p → ∞, of
p-Laplace equation

∆p u := |∇u|p−2

(
∆ u +

p− 2

|∇u|2
∆∞ u

)
= 0. (1)

In recent years, there has been a growing research work in the study of the ∞-
Laplace equation. For more history and developments see e.g. [14], [3], [4], [5], [6],
[7], [8], [9], [12], [13], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. For inter-
esting applications of the ∞-Laplace equation in image processing see [10], [29],
in mass transfer problems see e.g. [16], and in the study of shape metamorphism
see e.g. [11].

Very recently, Ou, Troutman, and Wilhelm [28] introduced and studied ∞-
harmonic maps between Riemannian manifolds as a natural generalization of ∞-
harmonic functions and as a map between Riemannian manifolds that satisfies
a system of PDE obtained as the formal limit, as p → ∞, of p-harmonic map
equation:

|dϕ|2 τ2 (ϕ)

(p− 2)
+

1

2
dϕ

(
grad |dϕ|2

)
= 0.

According to [28], a map ϕ : (M, g) −→ (N, h) between Riemannian manifolds is
called an ∞-harmonic map if the gradient of its energy density is in the kernel of
its tangent map, i.e., ϕ is a solution of the PDEs

τ∞ (ϕ) =
1

2
dϕ

(
grad |dϕ|2

)
= 0, (2)

where |dϕ|2 = Tracegϕ
∗h is the energy density of ϕ.

Corollary 1.1. (see [28]) In local coordinates, a map ϕ : (M, g) −→ (N, h) with
ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) is ∞-harmonic if and only if

g
(
gradϕi, grad |dϕ|2

)
= 0, i = 1, 2, . . . , n. (3)

Example 1. (see [28]) Many important and familiar families of maps between
Riemannian manifolds turn out to be ∞-harmonic maps. In particular, all maps
of the following classes are ∞-harmonic:

• ∞-harmonic functions,

• totally geodesic maps,

• isometric immersions,

• Riemannian submersions,

• eigenmaps between spheres,

• projections of multiply warped products (e.g., the projection of the gener-
alized Kasner spacetimes),

• equator maps, and
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• radial projections.

For more details of the above and other examples, methods of constructing ∞-
harmonic maps into Euclidean spaces and into spheres, study of a subclass of
∞-harmonic maps called ∞-harmonic morphisms, study of the conformal change
of ∞-Laplacian on Riemannian manifolds and other results we refer the readers
to [28].

For some classifications of linear and quadratic ∞-harmonic maps from and
into a sphere, quadratic ∞-harmonic maps between Euclidean spaces, linear and
quadratic ∞-harmonic maps between Nil and Euclidean spaces and between Sol
and Euclidean spaces see [30].

In this paper, we give complete classifications of linear ∞-harmonic maps be-
tween Euclidean and Heisenberg spaces, between Nil and Sol spaces. We also
classify all ∞-harmonic linear automorphisms of Sol space and show that there is
a subgroup of ∞-harmonic linear automorphisms in the group of linear automor-
phisms of Sol space.

2. Linear ∞-harmonic maps between Euclidean and Heisenberg spaces

2.1. Linear ∞-harmonic maps from Heisenberg space into a Euclidean
space

Let H3=(R3, g) denote Heisenberg space, a 3-dimensional homogeneous space with
a left invariant metric whose group of isometries has dimension 4. With respect
to the standard coordinates (x, y, z) in R3, the metric can be written as g =
dx2 + dy2 + (dz + y

2
dx− x

2
dy)2 whose components are given by:

g11 = 1 +
y2

4
, g12 = −xy

4
, g13 =

y

2
, g22 = 1 +

x2

4
, g23 = −x

2
, g33 = 1; (4)

g11 = 1, g12 = 0, g13 = −y

2
, g22 = 1, g23 =

x

2
, g33 = 1 +

x2 + y2

4
. (5)

Now, let ϕ : H3 −→ Rn with

ϕ(X) =


a11 a12 a13

a21 a22 a23

. . . . . . . . .
an1 an2 an3


 x

y
z

 (6)

be a linear map from Heisenberg space into a Euclidean space. Then, we have

Theorem 2.1. A linear map ϕ : H3 −→ Rn with ϕ(X) = AX, where A is the
representation matrix with column vectors A1, A2, A3, is ∞-harmonic if and only
if A3 = 0, or A1, A2, and A3 are proportional to each other.

Proof. A straightforward computation using (5) gives:

∇ϕi = gαβ ∂ϕi

∂xβ

∂
∂xα

= (ai1 − 1
2
ai3y, ai2 + 1

2
ai3x, 1

4
ai3(x

2 + y2) + 1
2
ai2x− 1

2
ai1y + ai3), i = 1, 2, ..., n,
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|dϕ|2 = gαβϕα
iϕβ

jδij

= 1
4

n∑
i=1

a2
i3x

2 +
n∑

i=1

ai2ai3x + 1
4

n∑
i=1

a2
i3y

2 −
n∑

i=1

ai1ai3y +
3∑

j=1

n∑
i=1

a2
ij,

and
∂|dϕ|2
∂x1

= ∂|dϕ|2
∂x

= 1
2

n∑
i=1

a2
i3x +

n∑
i=1

ai2ai3,

∂|dϕ|2
∂x2

= ∂|dϕ|2
∂y

= 1
2

n∑
i=1

a2
i3y −

n∑
i=1

ai1ai3,

∂|dϕ|2
∂x3

= ∂|dϕ|2
∂z

= 0.

(7)

It follows from Corollary 1.1 that ϕ is ∞-harmonic if and only if

g(∇ϕi,∇ |dϕ|2) = 0, i = 1, 2, . . . , n, (8)

which is equivalent to

1
2
(ai1

n∑
j=1

a2
j3 − ai3

n∑
j=1

aj1aj3)x + 1
2
(ai2

n∑
j=1

a2
j3 − ai3

n∑
j=1

aj2aj3)y

+ai1

n∑
j=1

aj2aj3 − ai2

n∑
j=1

aj1aj3 = 0
(9)

for i = 1, 2, . . . , n and for any x, y. By comparing the coefficients of the polynomial
identity we have

ai1

n∑
j=1

a2
j3 − ai3

n∑
j=1

aj1aj3 = 0, i = 1, 2, . . . , n, (10)

ai2

n∑
j=1

a2
j3 − ai3

n∑
j=1

aj2aj3 = 0, i = 1, 2, . . . , n, (11)

ai1

n∑
j=1

aj2aj3 − ai2

n∑
j=1

aj1aj3 = 0, i = 1, 2, . . . , n. (12)

Noting that Ai = (a1i, . . . , ani)
t for i = 1, 2, 3 are the column vectors of A we con-

clude that the system of equations (10), (11), (12) is equivalent to A1//A3, A2//A3,
and A1//A2, or, A3 = 0, from which the theorem follows. �

Remark 1. It follows from our theorem that the maximum rank of the linear
∞-harmonic map from Heisenberg space into a Euclidean space is 2.

Example 2. Let ϕ : H3 −→ Rn, with

ϕ(X) =


1 1 1
2 2 2
. . . . . . . . .
n n n


 x

y
z

 . (13)

Then, by our theorem, ϕ is an ∞-harmonic map with non-constant energy density
|dϕ|2 = 1

4
|A3|2(x2 + y2) + |A3|2(x− y) + 3|A3|2, where |A3|2 = n(n+1)(2n+1)

6
.
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2.2. Linear ∞-harmonic maps from a Euclidean space into Heisenberg
space

Theorem 2.2. Let ϕ : Rm −→ H3 with

ϕ(X) =

 a11 a12 . . . a1m

a21 a22 . . . a2m

a31 a32 . . . a3m




x1

x2
...

xm

 (14)

be a linear map from a Euclidean space into Heisenberg space. Then, ϕ is ∞-
harmonic if and only if the row vectors A1, A2 are proportional to each other.

Proof. A straightforward computation gives:

∇ϕi = Ai, i = 1, 2, 3, (15)

|dϕ|2 = δαβϕi
αϕj

βgij =
1

4
|A2|2x2 +

1

4
|A1|2y2 − 1

2
A1 · A2xy (16)

−A2 · A3x + A1 · A3y + (|A1|2 + |A2|2 + |A3|2),

∂ |dϕ|2

∂xk

= 1
2
(a1k|A2|2 − a2kA

1 · A2)x + 1
2
(a2k|A1|2 − a1kA

1 · A2)y (17)

+a2kA
1 · A3 − a1kA

2 · A3, k = 1, 2, . . . ,m.

It follows from Corollary 1.1 that ϕ is ∞-harmonic if and only if

g(∇ϕi,∇ |dϕ|2) = 0, i = 1, 2, 3, (18)

which is equivalent to

1
2
(Ai · A1|A2|2 − Ai · A2A1 · A2)x + 1

2
(Ai · A2|A1|2 − Ai · A1A1 · A2)y

+Ai · A2A1 · A3 − Ai · A1A2 · A3 = 0, i = 1, 2, . . . , 3.
(19)

Substituting x = A1X, y = A2X into (19) we have, for any X ∈ Rm,

(c1A
1 + c2A

2)X + c3 = 0, (20)

where
c1 =

1

2
(Ai · A1|A2|2 − Ai · A2A1 · A2),

c2 =
1

2
(Ai · A2|A1|2 − Ai · A1A1 · A2),

c3 = Ai · A2A1 · A3 − Ai · A1A2 · A3, i = 1, 2, 3. (21)

Since equation (20) holds for any X ∈ Rm it can be viewed as an identity of poly-
nomials. It follows that ϕ is ∞-harmonic if and only if A1 and A2 are proportional
to each other and c3 = 0. One can check that c3 = 0 is a consequence of A1 being
proportional to A2. Therefore, we conclude that linear map ϕ from a Euclidean
space into Heisenberg space is ∞-harmonic if and only if A1 is proportional to
A2. �
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Remark 2. It follows from our theorem that the maximum possible rank of a
linear ∞-harmonic map from a Euclidean space into Heisenberg space is 2 and
a rank 2 linear ∞-harmonic map from a Euclidean space into Heisenberg space
always has non-constant energy density. We would also like to point out that in
[30] a complete classification of linear ∞-harmonic maps between Euclidean and
Nil spaces is given. It is well known that Nil space is isometric to Heisenberg
space. However, as the linearity of maps that we study depends on the (local)
coordinates used in R3 and since the isometry between Nil and Heisenberg spaces
is given by a quadratic polynomial map, the linear maps between Euclidean and
Nil spaces and the linear maps between Euclidean and Heisenberg spaces are not
isometric invariant and should be treated differently as the following examples
show.

Example 3. We can check that σ : (H3, g) −→ (R3, gNil) with σ(X, Y, Z) =
(X, Y, Z + XY/2) is an isometry from Heisenberg space onto Nil space. If we
identify these two spaces through this isometry, then the linear map ϕ : Rm −→ H3

with

ϕ(X) =

 1 −1 0 . . . 0
2 −2 0 . . . 0
0 0 0 . . . 0




x1

x2
...

xm

 (22)

becomes a quadratic map Rm −→ (R3, gNil) with σ ◦ ϕ(X) = (x1 − x2, 2(x1 −
x2), (x1− x2)

2). It is interesting to note that the composition σ ◦ϕ of ϕ (which is
∞-harmonic by Theorem 2.2) with an isometry σ is also∞-harmonic. This follows
from a general result in [28] that the ∞-harmonicity of a map is invariant under
an isometric immersion of the target space of the map into another manifold.

Example 4. It is proved in [28] that any isometry is an ∞-harmonic morphism
which preserves ∞-harmonicity in the sense that it pulls back ∞-harmonic func-
tions to∞-harmonic functions. One can also check that an∞-harmonic morphism
pulls back ∞-harmonic maps to ∞-harmonic maps. It follows that the isometry
σ : (H3, g) −→ (R3, gNil) with σ(X, Y, Z) = (X, Y, Z + XY/2) is an ∞-harmonic
morphism. By [30], the linear map ϕ : (R3, gNil) −→ Rn (n ≥ 2)

ϕ(X) =


0 a12 a13

0 a22 a23

. . . . . . . . .
0 an2 an3


 x

y
z

 , (23)

is ∞-harmonic. Therefore, the composition ϕ ◦ σ : (H3, g) −→ Rn given by

ϕ ◦ σ(X) =


0 a12 a13

0 a22 a23

. . . . . . . . .
0 an2 an3


 x

y
z + 1

2
xy

 (24)

gives an ∞-harmonic map defined by polynomials of degree 2 from Heisenberg
space into a Euclidean space with constant energy density.
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3. Linear ∞-harmonic maps between Nil and Sol spaces

In this section we give a complete classification of linear ∞-harmonic maps be-
tween Nil and Sol spaces. It turns out that the maximum possible rank of linear
∞-harmonic maps between Nil and Sol spaces is 2 and some of them have constant
energy density while others may have non-constant energy density.

3.1. Linear ∞-harmonic maps from Nil space into Sol space

Let (R3, gNil) and (R3, gSol) denote Nil and Sol spaces, where the metrics with
respect to the standard coordinates (x, y, z) in R3 are given by gNil = dx2 +dy2 +
(dz − xdy)2 and gSol = e2zdx2 + e−2zdy2 + dz2 respectively. In the following, we
use the notations g = gNil, h = gSol, the coordinates {x, y, z} in (R3, gNil) and
the coordinates {x́, ý, ź } in (R3, gSol), then one can easily compute the following
components of Nil and Sol metrics:

g11 = 1, g12 = g13 = 0, g22 = 1 + x2, g23 = −x, g33 = 1;

g11 = 1, g12 = g13 = 0, g22 = 1, g23 = x, g33 = 1 + x2.

h11 =e2ź, h22 = e−2ź, h33 = 1, all other hij = 0;

h11 =e−2ź, h22 = e2ź, h33 = 1, all other hij = 0.

Now we study the ∞-harmonicity of linear maps between Nil and Sol spaces.
First, we give the following classification of linear ∞-harmonic maps from Nil
space into Sol space.

Theorem 3.1. A linear map ϕ : (R3, gNil) −→ (R3, gSol) from Nil space into Sol
space with

ϕ(X) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  x
y
z

 (25)

is ∞-harmonic if and only if ϕ takes one of the following forms:

ϕ(X) =

 0 a12 a13

0 a22 a23

0 0 0

  x
y
z

 , (26)

ϕ(X) =

 a11 a12 0
a21 a22 0
0 0 0

  x
y
z

 , (27)

ϕ(X) =

 0 0 0
0 0 0
0 a32 a33

  x
y
z

 , or (28)

ϕ(X) =

 0 0 0
0 0 0

a31 a32 0

  x
y
z

 . (29)
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Proof. A straightforward computation gives:

∇ϕi = gαβ ∂ϕi

∂xβ

∂
∂xα

= (ai1, ai3x + ai2, ai3x
2 + ai2x + ai3), i = 1, 2, 3,

and

|dϕ|2 = gαβϕα
iϕβ

jhij ◦ ϕ = (a2
13x

2 + 2a12a13x +
3∑

j=1

a2
1j)e

2ź

+ (a2
23x

2 + 2a22a23x +
3∑

j=1

a2
2j)e

−2ź + (a2
33x

2 + 2a32a33x +
3∑

j=1

a2
3j),

(30)

where ź = a31x + a32y + a33z. Also, one can check that

∂|dϕ|2
∂x1

= ∂|dϕ|2
∂x

= 2{a31a
2
13x

2 + (a2
13 + 2a31a12a13)x + a12a13 + a31

3∑
j=1

a2
1j}e2ź

−2{a31a
2
23x

2+(2a31a22a23−a2
23)x+a31

3∑
j=1

a2
2j−a22a23}e−2ź+2(a2

33x+a32a33),

∂|dϕ|2
∂x2

= ∂|dϕ|2
∂y

= 2a32(a
2
13x

2 + 2a12a13x +
3∑

j=1

a2
1j)e

2ź − 2a32(a
2
23x

2 + 2a22a23x +
3∑

j=1

a2
2j)e

−2ź,

∂|dϕ|2
∂x3

∂|dϕ|2
∂z

= 2a33(a
2
13x

2 + 2a12a13x +
3∑

j=1

a2
1j)e

2ź − 2a33(a
2
23x

2 + 2a22a23x +
3∑

j=1

a2
2j)e

−2ź.

(31)
It follows from Corollary 1.1 that ϕ is an ∞-harmonic map if and only if

g(∇ϕi,∇ |dϕ|2) = 0, i = 1, 2, 3, (32)

which is equivalent to

2{ai3a33a
2
13x

4 + [(ai3a32 + ai2a33)a
2
13 + 2ai3a33a12a13]x

3

+[
3∑

k=1

aika3ka
2
13 + 2(ai3a32 + ai2a33)a12a13 + ai3a33

3∑
j=1

a2
1j]x

2

+[(ai3a32 + ai2a33)
3∑

j=1

a2
1j + 2

3∑
k=1

aika3ka12a13 + ai1a
2
13]x

+[
3∑

k=1

aika3k

3∑
j=1

a2
1j + ai1a12a13]}e2ź

−2{ai3a33a
2
23x

4 + [(ai3a32 + ai2a33)a
2
23 + 2ai3a33a22a23]x

3

+[
3∑

k=1

aika3ka
2
23 + 2(ai3a32 + ai2a33)a22a23 + ai3a33

3∑
j=1

a2
2j]x

2

+[(ai3a32 + ai2a33)
3∑

j=1

a2
2j + 2

3∑
k=1

aika3ka22a23 − ai1a
2
23]x

+[
3∑

k=1

aika3k

3∑
j=1

a2
2j − ai1a22a23]}e−2ź + 2ai1(a

2
33x + a32a33) = 0,

i = 1, 2, 3.

(33)
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Case (A):
3∑

j=1

a2
3j = 0. In this case, (33) becomes

2ai1(a
2
13 + a2

23)x + 2ai1(a12a13 + a22a23) = 0, i = 1, 2, 3. (34)

Solving equation (34), we have ai1 = 0 for i = 1, 2, 3, or a13 = a23 = 0. These give
the classes of linear ∞-harmonic maps corresponding to (26) and (27).

Case (B):
3∑

j=1

a2
3j 6= 0. In this case, we use the fact that the functions

1, x, xe2x, x2e2x, x3e2x, x4e2x; xe−2x, x2e−2x, x3e−2x, x4e−2x

are linearly independent to conclude that (33) is equivalent to

ai1a
2
33 = 0, 〈1〉

ai1a32a33 = 0, 〈2〉
ai3a33a

2
13 = 0, 〈3〉

(ai3a32 + ai2a33)a
2
13 + 2ai3a33a12a13 = 0, 〈4〉

3∑
k=1

aika3ka
2
13 + 2(ai3a32 + ai2a33)a12a13 + ai3a33

3∑
j=1

a2
1j = 0, 〈5〉

(ai3a32 + ai2a33)
3∑

j=1

a2
1j + 2

3∑
k=1

aika3ka12a13 + ai1a
2
13 = 0, 〈6〉

3∑
k=1

aika3k

3∑
j=1

a2
1j + ai1a12a13 = 0, 〈7〉

ai3a33a
2
23 = 0, 〈8〉

(ai3a32 + ai2a33)a
2
23 + 2ai3a33a22a23 = 0, 〈9〉

3∑
k=1

aika3ka
2
23 + 2(ai3a32 + ai2a33)a22a23 + ai3a33

3∑
j=1

a2
2j = 0, 〈10〉

(ai3a32 + ai2a33)
3∑

j=1

a2
2j + 2

3∑
k=1

aika3ka22a23 − ai1a
2
23 = 0. 〈11〉

3∑
k=1

aika3k

3∑
j=1

a2
2j − ai1a22a23 = 0. 〈12〉



(35)

It follows from 〈1〉 of (35) that either ai1 = 0 for i = 1, 2, 3, or a33 = 0.

Case (B1):
3∑

i=1

a2
i1 = 0. In this case, we have a2

32 + a2
33 6= 0 since we are in Case

(B). It follows that the equations 〈7〉 and 〈12〉 of (35) reduce to be

(ai3a33 + ai2a32)
3∑

j=1

a2
1j = 0

(ai3a33 + ai2a32)
3∑

j=1

a2
2j = 0, i = 1, 2, 3.

 (36)

Writing out the equation (36) with i = 3 we have that a1j = a2j = 0 for j = 1, 2, 3
and we can check that these, together with aj1 = 0, are solutions of the equations
(35). These correspond to the class of linear ∞-harmonic maps given by (28).
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Case (B2): a33 = 0 and hence a2
31 + a2

32 6= 0 since we are in Case (B). In this case,
equation (35) reduces to

ai3a32a
2
13 = 0,

(ai2a32 + ai1a31)a
2
13 + 2ai3a32a12a13 = 0,

ai3a32

3∑
j=1

a2
1j + 2(ai2a32 + ai1a31)a12a13 + ai1a

2
13 = 0,

(ai2a32 + ai1a31)
3∑

j=1

a2
1j + ai1a12a13 = 0,

ai3a32a
2
23 = 0,

(ai2a32 + ai1a31)a
2
23 + 2ai3a32a22a23 = 0,

ai3a32

3∑
j=1

a2
2j + 2(ai2a32 + ai1a31)a22a23 − ai1a

2
23 = 0,

(ai2a32 + ai1a31)
3∑

j=1

a2
2j − ai1a22a23 = 0,



i = 1, 2, 3. (37)

It follows from the first equation of (37) that we have either a13 = 0 or a32 = 0.
By considering following cases:

(I) a13 = 0, a32 6= 0,

(II) a13 6= 0, a32 = 0, hence, a31 6= 0,

(III) a13 = 0, a32 = 0, hence, a31 6= 0,

we obtain that ai3 = 0, a1i = a2i = 0, for i = 1, 2, 3, are solution of the equations
(35), which give the class of linear ∞-harmonic maps corresponding to (29). Thus,
we obtain the theorem. �

Remark 3. It follows from our theorem that the maximum possible rank of linear
∞-harmonic maps from Nil into Sol is 2. Using the energy density formula (30)
we can check that some of them have non-constant energy density while others
have constant energy density.

3.2. Linear ∞-harmonic maps from Sol space into Nil space

The linear ∞-harmonic maps from Sol space into Nil space can be completely
described by the following theorem.

Theorem 3.2. A linear map ϕ : (R3, gSol) −→ (R3, gNil) from Sol space into Nil
space with

ϕ(X) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  x
y
z

 (38)

is ∞-harmonic if and only if ϕ takes one of the following forms:

ϕ(X) =

 0 0 0
a21 a22 0
a31 a32 0

  x1

x2

x3

 , (39)
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ϕ(X) =

 a11 a12 0
0 0 0

a31 a32 0

  x1

x2

x3

 , (40)

ϕ(X) =

 0 0 0
0 0 a23

0 0 a33

  x1

x2

x3

 , or (41)

ϕ(X) =

 0 0 a13

0 0 0
0 0 a33

  x1

x2

x3

 . (42)

Proof. Using the notations g = gSol, h = gNil, and the coordinates {x1, x2, x3}
in (R3, gSol) and {y1, y2, y3} in (R3, gNil) we compute the following components of
Nil and Sol metric:

g11 = e2x3 , g22 = e−2x3 , g33 = 1, all other gij = 0;

g11 = e−2x3 , g22 = e2x3 , g33 = 1, all other gij = 0. (43)

h11 = 1, h12 = g13 = 0, h22 = 1 + y2
1, h23 = −y1, h33 = 1;

h11 = 1, h12 = h13 = 0, h22 = 1, h23 = y1, h33 = 1 + y2
1.

A straightforward computation gives:

∇ϕi = gαβ ∂ϕi

∂xβ

∂
∂xα

= (ai1e
−2x3 , ai2e

2x3 , ai3), i = 1, 2, 3,
(44)

and

|dϕ|2 = gαβϕα
iϕβ

jhij ◦ ϕ
= (e−2x3a2

21 + e2x3a2
22 + a2

23)y
2
1 − 2(e−2x3a21a31 + e2x3a22a32 + a23a33)y1

+
3∑

i=1

a2
i1e

−2x3 +
3∑

i=1

a2
i2e

2x3 +
3∑

i=1

a2
i3,

(45)

where y1 = a11x1 + a12x2 + a13x3.

Also, we can check that

∂|dϕ|2
∂x1

=

2(a11a
2
21e

−2x3 + a11a
2
22e

2x3 + a11a
2
23)y1

−2(a11a21a31e
−2x3 + a11a22a32e

2x3 + a11a23a33),

∂|dϕ|2
∂x2

=

2(a12a
2
21e

−2x3 + a12a
2
22e

2x3 + a12a
2
23)y1

−2(a12a21a31e
−2x3 + a12a22a32e

2x3 + a12a23a33),

and

∂|dϕ|2
∂x3

=

2(a2
22e

2x3 − a2
21e

−2x3)y2
1

+2{(a13a
2
21 + 2a21a31)e

−2x3 + (a13a
2
22 − 2a22a32)e

2x3 + a13a
2
23}y1

−2{(
3∑

i=1

a2
i1 + a13a21a31)e

−2x3 + (a13a22a32 −
3∑

i=1

a2
i2)e

2x3 + a13a23a33)}.
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Using Corollary 1.1 we conclude that ϕ is ∞-harmonic if and only if

2(ai3a
2
22e

2x3 − ai3a
2
21e

−2x3)y2
1

+2{ai1a11a
2
21e

−4x3 + ai2a12a
2
22e

4x3

+(ai1a11a
2
23 + ai3a13a

2
21 + 2ai3a21a

2
31)e

−2x3

+(ai2a12a
2
23 + ai3a13a

2
22 − 2ai3a22a

2
32)e

2x3

+(ai1a11a
2
22 + ai2a12a

2
21 + ai3a13a

2
23)y1 (46)

−2{ai1a11a21a31e
−4x3 + ai2a12a22a32e

4x3

+(ai1a11a23a33 + ai3a13a21a31 + ai3

3∑
j=1

a2
j1)e

−2x3

+(ai2a12a23a33 + ai3a13a22a32 − ai3

3∑
j=1

a2
j2)e

2x3

+ai1a11a22a32 + ai2a12a21a31 + ai3a13a23a33} = 0, i = 1, 2, 3.

Case (A):
3∑

j=1

a2
1j = 0.

It follows that y1 = a11x1 + a12x2 + a13x3 = 0 and equation (46) reduces to
ai3

3∑
j=1

a2
j1e

−2x3 = 0,

ai3

3∑
j=1

a2
j2e

2x3 = 0,
i = 1, 2, 3, (47)

which has solutions ai3 = 0, or ai1 = ai2 = 0, for i = 1, 2, 3. These give the linear
∞-harmonic maps defined by (39) and (41).

Case (B):
3∑

j=1

a2
1j 6= 0.

In this case, we use equation (46) and the fact that the functions 1, te2t, t2e2t; te−2t,
t2e−2t; te4t, t2e4t; te−4t, t2e−4t are linearly independent to conclude that ϕ is ∞-
harmonic if and only if

ai3a
2
22 = 0

ai3a
2
21 = 0,

}
i = 1, 2, 3, (48)

ai1a11a
2
21 = 0,

ai2a12a
2
22 = 0,

ai1a11a
2
23 + ai3a13a

2
21 + 2ai3a21a

2
31 = 0,

ai2a12a
2
23 + ai3a13a

2
22 − 2ai3a22a

2
32 = 0,

ai1a11a
2
22 − ai2a12a

2
21 + ai3a13a

2
23 = 0,

 i = 1, 2, 3, (49)
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and
ai1a11a21a31 = 0,
ai2a12a22a32 = 0,

ai1a11a23a33 + ai3a13a21a31 + ai3

3∑
j=1

a2
j1 = 0,

ai2a12a23a33 + ai3a13a22a32 − ai3

3∑
j=1

a2
j2 = 0,

ai1a11a22a32 + ai2a12a21a31 + ai3a13a23a33 = 0,


i = 1, 2, 3. (50)

In this case, it is easy to check that a2i = ai3 = 0 or ai1 = ai2 = a2i = 0, for
i = 1, 2, 3, are solutions of system (48), (49) and (50). These give the linear
∞-harmonic maps defined by (40) and (42). Thus, we obtain the theorem. �

Remark 4. Again, we remark that the maximum possible rank of linear ∞-
harmonic maps from Sol into Nil is 2. Using the energy density formula (45)
we can check that all rank 2 linear ∞-harmonic maps from Sol into Nil have
non-constant energy density.

4. ∞-Harmonic linear endomorphisms of Sol space

In this final section, we study the ∞-harmonicity of linear endomorphisms of Sol
space. We give a complete classification of ∞-harmonic linear endomorphisms of
Sol space. It turns out that an ∞-harmonic linear endomorphism of Sol space can
have maximum rank, i.e., there are ∞-harmonic linear diffeomorphisms from Sol
space onto itself which have constant energy density and which are not isometries.
We also show that there is a subgroup of ∞-harmonic linear automorphisms in
the group of linear isomorphisms.

Theorem 4.1. A linear endomorphism ϕ : (R3, gSol) −→ (R3, gSol) of Sol space
with

ϕ(X) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  x
y
z

 (51)

is ∞-harmonic if and only if ϕ takes one of the following forms:

ϕ(X) =

 a11 0 0
0 a22 0
0 0 1

  x
y
z

 , (52)

ϕ(X) =

 0 a12 0
a21 0 0
0 0 −1

  x
y
z

 , (53)

ϕ(X) =

 a11 a12 0
a21 a22 0
0 0 0

  x
y
z

 , (54)
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ϕ(X) =

 0 0 0
0 0 0
0 0 a33

  x
y
z

 , (55)

ϕ(X) =

 0 0 0
0 0 0

a31 a32 0

  x
y
z

 , or (56)

ϕ(X) =

 0 0 a13

0 0 a23

0 0 0

  x
y
z

 . (57)

Proof. We use g and h to denote the metrics in the domain and the target
manifolds respectively. With respect to the coordinates {x, y, z} in the domain
and {x́, ý, ź } in the target manifold, we can easily write down the following
components of metrics:

g11 = e2z, g22 = e−2z, g33 = 1, all other gij = 0;

g11 = e−2z, g22 = e2z, g33 = 1, all other gij = 0.

h11 = e2ź, h22 = e−2ź, h33 = 1, all other hij = 0;

h11 = e−2ź, h22 = e2ź, h33 = 1, all other hij = 0.

A direct computation gives:

∇ϕi = gαβ ∂ϕi

∂xβ

∂
∂xα

= (ai1e
−2z, ai2e

2z, ai3), i = 1, 2, 3,

and

|dϕ|2 = gαβϕα
iϕβ

jhij ◦ ϕ = gαα(
∂ϕi

∂xα

)2hii ◦ ϕ (58)

= (a2
12e

2z + a2
11e

−2z + a2
13)e

2ź

+(a2
22e

2z + a2
21e

−2z + a2
23)e

−2ź + (a2
32e

2z + a2
31e

−2z + a2
33),

where ź = a31x + a32y + a33z. Furthermore, we compute that

∂|dϕ|2
∂x1

= ∂|dϕ|2
∂x

= 2a31(a
2
12e

2z + a2
11e

−2z + a2
13)e

2ź − 2a31(a
2
22e

2z + a2
21e

−2z + a2
23)e

−2ź,
∂|dϕ|2
∂x2

= ∂|dϕ|2
∂y

= 2a32(a
2
12e

2z + a2
11e

−2z + a2
13)e

2ź − 2a32(a
2
22e

2z + a2
21e

−2z + a2
23)e

−2ź,
∂|dϕ|2
∂x3

= ∂|dϕ|2
∂z

= 2{(a2
12 + a33a

2
12)e

2z + (a33a
2
11 − a2

11)e
−2z + a33a

2
13}e2ź

−2{(a33a
2
22 − a2

22)e
2z + (a33a

2
21 + a2

21)e
−2z + a33a

2
23}e−2ź

+2(a2
32e

2z − a2
31e

−2z).

(59)

By Corollary 1.1 ϕ is ∞-harmonic if and only if

g(∇ϕi,∇ |dϕ|2) = 0, i = 1, 2, 3, (60)
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which is equivalent to

0 = {ai2a32a
2
12e

4z + ai1a31a
2
11e

−4z

+(ai2a32a
2
13 + ai3a

2
12 + ai3a33a

2
12)e

2z

+(ai1a31a
2
13 − ai3a

2
11 + ai3a33a

2
11)e

−2z

+ai1a31a
2
12 + ai2a32a

2
11 + ai3a33a

2
13}e2ź

−{ai2a32a
2
22e

4z + ai1a31a
2
21e

−4z (61)

+(ai2a32a
2
23 − ai3a

2
22 + ai3a33a

2
22)e

2z

+(ai1a31a
2
23 + ai3a

2
21 + ai3a33a

2
21)e

−2z

+ai1a31a
2
22 + ai2a32a

2
21 + ai3a33a

2
23}e−2ź

+ai3(a
2
32e

2z − a2
31e

−2z), i = 1, 2, 3.

Case (A): a2
31 + a2

32 + a2
33 = 0. It follows that ź = a31x + a32y + a33z = 0, and the

equation (61) becomes

ai3{(a2
12 + a2

22)e
2z − (a2

11 + a2
21)e

−2z} = 0, i = 1, 2, 3, (62)

which gives the solutions a11 = a12 = a21 = a22 = 0, or, ai3 = 0, for i = 1, 2, 3.
These give the linear ∞-harmonic maps of the form (54) and (57).

Case (B): a2
31 +a2

32 +a2
33 6= 0. We use equation (61) and the fact that the functions

ek1t; e−k1t; ek2t, e−k2t; ek3t, e−k3t; ek4t, e−k4t; ek5t, e−k5t with k1, . . . , k5 distinctive are
linearly independent to conclude that ϕ is ∞-harmonic if and only if

ai3a
2
32 = 0, 〈1〉

ai3a
2
31 = 0, 〈2〉

ai2a32a
2
12 = 0, 〈3〉

ai1a31a
2
11 = 0, 〈4〉

ai2a32a
2
13 + ai3a

2
12 + ai3a33a

2
12 = 0, 〈5〉

ai1a31a
2
13 − ai3a

2
11 + ai3a33a

2
11 = 0, 〈6〉

ai1a31a
2
12 + ai2a32a

2
11 + ai3a33a

2
13 = 0, 〈7〉

ai2a32a
2
22 = 0, 〈8〉

ai1a31a
2
21 = 0, 〈9〉

ai2a32a
2
23 − ai3a

2
22 + ai3a33a

2
22 = 0, 〈10〉

ai1a31a
2
23 + ai3a

2
21 + ai3a33a

2
21 = 0, 〈11〉

ai1a31a
2
22 + ai2a32a

2
21 + ai3a33a

2
23 = 0. 〈12〉



(63)

It follows from 〈1〉 and 〈2〉 of (63) that

ai3 = 0, or, a31 = a32 = 0, i = 1, 2, 3. (64)

Case (B1): ai3 = 0, i = 1, 2, 3 and hence a2
31 + a2

32 6= 0.
Performing 〈3〉+ 〈4〉+ 〈7〉, 〈8〉+ 〈9〉+ 〈12〉 separatively yields

(a2
11 + a2

12)(ai1a31 + ai2a32) = 0
(a2

21 + a2
22)(ai1a31 + ai2a32) = 0,

}
i = 1, 2, 3, (65)
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which gives us solutions a11 = a21 = a12 = a22 = 0. These give ∞-harmonic linear
automorphisms of the form defined in (56).

Case (B2): a31 = a32 = 0, and hence a33 6= 0.
In this case, equation (63) reduces to

ai3a
2
12(1 + a33) = 0,

ai3a
2
11(a33 − 1) = 0,

ai3a33a
2
13 = 0,

ai3a
2
22(a33 − 1) = 0,

ai3a
2
21(1 + a33) = 0,

ai3a33a
2
23 = 0,


i = 1, 2, 3. (66)

We solve this system by considering the following three case:

(I) a33 = 1. By (66), we have

ai3a
2
12 = 0,

ai3a
2
13 = 0,

ai3a
2
21 = 0,

ai3a
2
23 = 0,

 i = 1, 2, 3. (67)

Letting i = 3 we conclude that a12 = a13 = a21 = a23 = 0, which give the solutions
of the form (52).

(II) a33 = −1. In this case, (66) reduces to

ai3a
2
11 = 0,

ai3a
2
13 = 0,

ai3a
2
22 = 0,

ai3a
2
23 = 0,

 i = 1, 2, 3. (68)

Letting i = 3 we conclude that a11 = a22 = a13 = a23 = 0, which give the solutions
of the form (53).

(III) a33 6= ±1, 0. Then, (66) becomes

ai3a
2
12 = 0,

ai3a
2
11 = 0,

ai3a
2
13 = 0,

ai3a
2
22 = 0,

ai3a
2
21 = 0,

ai3a
2
23 = 0,


i = 1, 2, 3. (69)

Letting i = 3 we get a11 = a12 = a13 = a21 = a22 = a23 = 0, which give the
solutions of the form (55).

Summarizing all results in the above cases we obtain the theorem. �

Corollary 4.2. Every element of the subgroupϕ ∈ GL(R3) : ϕ(X) =

 λ 0 0
0 µ 0
0 0 1

  x
y
z

 , λµ 6= 0

 (70)

of the linear automorphism group of Sol space is ∞-harmonic.
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Proof. It follows from Theorem 4.1 that every element of the subgroup is an
∞-harmonic map. A straightforward checking shows that the inverse elements
and the products of elements of the subgroup are also ∞-harmonic. �

Remark 5. It follows from our theorem that the maximum possible rank of linear
∞-harmonic endomorphisms of Sol space is 3, so we can have linear ∞-harmonic
diffeomorphisms which have constant energy density and which are not isometries.
Using the energy density formula (58) we can check that all rank 2 linear ∞-
harmonic maps from Sol into itself have non-constant energy density.
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