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1. Introduction

For an irreducible character y of a finite group G, we know that v(x) := {g €
G| x(g) = 0} is a union of some conjugacy classes of G. An old theorem of
Burnside asserts that v(x) is not empty for any nonlinear x € Irr(G). It is natural
to consider the structure of a finite group provided that the number of character
zeros in its character table is very small (see [1], [11], [12] for a few examples). In
Berkovich and Kazarin’s paper [1], they posed the following question.

Question. Is it true that Ly(2'), f > 2 are the only nonabelian simple groups in
which every irreducible character of even degree vanishes on just one conjugacy
class?
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Our answer to the question is affirmative.

Theorem A. Let G be a finite group. If every x € Irr(G) of even degree vanishes
on just one conjugacy class, then G is just one of the following groups:

(1) G possesses a normal and abelian Sylow 2-subgroup.

(2) G is a Frobenius group with a complement of order 2.

(3) G = SL(2,3).

(4) G= L), f > 2
In particular, Ly(27) (f > 2) are the only nonsolvable groups, and therefore the
only nonabelian simple groups satisfying the hypothesis.

Instead of proving Theorem A directly, we will study the finite nonsolvable groups
G satisfying the following property

(%) every nonlinear y € Irr(G) of even degree vanishes on at most two conjugacy
classes of G.

Theorem B. If G is a finite nonsolvable group with no nontrivial solvable normal
subgroup, then G has the property (x) if and only if G = Ly(7) or Ly(2') where
f>2.

In this paper, GG always denotes a finite group, a class always means a conjugacy
class. We denote by 2¢ the conjugacy class of G in which x lies. For a subset A
of G, let kg(A) be the minimal integer [ such that A is a subset of a union of
conjugacy classes of G. For N <G, we put Irr(G|N) = Irr(G) — Irr(G/N); and for
A € Irr(N), the inertia subgroup of A in G is denoted by I (A).

Let Irry(G) be the set of irreducible characters of G with even degree. Our
proof depends on the classification theorem of finite simple groups.

2. Theorem B
We begin to list some easy results which will be used later.

Lemma 2.1. Let N <G and set G = G/N. Then the following results are true.
(1) For any x € G, 79, viewed as a subset of G, is a union of some classes of
G; furthermore, k(;(fé) = 1if and only if x(x) =0 for any x € Irr(G|N).
(2) If G has the property (x), then so has G/N.

Proof. (1) See [11, Lemma 3(1)].
(2) The result follows directly from (1). O

Lemma 2.2. For any nonlinear x € Irr(G), we have:
(1) If G is nonsolvable and kg(v(x)) < 2, then x, is irreducible.
(2) Ifv(x) C N for some N <G, then gcd(x(1),|G/N|) = 1. In particular, xn

18 1rreducible.
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Proof. (1) Suppose that x_, is reducible. By [7, Theorem 6.28], we can find a
normal subgroup M of G with G’ < M < G and an irreducible character ¢ of M
such that y = 1%, It follows that x vanishes on G — M, and thus kq(G — M) < 2.
By [13, Theorem 2.2] G is solvable, a contradiction.

(2) See [12, Lemma 2.2]. O

Next, we need the following Lemma 2.3. An irreducible character x of G is called
p-defect zero for some prime p if x(1), = |G|,, that is, the p-part of the degree
X(1) equals the p-part of the order of G. It is well-known that if xy € Irr(G) is
p-defect zero then x(z) = 0 whenever = € G is of order a multiple of p.

Lemma 2.3. Let G be a nonabelian simple group. Then there exists x € Irro(G)
such that x is of p-defect zero for some prime divisor p of |G|.

Proof. 1t suffices to consider the nonabelian simple group G' with no irreducible
character of 2-defect zero. By [15, Corollary]|, we may assume G = A, or G = M,
Moo, Maoy, Jo, HS, Suz, Ru, Coy, Cos, or B. Suppose that G is isomorphic to
A,,n < 8 or one of the above sporadic simple groups. Then the result follows
by [2]. Suppose that G = A,,n > 9. By [9, Proposition], there is x € Irr(G)
such that 2p|x(1), where p is the maximal prime not exceeding n. Clearly, x is of
p-defect zero since |G|, = p. O

Now we are ready to prove Theorem B.

Proof of Theorem B. Let N be a minimal normal subgroup of G. Since G has no
nontrivial solvable normal subgroup, /N is nonsolvable.

Step 1. G is almost simple, that is, N is a nonabelian simple group with N <
G < Aut(N).

Clearly N = Ny x --- x Ny is a direct product of isomorphic simple groups N;, 1 <
i <'s. Suppose that s > 2. Let 6; € Irro(N;) be of p-defect zero (Lemma 2.3), and
set = 60 x --- x 05. Then 6 is an irreducible character of N, also 69 € Irr(NN)
is of p-defect zero for any g € G. Let o be an irreducible constituent of ¢, let
x1 € Ny, x5 € Ny be of order p, and yo € Ny be of a prime order g (¢ # p). Now
for any g € G, we have

99(1:1) = Hg(xlzm) = 09($1y2> = O,

and this implies that xo(x1) = xo(x122) = Xxo(x1y2) = 0. Since x1, r122, T1Yy9 lie
in distinct conjugacy classes, we obtain a contradiction. Thus N is simple.
Suppose that Cg(N) > 1. Then Cg(N) contains a minimal normal subgroup
M of G. Set T = M x N. Arguing on M x N as in the above paragraph, we
conclude that M, N are nonabelian simple groups, and we can find ¢ € Irro(M),
0 € Irry(N) so that ¢ is of g-defect zero, and 6 is of p-defect zero, where ¢, p
are prime divisors of |M| and |N| respectively. Let x € M, y € N be of order
q,p respectively. Then for any irreducible constituent x of (¢ x )%, we see
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that x(x) = x(y) = x(xzy) = 0. Clearly, x,y, xy lie in distinct classes of G, a
contradiction. Thus Cg(N) =1, so N < G < Aut(N), and then G is an almost
simple group.
Step 2. N is a simple group of Lie type.

Suppose that N = A,, for some n > 8. Let 7 be the permutation character of
N, and 0 be the mapping of N into {0,1,2,---} such that §(g) is the number of
2-cycles in the standard composition of g. Set

(m—1)(m —2)
2

By [5, V, Theorem 20.6], both A and p are irreducible characters of N. Observe
that either A\(1) = (n — 1)(n — 2)/2 or p(1) = n(n — 3)/2 is even. Let xo be an
irreducible constituent of 7¢, where 7 € {\, p} is of even degree. Since G/N <
Out(N) = Out(A,) = Zy (n > 8, see [2]), it follows that N = G’. Now Lemma
2.2 (1) implies that (xo), = 7.

For even n, set

ap=(1,...,n—1),a,=(1,...,n—2)(n— 1,n),

az=(1,...,n—=5)(n—4,n—3,n—2);

by =(1,...,n—3),bo =(1,2,...n—3)(n — 2,n — 1,n),

by =(1,...,n—4)(n—3,n—2).

For odd n, set

ap=(1,....n—2),aa=(1,....n—4)(n—3,n—2,n—1),

a3 = (1,...,n—=5)(n —4,n — 3);

by=(1,....n),bo=(1,...,n—3)(n—2,n—1),

by =(1,...,n—6)(n—5n—4,n—3).

We see that A(a;) = 0 = p(b;) for any i = 1,2,3. Therefore, either yo(a;) =
Xo(az) = Xo(as) = 0 or xo(b1) = xo(b2) = xo(bs) = 0. Clearly ai,az,a3 (or
b1, by, b3) lie in distinct classes of G. We obtain a contradiction.

Suppose that N is isomorphic to A7 or one of the sporadic simple groups.
Assume G = N. We obtain a contradiction by [2]. Assume G > N. Since G
has no nontrivial solvable normal subgroup, G < Aut(N). It follows by [2] that
|Out(N)| < 2, and so |G/N| =2 and N = G'. By Lemma 2.2, every 0 € Irry(N)
is extendable to x € Irr(G), and that kg(v(f)) = ka(v(x) N N) < 1. By [2], we
also get a contradiction. .

Note that A5 = Ly(4) = Lo(5), A = L2(9). By the classification theorem of
finite simple groups, N must be a simple group of Lie type.

m(m —3)
2

A= + 0.

_57 pP=

Remarks and notation: Since N is one of the simple groups of Lie type, by [15]
N has an irreducible character yo of 2-defect zero. Let oy be an irreducible
constituent of x§. Observe that xJ(z) = 0 for any g € G and any z € N of even
order. Tt follows that og(x) = 0 whenever x € N is of even order.

Let P € Syly(N), and A = Uyeq(P? — {1}). We have

A C (o), and so kg(A) < 2.
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Step 3. If G = N = Ly(q) for some odd ¢ = p/ > 5, then G = Ly(7).

Note that all irreducible characters of Ly(q) are listed in [6, XI, Theorem 5.5,
5.6, 5.7]. Let € Irro(G) be of degree p/ + 1, and C be a Singer cycle of G, and
E = Uye(C9 —1). For any v € Z, if p is a prime divisor of element order o(v),
then either oy or 7 is p-defect zero, and so either o¢(v) = 0 or n(v) = 0. This
implies that kg(Z) < 4. Since kg(Z) = (¢ — 1)/4 (see [5, 11, Theorem 8.5]), we
have that ¢ = 7,9,11,13,17. By [2], we conclude that ¢ = 7 and G = Ly(7).
Step 4. If a Sylow 2-subgroup P of N is nonabelian, then G = Ly(7).

In this case, since P has an element of order 4, we conclude that v(og) = A C
N and kg (v(og)) = 2. By Lemma 2.2 (2), |G/N| is odd and (09), = xo. Therefore
0o is of 2-defect zero, and og(xz) = 0 for any x € G of even order. This implies
that all elements of even order are contained in A, thus C(t) is a 2-group for any
involution ¢ of G. Since P is nonabelian, by [14, III, Theorem 5] we conclude that
G is isomorphic to one of the following groups: Sz(q),q = 2*™*1 L,(q) where g
is a Fermat prime or Mersenne prime, L3(4), L2(9), Mo.

By [2], neither Mg nor L3(4) nor L,(9) has the property (x). Note that all
elements of order 4 in Sz(2*™*1) constitute two conjugacy classes , which can be
easily verified by [6, XI, Theorem 3.10]. Therefore G = Sz(2"*1) is not the case.
Now by step 3, we conclude that G = Ly(7).

Step 5. If a Sylow 2-subgroup P of N is abelian, then G = Ly(2/), f > 2.

Since P is abelian, by [6, XI, Theorem 13.7], NV is one of the following groups:
Ly(27); La(q) where ¢ = 3,5 (mod 8); 2G1(q),q = 3*™1. Recall that og(z) = 0
whenever x € N is of even order.

Suppose that N = 2G5(q). Then all elements of even order in N lie in at
least three classes of G (see [6, XI, Theorem 13.4]), a contradiction.

Therefore N = Ly(q), where ¢ = 2/ or ¢ = 3,5 (mod 8). Then Aut(N) =
N{¢p,6), where (¢) is the group of field automorphisms of N, (d) is the group of
diagonal automorphisms of N.

Case 1. Suppose that N = Ly(q) where ¢ > 5,¢ = 3,5 (mod 8).

In this case, we have |N|y = 4. Since ¢ and § commute modulo Inn(N), we
have N = G'. Let 6 € Irra(N) be such that if ¢ = 3 (mod 8) then (1) = ¢ + 1,
and if ¢ = 5 (mod 8) then (1) = ¢ — 1. By Lemma 2.2 (1), 6 is extendable to an
irreducible character p of G.

Observe that 0(1) = 4k for some odd k > 1, and that 6 is of r-defect zero for
any prime divisor r of 6(1). Let x = z129 € N be of order 2k, where o(x;) =
2,0(x2) = k. We have that 0(z;) = 0(z2) = 0(z) = 0, and so u(x1) = p(xg) =
wu(z) =0, a contradiction.

Case 2. Suppose that N = L,(2/), f > 2.

In this case, Out(N) = (¢). We need to prove that G = N. Observe that
if N = Ly(4)(= Ly(5)), then G = N by [2]. Thus we may assume that f > 3.
Suppose that G > N. Then G = G N N(¢). Following [3, §38] and using the
notation of that table for the characters of Ly(q), we may take 6, € Irr(N) of
degree 2/ — 1 such that the stabilizer of # in Aut(N) is N. Thus 6; induces to an
irreducible character of G. This implies by Lemma 2.2 that 6§ is of odd degree.
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In particular, G/N is a cyclic group of odd order.

Recall that xo € Irr(N) is of degree 2/, and oy is an extension of yg to G.
Since A = Ugeq(P? — 1) is a class of N, it forces A to be also a class of G. This
implies that |Cq(t)| = |G/N||P| for any t € P — {1}, and so that C(t) = PA,
where ANN =1, A = G/N. Observe that oo(g) = 0 whenever g € G is of
even order and that G/N is a cyclic group of odd order. Suppose that there are
primes 71, ro such that rry divides |A|. We can find z1, 25 € Cg(t) = PA of order
211, 2r1ry respectively, and then oo(t) = o(x1) = o(xy) = 0. However, t,xq, x5 lie
in distinct classes of G, a contradiction. Hence |G/N| is an odd prime ¢. Also,
we see that O, the set of elements of order 2¢, forms a class of G. Let w € A be
of order ¢, and y = wt. Since O is a class of GG, all cyclic subgroups of order 2¢
are conjugate to (y). Note that distinct subgroups of order 2¢ have no common
element of order 2¢, it follows that

0] =[G : Ne((y)l(g — 1)
As Ng({w)) = (w)Ny({(w)) = (w) x (Ng({w)) N N) = Cg(w), we have
Ne({y)) = No((w)) N Ne((1)) = Co(w) N Ca(t) = Caly).
Then

G Caly)l(a—1) =1G: Na((y)l(¢ = 1) = 8] = [y°| = |G : Ca(y)],
a contradiction. Thus G = N = Ly(2/) as desired. O

3. Theorem A

Lemma 3.1. Let N <G and H/N be a Hall m-subgroup of G/N. If n € Irr(H)
induces to an irreducible character x of G, then x(x) = 0 for any 7'-element
reG—N.

Proof. 1t follows directly from the definition of induced character. O

Lemma 3.2. Let G =2 Ly(27), f > 3 and P € Syly(G). If H is a proper subgroup
of G with P < H, then H < Ng(P).

Proof. It is enough to investigate the maximal subgroups of Ly(2/) (see [5, II,
Theorem 8.27]). O

Proof of Theorem A. We need only to prove that if every member of Irry(G) has
just one class of zeros, then G is one of the types listed in the theorem. Suppose
that Irro(G) is empty. By a well-known theorem of Ito and Michler, G' possesses
a normal abelian Sylow 2-subgroup. In what follows, we assume that Irro(G) is
not empty.
Case 1. Suppose that G is nonsolvable.

By Theorem B, there exists a normal solvable subgroup N of G such that
G/N 2 Ly(7) or Ly(2). Clearly G/N = Ly(7) is not the case, and so G/N =
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Ly(27). Suppose that N > 1. To reach a contradiction, we may assume that N
is a minimal normal subgroup of GG, and thus N is an elementary abelian ¢g-group
for some prime ¢q. Let xo € Irr(G/N) be of degree 2/. Let P < G be such that
P/N € Syly(G/N), and A = Ugee(P? — N). Then

A = v(xo), ka(A) = 1.

For any x € Irr(G|N), by Lemma 2.1 we conclude that y vanishes on A, and then
by [13, Lemma 1.1] we see that x(1) is even. Let us consider the subgroup P. For
any t € P — N, we have

|Ca(t)] = |Con(tN)| = |[P/N].

If ¢ is odd, then the above equation yields that P is a Frobenius group with N as
its kernel, and this leads to the contradiction that P/N, as an abelian Frobenius
complement is cyclic. Thus N is a 2-group. Since N is a nontrivial normal
subgroup of the 2-group P, we can take a non-principal Ay € Irr(N/Ny) C Irr(N),
where N/Nj is a chief factor of P. Clearly )\ is P-invariant. Note that if x is an
irreducible constituent of \§, then y € Irr(G|N) and then x(1) is even.

Assume that Ig(Ag) = G. Observe that N can be viewed as an irreducible
G-module over a field F; of 2 elements. Then Irr(N) has a natural G-module
structure induced by the conjugate action of G on N, and since N is irreducible,
Irr(N) is also an irreducible G-module (see Section 1.6 of [8]). Let W be the set
of all G-invariant linear character of N. Then W is a nontrivial G-submodule of
Irr(N), and this implies that W = Irr(N). Now applying [7, Theorem 6.32] we
conclude that N < Z(G). By [2, Page xvi, Table 5], we have either G = Ly(27)x N
or G = SL(2,5). If G2 Ly(27) x N, then |Cg(t)| > |P/N| for any t € P — N, a
contradiction. If G = SL(2,5), then we also obtain a contradiction by [2].

Assume that Ig(Ag) < G. By Lemma 3.2, we have that P < Ig(\g) < H,
where H/N = Ng/n(P/N). Let ¢ be an irreducible constituent of A\Y. By
Clifford theorem, 1)y induces to an irreducible character 7y of G. Observe that
no € Irr(G|N) vanishes on A and is of even degree. Since H/N is a Hall subgroup
of G/N, it follows by Lemma 3.1 that 7y = 9§ vanishes on some element outside
A. Thus ny vanishes on at least two classes of GG, a contradiction.

Case 2. Suppose that G is solvable.

Assume first that there is some x € Irry(G) such that x , is reducible. By [7,
Theorem 6.22], there exist a subgroup H with G’ < H < G and an irreducible
character A of H so that y = A\¢. This implies that y vanishes on G — H, and so
ko(G — H) = 1. Now it is easy to verify in this case that G is a Frobenius group
with a complement of order 2 (see [11, Lemma 2(2)]).

In what follows, we assume that x , is irreducible for any x € Irry(G), and we
will show in this case that G = SL(2,3). Since x_, is irreducible, x vanishes at
some element of G’, and consequently v(y) C G’ because kg (v(x)) = 1. It follows
by Lemma 2.2 (2) that gcd(x(1),|G/G’|) = 1 for any x € Irra(G). In particular,
|G/G'| is odd.

Let £ <G maximal be such that G/FE is nonabelian. By [7, Lemma 12.3] G/E
is a p-group or a Frobenius group. Suppose that G/E is a p-group and let i be
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a nonlinear irreducible character of G/E. Being a prime divisor of |G/G|, p is
coprime to x(1) for any x € Irry(G). Then ot € Irre(G) for some xo € Irra(G),
and p is a common divisor of |G/G’| and (xo%)(1), a contradiction. Therefore
G/E is a Frobenius group with a kernel N/E and a cyclic complement.

For any 79 € Irra(N), by Frobenius reciprocity 7 is extendible to some yo €
Irry(G), and thus [7, Theorem 12.4] implies that both xo and 7y vanish on N — |
then

k(N — E) =1,
and so
ke/p(NJE — EJE) = 1.
This implies that
IN/E| =1+ |G/N]|.
Since |G/N| is odd, N/E is an elementary abelian 2-group. Set |[N/E| = 2" and
let t € N — E. We have

2" =[Ca(t)| = |Cn(D) = IN/E|+ Y In@®)F.

nelrr(N|E)

This implies that N’ = E, and that for any n € Irr(N|E) (that is, for any nonlinear
n € Irr(N)), n must vanish on N — E , so n(1) is even (see [13, Lemma 1.1]), and
hence 7 is extendible to G.

Clearly £ > 1. Let E/F be a chief factor of G. If E/F is of odd order,
then the above fact implies that N/F is a Frobenius group with the kernel E/F,
and then being a Frobenius complement, the elementary abelian 2-group N/E is
of order 2, which is impossible. Thus E/F is a 2-group. Let us investigate the
quotient group G/F and let K = G /N be a Hall 2’-subgroup of G/F. Since every
nonlinear irreducible character of N/F' is of even degree, K acts nontrivially on
N/F and fixes every nonlinear irreducible character of N/F. By [10, Lemma 19.2],
we conclude that N'/F = E/F < Z(G/F). Since N/E, E/F are chief factors of
G, it is easy to see that

E/F =N'|F = Z(N/F) = Z(G/F) = ®(N/F).

Thus |E/F| =2 and N/F is an extraspecial 2-group. Now [4, Ch.5, Theorem 6.5]
implies that 2" — 1 = |G/N]| divides 2° 4 1 for some integer e < r/2. This yields
that 2" =4, and so G/F = SL(2,3).

To finish the proof of Theorem A, it suffices to show that F = 1. Suppose
that F' > 1. Towards a contradiction we may assume that F' is a minimal normal
subgroup of G. Assume that F' is a 2-group. Since |Cg(t)| = 4 for any t € N — E,
there is x € N — E of order |N|/2 > 8 ([13, Lemma 1.3]), which leads to the
contradiction that |Cg(z)| > 8 > 4. Assume that F' is a g-group for some odd
prime ¢ and set P € Syla(N). Since |Cg(t)] = |[N/E| =4 for any t € N — E,
we see that Cp(x) < P’ for any 1 # x € F. It follows by [10, Lemma 19.1] that
N = PF is a Frobenius group with a complement P and that P is either cyclic
or isomorphic to Qs. Then we can find some 0y € Irr(N) of degree 8. Let o be
an extension of 0y to G. We have N — F' C v(xy), a contradiction. Thus F' = 1,
and the proof of Theorem A is complete.
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