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Abstract. Let ® be a root system of type 2Fy, and let G be a group
generated by non-trivial subgroups A,, r € ®, satisfying some gen-
eralized Steinberg relations, which are also satisfied by root subgroups
corresponding to a Moufang octagon. These relations can be considered
as a generalization of the element-wise commutator relations in Cheval-
ley groups. The Steinberg presentation specifies the groups satisfying
the Chevalley commutator relations. In the present paper some sort of
generalized Steinberg presentation for groups with root system of type
2F, is provided. As a main result we classify the possible structures of

G.

1. Introduction

Let B be an irreducible, spherical Moufang building of rank [ > 2, A an apartment
of B and ® the set of roots of A. Further, for r € ® let A, be the root subgroup
of Aut(B) in the sense of Tits (see [9, [,4 and I1,5]). We call G := (A, | r € )
ethe Lie-type group of B, where Aut(B) denotes the group of type preserving
automorphisms of B. Using the geometric realization of the Coxeter group of A
(see [9, I (4.6) and p. 125-126]), one can identify ® with a root system of type
A, B, C (1>2),D (I >4), E (6<I[<8), Fyin the sense of Humphreys [2] or
a Coxeter system of type Iy(m). Moreover, we have m € {3,4,6,8} by [15] and
(18], if B is of type Io(m). We stress that there is no Moufang building of type
Hj respectively Hy by [14, (3.7)] (see also [13, p. 275]). Furthermore, ® can be
extended to a possibly non-reduced root system @, and new “root subgroups”’ A,
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can be introduced as subgroups of the “original” ones for r € ® \ ®. For C, = BC,

see [1, p. 233]. Further, for the definition of *Fy see [16]. For *Fj we use the

notation ® = 2F; and set ®; := {a € ®|a/(1 ++/2) € ®} and then & := &\ &,.
We set

N otherwise

R::{NU{O}HNU{O})ﬂ for & = 2F,

and -
CTD::{ ® for & = 2F,

d otherwise.

Further, we denote the reflection along r on ® by w, for r € ®. Then the following
hold:
(1) [A,, Ag] < <A,\r+#s | A\r+pus € @A, e RA>0,pu> 0> for r,s € ® with
rZ R™-s. (See [8, (3.3)] and [17, (6)].)
(II) X, := (A,, A_,) is a rank one group with unipotent subgroups A, and A_,
for r € ®. (See [9, I (4.12)(3)] and [8, (3.2)].)

(III) Let r € d and n, € X, with A’ = A_, respectively A" = A,. Then
A = Agu, for s € ®. (See [9, IT (5.11)], [17, (6)] respectively [16, (1.4)].)
(The existence of n, is guaranteed by 2.1(4).)

Let G be an arbitrary group generated by subgroups A,, r € ®, where ® is a root
system of type Al, Bl, Cl, BOZ (l 2 2), Dl (l Z 4), El (6 S l S 8), F47 G2 or 2F4.
Suppose the A, satisfy (I)—(III). Further, assume that A, is a subgroup of A,, if
2r € @ for r € ®, respectively Az S A it (V2+1)r € ® for r € d. Then
it has been proved in [10, Theorem 1] that there exists an irreducible, spherical
Moufang building B with “extended” root system ® and there is a surjective
homomorphism o: G — G, where G is a Lie-type group of B, such that the A,
with r # 2s and r # (v/2+1)s forall s € ® are mapped onto the root subgroups of
G corresponding to some apartment of B and ker o < Z(G). In this situation we
call G a group of type B or ®. We mention that the assumptions of [10, Theorem
1] are not satisfied by ® = 2F,, but the assertion holds in this case, too, since
in the proof it has been made use of the condition, that X, is a rank one group,
only for « € ®. Now, Timmesfeld’s aim was to determine the structure of groups
satisfying (I) and (II). This can be considered as a generalization of the Steinberg
presentation of Chevalley groups. For a survey of his research work we refer to
[12, Introduction|. Before we state his main result [12, Theorem 1], we establish
some notation. Let G be a group, {G; | 1 <i < n} a set of subgroups of G with
G=(G;|1<i<n)and[G;,G;] =1fori#j. Then we call G a central product
of the subgroups G;, 1 < ¢ < n, and use the notation G = *?:1 G;. Further, we

call the G; central divisors of G.

Theorem 1.1. Let ® be a root system of type A;, By, C;, BC, (1 >2), Dy (1 > 4),

E; (6 <1< 8) or Fy. Further, let G be a group generated by subgroups A,, r € ®,
satisfying (1) and (1I). Let

U={rcd|2rgdyU{sc®|2sc P and A, # As,}.
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Then ¥ = UV,;, i € I, such that the following hold:

1. W, carries the structure of a root system of one of the types A,, B, Cy,
BC, (n>2),D, (n>4), E, (6 <n<8)orF, orV,={+a} respectively
U, = {+a, £2a} for some o € W. Moreover, if V; is of type E,,, then U = P
is of type E; and n < 1.

2. Let G(V;) :== (A, | r € U;). Then G is the central product of the G(¥;) and
either G(V;) = X, (if ¥; = {xa} respectively V; = {+a,+2a}) or there
exists a Moufang building B; with “extended” root system V; such that G(¥;)
is of type B;.

A result for & = G, analogous to 1.1, has been proved in [7]. In the present paper
we solve the remaining problem when ® is of type 2Fy, i.e. o = {£ry;, £roiq, =
rei-1y | 4 € {1,2,3,4}}. To simplify notation, we write £k instead of =£ry
respectively +£" instead of £ry.

Theorem 1.2. Suppose G is generated by non-trivial subgroups A., a € P, sat-
isfying (1) and (I1) with ® of type *Fy. Let J := {+2i | i € {1,2,3,4}}. Moreover,
assume that A, is a subgroup of A, for aw € ®\ J. Then one of the following

holds:
(A) G is of type *F}.
(B) G = X4 * Ca(X,) for some a € @ and X < Cg(X,) for B € @\ {£a} or
G=G(J)«G(P\ J) is of type Cy x Cy.

2. Preliminaries

In this section we summarize preliminaries which are relevant to the proof of
1.2. Regarding commutators we use the notation of [3]. We will often use the
Dedekind identity in the following slightly modified sense: Let G be a group,
X<G leUCXandle ACG. ThenUANX) = UANX. Rank
one groups have been introduced by Timmesfeld. A group X generated by two
different nilpotent subgroups A and B satisfying: for each a € A* there exists
a b € B with A* = B® and vice versa, is called a rank one group. We call the
conjugates of A (and B) unipotent subgroups of the rank one group X. For the
convenience of the reader, we will in the following collect some properties of rank
one groups which are needed for the proof of 1.2. Proofs of these properties are
given in [9, Chapter IJ.

Theorem 2.1. Let X = (A, B) be a rank one group with unipotent subgroups A
and B.

(1) Let 0: X — o(X) be a homomorphism with o(A) # o(B). Then

is a rank one group with unipotent subgroups o(A) and o(B).

(2) We have Na(B) =1 = Ng(A).
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(3) For C,D € AX with C # D and d € D* we have X = (C, D) = (C,d).

(4) X acts doubly transitively on the set AX. In particular, there exists an x € X
with A* = B and B* = A. (We use the notation A <~ B for this.)

(5) <aX> is not nilpotent for a € A*. In particular, X is not nilpotent.

(6) Suppose X acts on the group M such that A or B acts trivially on M. Then
X acts trivially on M.

(7) Suppose A and B are elementary Abelian p-groups for some prime p, and
A acts on a ZX-module, say V, with V. = [V, Al @ [V,B]. Then V is an

elementary Abelian p-group.
In the following four sections we will prove Theorem 1.2. The proof will mainly

consist of extensive commutator calculations combined with applications of the
theory of rank one groups.

3. Notation and basic results

To begin with, we introduce some notation.
Let = {£roi, £roi1, £rei1y | i € {1,2,3,4}} be a root system of type 2Fy.

5/

I 6 4 3/
5
7 3
8 2
Y —1 1 N
2N -3 -7 /-8
-5

-3’ —4 —6 -7

Assume G is generated by non-trivial subgroups A,, a € ®, satisfying (I) and (II)
with ® = 2F}. Further, suppose that A, is a subgroup of A, for a € ® \ J. The
set J ={£2i|ie€ {1,2,3,4}} is a root subsystem of ® of type Cy. For a € ¥ let

Uy =(Ap | fed,a<f < —a),

where a < 3 < —a means that (3 is between a and —a clockwise. We notice that
the commutator relations in (I) provide the identity U, = [],.3._, A5, where the
roots are ordered “from « to —a”. Notice that 2.1(4) guarantees the existence of
Ne € X, with A, <2 A_,, for each o € .

The next lemma is a direct consequence of (I) and (II).

Lemma 3.1. Let o« € &. Then:
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(1) U, and U_,, are X,-invariant.

(2) AU, and A_ U, are nilpotent.

(3) AaNUs =1 = A o N Uy In particular, Ag N A, =1 for 3 € d and
b5y <R[,

Proof. Transferring the proof of [10, (2.1)] to ?F}, the result follows. U

Nilpotence argument 3.2. Let o,y € ® and ( € d with a < 3 # 7 < —a and
(X, Xa] = 1. Further, let Ag be a non-empty subset of Ag with A%~ C AU,

Then EZD‘ cU,.

Proof. Transfering the proof of [7, (3.3)] to 2F}, the claimed result follows. O

Remark 3.3. We can conclude the analogous assertion for EZ“ < AU_,.

Lemma 3.4. Suppose there exist some roots o, 3 € d with [Xa, Ag] = 1. Then
there is no a_g € Aﬂ_ﬂ with a"i"ﬁ e Us or a’i"ﬁ e U_p.

Proof. Without loss, suppose there exists an a_g € A 5 with aﬁaﬁ € Ug. Then we
have X3 = (A, a_p)"" < (A, Us) = ApUs, a contradiction to 3.1(2) and 2.1(5).
O

Let o € J and 3,7, € ®\ ® with a < f/ <+ < ¢ < &' < —a. Then we set
Wa = A,Y/A(;/. (341)

For example, W_5 = A7 As. The group W, lies in the center of U, and is X,-
invariant by (I). Let « € ®\ J, #/,0",0 € @\ ® and y,e € J with a < ' <y <
0 <e<n < —a. Then we set

Ma = AQ/A,YA(;/AEAW/. (342)

For example, M_; = AnAgAs AyAz. We notice that M, is an Abelian, X,-
invariant subgroup of U,.

Lemma 3.5. For a € ®\ J let M, = AgA,As A Ay with (3,6, € @\ @,
ve€Janda < f <y < <e<n < —a Suppose Az Ay (respectively
Ay Ay ) is Xo-invariant. Then [X,, Ag| =1 (respectively [ X, Ay] =1).

Proof. Without loss, let « = —1. Suppose A7 As/ is Xi-invariant. Then, using the
nilpotence argument, we obtain A%} = A and so [X1, A7| =1, since [A7, A_4] =

1 by (I). So the claimed result follows by symmetry. O

Lemma 3.6. Let M, be as in (3.4.2).
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(1) Suppose a,Ag/] = 1. Then [A,, A, = 1 and [Ay, A = 1. If further
(A, , then [ X4, M,] = 1.

[
o] =
(2) Suppose [XQ,A ] = 1. Then [A_,, Al =1 and [A_o, A,] = 1. If further
[A., Ay] =1, then [X,, M,]| = 1.

Proof. Without loss, let a = —1. Suppose
(X1, Ap] = 1. (3.6.1)
This yields [A_q, Ag|™ < A7) N[A;, M_1] < Az NU; =1 by (I) and 3.1(3). Thus,
[A_1, Ag] = 1. (3.6.2)

Moreover, [A_y, Ay]™ < A%} N[A;, M_4] < Az NU; =1 by (I) and 3.1(3), as
A7} = Az by assumption. This means

(A1, Ad = 1. (3.6.3)
If further,

[Ag, Ay/] =1, (3.6.4)
then we have X; = (A_1, Ay) < C(Ag) by (3.6.2). This yields

[Ag, A" < (ApAgAs)™ N [M_y, A1] = A AgAs N [Ap AgAs Ay Az, Ay
= A71A6A5/ N [A47 Al] < A7/A6A5/ N A3/ < U_3 N Ag/ =1

by (3.6.1), (I) and 3.1(3). This implies X; = (A_1, Ay) < C(Ay), as [Ag, Av] =
1 by (I). So we have [M_y,Ap] = 1 by (I), (3.6.1) and (3.6.4). This shows
(M_1, AT}l = 1. As (1 #A7 < Ay, we get X; = (ATH Ay) < C(Ay), since
[As, A1] = 1 by (I). Hence, we obtain [X;, M_;] = 1, as required. So the claimed
result follows by symmetry. O

Lemma 3.7. Let U, = AgA,AsA A ALA, with o,v,e,k € J; B,0,n, p€ P\ J
anda < f<y<i<e<n<k<pu<-—a.

(1) Suppose [Xn, Ag]l=1. Then we have [A,, As]=1. If moreover G(J)= L'
and Wy, Xo| =1, then AgA,AsA: A A, C Cy, (Ad).

(2) Suppose [X,, Ay = 1. Then [A,, A_,] = 1. If furthermore G(J) = X7 X,
and Wy, Xo] =1, then A, AsAAAGA, C Cy, (A_y).

Proof. Without loss, let a = —2. Suppose [X2, A_;] = 1. Then
[A,Q,Aﬂ 2 < AnQ, N [AQ, U, ] == A,y N [AQ, U,Q] S A,y N U,1 ==
by (I) and 3.1(3). That is,

[A_y, A = 1. (3.7.1)
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Suppose G(J) = *TEJ X, and [W_s, X5] = 1. Then repeated use of the Dedekind
identity and Lemma 3.1(3) yield

[As, A_5]™ < (A_pAgAn)™ N [U_y, Ay
= A 1 AgAy N [A_ | Ag A7 AgAs Ay A, Ay
= A_yAgAy N [A7AgA5 AyAs, Ay
<A AA NU_1NUsNU;
= (A1 NU_1)AgA» NUs N Uy
=(AsNUs)Ar NU; = Av NU; =1,

since (A_1AgA7n)" = A_1/AgA7 by assumption. Together with (3.7.1), this
implies A_1AgA7AcAs Ay C Cy_,(A_s), since G(J) is a central product of rank
one groups by assumption. Then the result follows by symmetry. O

Lemma 3.8. Suppose [X,, Uy =1 and A_gA_ A _sA_A_ A, CCy (A_,) or
A A SA_A LA LA, C Cy (An) for some a € @, where U, = AgA,AsA A,
AgA, with o, 8,v,0, e,k p € P anda < B<y<di<e<n<k<pu<—a.
Then X, is a central divisor of G.

Proof. Suppose [X,,U,] =1 and A_ A A A ,A_ A, C Cy ,(A,). Then
there exists an a_g € Atiﬁ with [a_g, As] = 1. Since otherwise

Ariag < OU,O( (Aa) = A—’\/A—JA—EA—UA—RA—M - U—ﬂa

contrary to 3.4.

Now let a_g € Aﬁ_ﬂ with [a_g, As] = 1. Then X3 = (Ag,a_5) < C(A,), as
[Ag, An] = 1 by (I). Thus, [A4,U_,] = 1. This implies [X,,U_,] = 1 by 2.1(6),
since U_,, is X,-invariant. Hence, X, is a central divisor of G, as required. U

4. The structure of G(J)

In this section we will determine the possible structures of G(.J). Further, we will
describe the influence of the structure of G(.J) on the structure of G(®).

As already mentioned, J is a root subsystem of ® of type Cs. Thus, G(J)
satisfies the assumptions of [11, Corollary 3]. This yields that G(J) = K,cy X,
or G(J) is of type Cy, or there exists a § € J such that Xg is a central divisor
of G(J) and G(J \ {£f}) is of type Ay. The following lemma will allow us to
exclude the last possibility.

Lemma 4.1. One of the following holds:
(1) G(J) = HKoey Xo.
(2) G(J) is of type Cs.
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Proof. By [11, Corollary 3|, it suffices to prove that (1) holds if X, is a central
divisor of G(J) for some v € J. Without loss, let X5 be a central divisor of G(.J).
Then we obtain 1 = [Ag, AgA4As] by (I), and so [Xs, AgAsAs] = 1 by 2.1(6), since
the Abelian group AgA;A; is Xg-invariant. Analogously, [A_¢A_4A 5, Xg] = 1.
Hence, Xy is a central divisor of G(J). By symmetry, X} is also a central divisor
of G(J). That is, G(J) = K,c; X,, and we are done. O

Corollary 4.2. Suppose there is no a € J such that X, is a central divisor of
G(J). Then all A,, o € J, are elementary Abelian 2-groups.

Proof. By the commutator relations in (I), the claimed result follows from [5,
Proposition 1.4.]. O

Next, using the notation of (3.4.1), we will prove some implications starting from
the assumption G(.J) = X 4, X..

Lemma 4.3. Suppose G(J) = X.cs Xo and there exist “neighboring roots” (3
and 7y in J with [Xg, Ws] =1 # [X,,W,]. Then Xz is a central divisor of G.

Proof. Without loss, let 3 = —2 and v = —4. Then our assumptions mean
[(Xo, W] =14 [Xy, W_y].
Step 1: We show

A AgAr AgAs Ay C Cyr L (ALs). (4.3.1)
We have 1 # [A7, A_4] < C4_,(Az) by assumption and by (I). This implies
Xy = ([Ar, A_4], A1) < C(Ay). (4.3.2)

Thus, [ X3, A_;] = 1. An application of 3.7 to U_, yields (4.3.1), as [Xo, W_5] =1
and G(J) = *K,c; X, by assumption.
Step 2. We prove [Xy, Ws] = 1. Suppose [Xo, W] # 1.

Then [Ay, A_5] # 1. By (4.3.2), this implies 1 # [Ay, A_5] < Ty, (A
Therefore, X7 = ([A2, A_5], A7) < Ce(A_y/). By 3.6, this implies [A_4, A7] =
contrary to our assumption. Thus, [43, A_5] = 1 and so [X3, W5] = 1 by 2.1(6
since Wy is Xo-invariant and [Ag, Ws] = 1.

Step 3: We show

).
1,
);

A_gA_7A_gA_sA_4A_5 C Cpy(As). (4.3.3)

By (4.3.1), we get X5 = (A5, A_5) < C(A_s). In particular, [A_5, A_s] = 1. Fur-
ther, by Step 2 and (4.3.1), we obtain X7 = (A7, A_7) < C(A_»). In particular,
[A_7, A_5] = 1. This implies (4.3.3), since G(J) is a central product of rank one
groups by assumption.

Step 4: We prove
[Xo, Us] = 1. (4.3.4)
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By (4.3.3), it suffices to prove that Cy4,(A_2) # 1. From this we namely see
Xy =(Ca,(As), A1) < C(A_y),since [A_1, A_s] = 1 by (I). Thus, [A_s, Us] =1,
and so (4.3.4) follows by 2.1(6), since U, is Xo-invariant.

We assume Cy,(A_5) = 1, and lead this to a contradiction. By (4.3.3), we
obtain CU2 (A_Q) = A_gA_7A_6A_5A_4A_3 and so A7112 S CU2 (A_Q) S Ul. But
(X2, A_1] = 1 by Step 1, a contradiction to 3.4. Thus, C4,(A_2) # 1 and so
(4.3.4) holds.

By (4.3.1) and (4.3.4), the assumptions of 3.8 are satisfied for X5. Thus, X,
is a central divisor of G. U

Lemma 4.4. Suppose G(J) = X s Xo and [(Xo, Wo] =1 for each o € J. Then
there exists an o € J such that X, is a central divisor of G.

Proof. Let o € J and W, = Ag A, with a < ' <+ < —a and f',+ appropriate
roots of @\ J. To begin with, we show that either [Ag, A ] =1 =[A,, A_z] or
X, is a central divisor of G.

Without loss, let & = —2. We prove that either

[A7/, A_5/] =1 (441)

or X, is a central divisor of G.

We assume that X3 is no central divisor of G, and show that in this case (4.4.1)
holds. By the commutator relations in (I), we obtain [A_5, A7] < A_3A_5A 1.
Let a_ya_sa_1 € [A_5, Ap] witha_3 € A g3, a 9 € A 5 and a_yy € A_y. Then
a_ga_sa_y € C(Ag), as [A7, As] = 1 = [A_5, Ay] by assumption. By (I), this
implies [a_gxa,_ga_y,Ay] = [CL_3/,A5/] S CA,lesAw(A?)v since [XQ,W_Q] =1 by
assumption.

We assume a_3 # 1, and lead this to a contradiction.

Let a*y,aa% € |a_y, Ay] with a*,, € A_y, a§ € Ag and a € Ap. Then
1 = [a*pa§as, As] = [a*y, As) = 1, as [As, Ao] = 1 = [Ap, Ay] by assumption.
Suppose a*;, # 1. Then X; = <a’:1,,A1> < C(Ag) and so Xo = (Ag, A 5) <
C(A_;). Arguing as in 4.3, we obtain that X, is a central divisor of G, since
[ X5, W] = 1 by assumption, a contradiction. Thus, we have [a_z, As] < AgA7.
Therefore, L := AgA7AgAs is (a_gz, A3) = Xsz-invariant. Conjugation with ng
yields [L, A3’] = 1, as [L, Ay] = 1. This implies X3 = (A3, A3) < C(Ay). In
particular, [As, A_3] = 1 and so X5 = (A5, A_5) < C(A_g), since [A_5, A_3] =1
by (I). From this we get [M_5, As] = 1 = [M_5, A7?], since [A_5, Ay] = 1 by
assumption. As (1 #)A? < A_;, this yields X5 = (A7, A5) < C(A7). Thus,
a_ga_sa_1 € [A_5, Ap] =1 and so

1 7& a_g = (a_ga_lz)_l S A_gl N A_QA_ll S A_3/ N U_3 =1

by 3.1(3), contradicting our assumption.

Hence, [A7, A_5] < A_5Ay. Assuming that X, is no central divisor of G, the
analogous argument with a_y/ in place of a_g yields [A7, A_5] < A_5. Thus,
[A_5/, A7/] < CA,Q (AQ) = 17 since [A_5/7A2] =1= [A7/, AQ] by assumption.
Analogously, either [A5, A_7] =1 or X5 is a central divisor of G.
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By the above argumentation, it suffices to prove that Xz is a central divisor
of G for some € J, if [Ag, A_] =1=[A,, A_g]| for each a € J. Lemma 3.6
yields [X,, M,] = 1 for each o € J, using that [X,, W,] = 1 for each a € J by
assumption. In particular, [X5, X5| = 1 = [X7, Xo] and [X5, Xg| = 1 = [X3, X5).
By 3.8, we get that either X, is a central divisor of G' or repeated use of the
nilpotence argument yields the conjugation relations A_; <=+ As and A_5 =
Ay, as [Xo, Xs| = [Xo, X7] = [Xo, Xg] = [Xa, X5] = [X2, Xy] = 1. In particular,
[Ay, Ag|™ = [A_3, Ag] = 1. Therefore, Xy is a central divisor of G by 3.8. Hence,
there exists an o € J such that X, is a central divisor of GG, as required. O

Lemma 4.5. Suppose G(J) = Xocs Xo. Then there exists an o € J with
[(Xo, W,] = 1.

Proof. We assume [Xg, W] # 1 for each o € J and G(J) = ¥ ¢ X,,, and lead

this to a contradiction.

Step 1: We use the notation of 3.5. Firstly, we show Cy, (Aw) = Ap A, Ay and
Cu,(A_y) = Ay A A, for each a € @\ J. Without loss, let « = —1. By

symmetry, it suffices to prove
CM71 (A_ll) = A7/A6A5/. (451)

By (I), we have A7 AgAs < Chp ,(A_1/). To get the opposite inclusion, we show
Caun, (A_y) = 1. Let ay € Ay and ay € Ay with [asaz, A_1/] = 1. Then we have
1 = [agay,a_y] = |ag,a_1/]* [ag,a_y] for each a_y € A_y. As [Ag, A_y/] < Az
and [A7, Ay] = 1, this shows [ag, A_1/] < Az. Suppose ag # 1. Then A_y/ Az is
(az, A_3) = Xs-invariant. Thus, [X3, A_y/] = 1 by 3.5. This implies [A_5/, Ag] =1
by 3.6, contradicting our assumption. Suppose a4 # 1. Then [ay, A_1/] = 1 and
so Xy = (a4, A_4) < C(A_y), a contradiction to [A4, A_y/] # 1 by assumption.
Hence, (4.5.1) holds.

Step 2. We show
A" C A7 AgAs Ay As. (4.5.2)

We have AgAgAs AjAz C Cy_,(As), since [Ag, As] = 1 by assumption. Suppose
l[a_jaras, As) =1 for some a_; € A_y, a; € A7 and a5 € As. Then we get

1 = [a_1azas, a9
= [a_1,a9)""*[azas, as

Jrree]

= [lela a2 ar, Gz]a5 [a57 GQ]

for each ay € Ay. As [A7, Ay] < Ay AgAy, [Ay AsAy, As] = 1, [As, Ay] < Ay and
[A5/A4A3/,A7] < A5/, this y1€1dS [CL_17A2] < A51A4A3/. Suppose a_q # 1. Then
M _1As is {(a_1,A;) = Xj-invariant. By Step 1, we get from this [A7, As]™ <
[CM71 (All),M_lAQ] = [A5/A4A3/,M_1A2] = 1, since A5/A4A3/ S Z(M_lAQ), Ccon-
trary to our assumption.
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Thus, Cy_,(Ay) € AgA7AsA5A4 A3, and an application of the nilpotence ar-
gument yields (4.5.2), since [Xg, X5] = 1 by assumption.

Step 3: Next, we show
(A7, A_y]™ < A7 AgAs. (4.5.3)

We have [[A7, A_4], Ao]™ < [[A7 Ay, A_4], A_s] < A_y by the commutator rela-
tions in (I), since W_5 is Xo-invariant and [A_4, X3] = 1 by assumption. Further,
by (4.5.2), we get [A7, A_4|" < A7 AgAsA4As. Let aragasasas € [Ap, A_y|™ with
a; € A; for i € {3,4,5,6,7}. Then

Ay > aragasagas, A_s] = [arasasas, A_s]

= [a7a4a5a3,A,2] = [a4a7[a7, &4]615@37 Afz]

by (I). We have [a7, a4]as = af for some af € As. Thus, we obtain [arafas, A_o] <
A_y/, since [ay, A_3] = 1 by assumption. This yields

A,y = [a7aga3, a_o
a7, a_s)]

= [a7,a—2]a3[ 57a—2] [ag,a_2]

]
azas [aZag, a_s]
*

for each a_y € A 5. Since [A7, A 5] < Ay, [A 1 a3] < AgAnAgAs and
[As, A_o] < A 1/ AgAz, we get [az, A_5] < M_3. Suppose a3 # 1. Then A_oM 3
is (a3, A_3) = Xs-invariant. By Step 1, this implies [A_o, A5|" < [A_oM_3,
A 1 AgAv] = 1, as A1 AgAr < Z(A_sM_3), contradicting our assumption.
This yields [A7, A_4]" < A;AgA5A4. Using the nilpotence argument, we ob-
tain (4.5.3), since [Xy, X5] = 1 by assumption.

Step 4: We show

[Ap, A_J" < A, (4.5.4)

We have [A7, A_4]" < [Ap Ay, A_4] < U_5 by (I), since W_5 is Xy-invariant. We
get [A7/, A_4]n2 < A7A6A5 N U_5 = A7A6(A5 N U_5) = A7A6 by (453) and 3].(3),
using the Dedekind identity. Using the nilpotence argument, this implies (4.5.4),
as [Xﬁ,XQ] =1.
Finally, we lead our original assumption to a contradiction. We have [[A_4, A7],
A_y] = 1 by (I), and so [[A_4, A]"2, A"%] = 1. Furthermore, there exists an
a_y € A * . with a3, € Aﬁ_7,, since [A_5, As] # 1 by assumption. By (4.5.4),
this implies [a7,a_7] = 1 for some a; € Aﬂ7 and some a_p € A{W. Thus, X; =
(a7, A_7) < C(a_7) since [a_7, A_7] = 1 by (I), a contradiction to Ny ,(A;) =1
by 2.1(2).

Hence, there exists an o € J with [X,,W,] = 1, if G(J) = X ey X, as
required. O
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5. Proof of 1.2 — main part I
In this section we will show

Theorem 5.1. Suppose G(J) is of type Co and Ca,, (A_a) # 1 or Ca ,(Aa) # 1
for some a € J with W, = Ag A, using the notation of (3.4.1). Then 1.2 (B)
holds.

Theorem 5.1 follows directly from the lemmas of this section.

Lemma 5.2. Suppose [Ay, G(J)] =1 for each a € P\D. Then [G(J),G(®\J)] =
1, and the root subgroups Ag, B € ®\ J, are closed under commutators. Further,
G(®\ J) = *aeq)\J X, or G(®\ J) is of type Cs.

Proof.

Step 1: We have X3 = (Ay, A_3) < C(A_y), since [Ay, A_5] = 1 by assump-
tion. Analogously, we get [A_o, X1] = 1 and [Ay, Xi] = 1. By 3.7, this implies
[Ao, A7] = 1. Thus, X7 = (A7, A7) < C(A_2). Analogously, [A o, X5] = 1.
Thus, [A_, G(® \ J)] = 1. By symmetry, we obtain

(G(]),G(®\ J)] = 1. (5.2.1)

Step 2: Next, we show that the root subgroups A,, a € ® \ J, are closed under
commutators. For this it suffices to prove that the A,, a € &\ J, are closed under
commutators. Without loss, we show the appropriate commutator relations for
Ay, By (5.2.1) and 2.1(2), we have [A;, A3] < C4,(A_2) = 1. Further, [A;, A5] =1
by (I). We show [A;, A7] < AsA3 by a division into cases (see Lemma 4.1):

(a) Suppose G(J) is of type Cy. Then we have

(A1, A7) < AgAs AyAsAs 1 Co(Ag) N Ca(A_g) N CalA L)
< AgAsAsAs N Ca(A_g) N Ca(AL)
< AsAyAs N Co(A_y) < AsAs

by (I) and (5.2.1)
(b) Suppose G(J) is a central product of rank one groups. Then we obtain

(A1, Ar] < AgAs Ay A Ay 1 Co(A o) N Ca(A_g) N Cal(A L)
< AgAsAsAs N Co(A_g) N CalA_y)
< A5 A A3 N Co(A_y) < AsAs

by (I) and (5.2.1).

Finally, we show that, under these assumptions, A, is Abelian for each o €
®\ Jor G’(&D \J) = *a€q>\J X,. Without loss, let a = 1. By Step 2, we get
[A7, Ay, Ar] < [A5A3, A1] = 1. By (I) and the Three-Subgroup-Lemma, we obtain
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Al = [A, Ay] < Cy4,,(A7). Suppose A7 # 1. Arguing as in the proof of 4.1, we
obtain G(&) \ J) = *QEQ\J Xa.

Suppose A/, = 1 for each a € ® \ J. Then the root subgroups A,, a € &\ J,
satisfy the assumptions of [10, Theorem 1] with respect to a root system of type
C,. As in the proof of 4.1, we see from this that G(® \ J) = G(® \ J) is of type
Cyor G@\ J) =K, ) X, O

Lemma 5.3. Suppose G(J) is of type Cy and there exist “neighboring roots” «
and (3 in J with Ca, (As) NCa, (A_g) # 1, where Wy = Ay As and W = Ay Ay
with o < f <~ <& <1 < —a < =3 for appropriate roots 7/, 8',n € @ \ J.
Then [Ay,G(J)] = 1.

Proof. Let, without loss, a = —4, § = —2 and 0’ = 7. Then our assumptions
mean |ar, A_4] = 1 = [ap, Ay for some ar € Ag,. From this we get the fol-
lowing commutator relations: 1 = [ay, A3]™ = [ar, Ag] and 1 = [ap, A_4]™* =
la7, A_g], since G(J) is of type Cy by assumption. This implies X7 = (a7, A_7) <
C(Ag), ie. [X7,A_ 6] =1 and so [A7, Xg] = 1 respectively X7 = (az, A_7) <
C(A_g), i.e. [X7,A_8] =1 and so [A7,X8] = 1. ThUS, [A7,A2]n8 = [A7,A6] =1
respectively [A7, A_4]" = [A;, Ag] = 1. Therefore, [A7, G(J)] = 1. O

Lemma 5.4. Suppose G(J) is of type Coy and there exist three roots a, 3,7 in J
such that Cy,,(Aa) NCa, (A_g) # 1 and [ X, W.] # 1, where a and (3 respectively
B and T are “neighbors” in J with o < 3 < 1, and W, respectively Wz are as in
5.3. Then X5 is a central divisor of G.

Proof. Let, without loss, & = —4, § = —2 and 7 = 8. Then, as in the proof of
5.3, we get

(X7, Agl = 1= [X7, A_g]. (5.4.1)

Moreover, [As, A_g] # 1 by assumption. This implies that [asas, A_7] = 1 for
some as € Ag, and some ay € Ay, as AgAz AsAy C Ch(A—s) by (1), A", = A_g,
ALl < Oy (A7) and Ag Ay Ay < Oy, (A—7). Then we obtain 1 = [agaq, a_7] =
las, a_7/]"[ag,a_7] for each a_7 € A_7. Thus, [as, A_7] < Ay, since [Ay, A_7] <
Ay and [Ay, Ay] = 1. Hence, Ay A_7 is (ay, A_5) = Xs-invariant. By 3.5, this
yields [A_7, X5] = 1 and so X; = (A_7, A7) < C(Ay), as [A7, Ay] = 1 by (I).
Thus,

A g, Ag] = 1= [Ay, A_g)] (5.4.2)

respectively [Ay, A7] =1 by 3.6. Therefore, Xy = (A4, A_4) < C(Ay), since, as in
the proof of 5.3, [A7, A_4] = 1 holds. This implies [A7, A_5]™ = [A7, Ag] = 1 and
so [Xa, A7] = 1, since, as in the proof of 5.3, [A7, As] = 1 holds.

Moreover, [A4, A_7] = 1, since we obtain otherwise a contradiction to 3.4, as
[ X4, A7) = 1. As [X7, Ay] = 1 and by 3.6, this implies

[M;, Xq] = 1. (5.4.3)
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By (5.4.2), we get 1 = [A_5, A_7»|™ = [As, A_7] and by (5.4.3), we obtain 1 =
[Ag, A_7]" = [As, A_7]. Thus, the next commutator relations follow: [X7, Ag] =
1 and so [X, A_7] = 1 respectively [ X7, Ag] = 1 and so [Xs, A_7] = 1. Moreover,
[A 9, A 7]" =[A_4,A 7] =1 and so [ X7, A 5] = 1. Further,

[A_77 A_5]n7 < Aﬁ% N [A_'y, U_7]n7 < A_6 NU_¢g = 1, (544)
as [X7,A_¢] = 1 by (5.4.1). Thus,
X5 = <A_5, A5/> S C(A_7) (545)

by (5.4.3). Analogously as in (5.4.4), we obtain [A7, A5] = 1, since [X7, Ag] = 1.
By (5.4.5), this implies [ X7, A5] = 1. We also have [A;, A_7] = 1, since [X7, A_g| =
1 by (5.4.1). All in all, [U7, A_7] = 1 and so [U7, X7|] = 1 by 2.1(6), since Uy is
Xr-invariant. Therefore, [M_7, X7] =1, as A_5A_4A_3A_o C Cy_.(A_7), since
otherwise we would obtain a contradiction to 3.4. Thus, X; = (A_1, 4;) <
C(A_7). Hence, we get [U_7, A_7] = 1. Then, by 2.1(6), we also have [U_7, X7| =
1. All in all, we obtain that X is a central divisor of G. U

Lemma 5.5. Suppose G(J) is of type Cy and there exist “neighboring roots” o
and 3 in J such that Ca,(As) N Ca, (A_g) # 1, where §' is as in 5.3. Then 1.2
(B) holds.

Proof. By 5.3 and 5.4, X, is a central divisor of G for some v € ®\ J, or each root
subgroup A,, @ € ® \ ®, commutes with each root subgroup Ag, 5 € J. In the
latter case the assumptions of 5.2 are satisfied. So 1.2 (B) holds in both cases.

Lemma 5.6. Suppose G(J) is of type Cy and there exist “neighboring roots” o
and (3 in J such that Ca,,(A_g) # 1 and Cu,(Ay) N Ca, (A_g) = 1, where W,
and Wz are as in 5.3. Then 1.2 (B) holds.

Proof. Let, without loss, « = —4, § = —2 and ¢’ = 7'. Further, let ay € Ag, with
[CL7/, AQ] =1 7& [a7/, A,4].
Step 1: First, we show a7 € A_y.

We have ar' = a_yay, where a_y € A_y and a3 € Ay, since W_y is
X -invariant. Thus, (a7/ (aé,)*l)n4 = a_y, as ayt € Cw_,(A_y) and Ay <
Cw_,(A_4) by (I). Further, 1 = [ay, As]™ = [a_yak, A_g], since G(J) is of type
Cy by assumption. This implies 1 = [a_ya%, a_g] = [a_1/,a_g)"" [a%, a_g] for each
a_g € A_g. Since [A_I/, A_6] < A_z and [A_gl, A7/] =1, we get [CL;,, A_G] < A_y.
Suppose a% # 1. Then A_gA_3 is (a%,A_7) = Xy-invariant. Further, an ap-
plication of the nilpotence argument yields A", = A_g, as [X3, X7] = 1 by (I).
Thus, [A_s, X7] = 1 and so [ X, A7] = 1. This yields [A7, A_4|" = [A7,As] =1, a
contradiction to [az, A_4] # 1 by assumption. Thus, a% =1 and so a7} € A_y..

Step 2: Next, we show a3, € A5 A4 A3 for a_y/ as in Step 1.
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The group [A7, A_4] A7 is Xy-invariant. By Step 1 and the Dedekind identity,
we get

a—y = ay' € [Ap, AyJAy NA_yv = [Ap, A)(Ar N Ay) = [Ar, Ay

by 31(3) By (I), this nnphes CLT_L21, S [A7/,A,4]n2 < [A7/A5/,A,8] - A6A5A4A3A2
A;. Therefore, a"%, € Cagza,4,454,4,(ar), since [ar, Xo] = 1 by assumption and
[A7, A_y] = 1 by (I). Further, Ca a,4,454,4,(a7) = AgA5A4A3As, since other-
wise [ X1, Az] = 1 and so [A4, A_y] = 1 by 3.6, contrary to [A_4, A7] # 1 by
assumption.

On the other hand, ", € U_,, since U_5 is Xp-invariant by 3.1(1). Thus,

CL’Z21/ S A6A5A4A3A2 N U,Q - A6A5A4A3<A2 N U,Q) == A6A5A4A3

by the Dedekind identity and 3.1(3). An application of the nilpotence argument
yields (llml/ S A5A4A3, as [X67 XQ] =1.
Step 3: Next, we prove [A_s, Ag] # 1.

Suppose [A_s, As] = 1. Then, by Step 2, we get a2, € AsA4A3 N C(A_y),
since [A_y, A_5] = 1. Let a5 € As, ay € Ay and a3 € Az with a™, = asaqas.
Then we get

|

I = [a5a4a3,a_5/] = [a5,a_5/ a4a3,a_5/]

= |as,a_5|""[ay, a_5]"az, a_z]

for each a_5 € A_s5. Therefore, [as5, A 5] < Us, since [a4,a_5]" = [ay,
CL_5/][(14,(1_5/,(13] € A3A2A1A_8A_7A_6 C Us. Suppose as 7é 1. Then U5A_5/
is (as, A_5) = Xs-invariant, as [A_5, A_5] = 1 by (I). Thus, X5 = <Aﬁ55,,A_5> <
UsA_s5, a contradiction to 3.1(2) and 2.1(5). Hence, a5 = 1 and so a", =
asaz. Then 1 = [agas,a_¢] = [a4,a_¢]*]az,a_g| for each a_¢ € A_g, since
1 = [ap, Ag]™™ = Ja_y, A" = |asas, A_g]. Thus, [as, A ¢] < Ay A_gA 7,
since [Ag, A—G] < AllA_gA_7/ and (AllA_gA_7/>a3 - AllA_gA_W. Suppose Qg 7é 1.
Then A A gA 7 A ¢ is (a4, A_y) = Xy-invariant. By 3.1(3), this implies Ay =
A < Ay N Uy = 1, since G(J) is of type Cy by assumption, a contradiction.
Hence, a4 = 1 and so @™, = a3. Thus, X; = (A_7, A7) < C(a—y), since
1 = [A_7,a3]" = [A_v,a_y]. Therefore, X; = (a_y, A;) < C(A_). This
implies X; = (A_7, A7) < C(A_y). But, by 3.6, this yields [A_4, A7] = 1, a
contradiction to [az, A_4] # 1 by assumption. Hence, [A_5, Ag] # 1.

n2

Step 4: Next, we show a"%, € As for a_y/ as in Step 1.
By Step 3, we have [A_g, As] # 1. Thus, there exists an a_y € Aﬂ_5

with a"}, = a_». By Step 2, this yields 1 = [a"},,a_7]| = [asasa3,a_7], since
[A_1,A_y] =1 by (I), where a5 € A;, as € Ay, a3 € Az with a"?, = asasas. As
[As, A_7] = 1, this implies 1 = [asaqas, a_7| = [asaq, a_7| = |as, a_7]"[aqg, a_7].

Thus, [a5,a_7] € Ay, since [Ay, A_7] < Ay and [Ayr, Ay] = 1. Suppose as # 1.
Then (a_7) Ay is (a5, A_5) = Xs-invariant. An application of the nilpotence ar-
gument yields (a_7)"* < {(a_7), since [X1, X5] = 1 by (I). Thus, [(a_7), X5] = 1.
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This implies [X7, As] = 1 and so [X5,A_7] = 1. Thus, [43, A_5] = 1 by 3.6, a
contradiction. Hence, a5 = 1 and so a™%, = asas.
As in Step 3, we get ay = 1 and so a3, = ag.

Step 5: Next, we show

CW2 (A,Q) - A,5/ &) CW2 (AQ) - A,7/. (561)
Let a_y and a3 be as in Step 4. By (I), we have A_5 C Cyw,(A_3). We show
Cya_,,(A_2) = 1, to get the opposite inclusion. Let a_7 € Cy_,(A_3). Then 1 =

[a_yz,ag]”2_1 = la_p,a_y]. Suppose a_y # 1. Then X7 = (a_7, A7) < Cla_y/),
since [A7, A_y] = 1 by (I). As in Step 3, this leads to a contradiction. Hence,
Cw,(A_3) = A_5. Now, we turn to the centralizer of Ay in Wy. By (I), we have
A_7 C Cw,(Az). We prove Cy _,(A2) = 1, to get the opposite inclusion. Let
a_s € Cy__,(Ag). Then 1 = [a_5,a_y/|" = [a_s, as]. Suppose a_s # 1. Then we
get [ X5, Ay] = 1. By 3.6, this yields [A5, Ao] = 1. Thus, X5 = (45, a_5) < C(A,),
a contradiction to [Ay, A_g] # 1. Therefore, C4__,(A2) = 1. All in all, we obtain
(5.6.1), since Wy is Xop-invariant.

Step 6: Now, we prove [A_g, Ag] = [A_7, Ay] = 1.

By (5.6.1), we have [A_g, Ag] + 2> [A_w, Ay], since G(J) is of type Cy by
assumption. We assume [A_5/, Ag] # 1 # [A_7, Ay], and lead this to a contradic-
tion. Suppose [A_5, As] # 1 # [A_7, Ay]. Then Cy_,(As) = Ay . Since otherwise
there exists an ap € A% with [@7, Ag] = 1. This implies 1 = [[A_g, Ag],a7/]" =
[[A,7/,A4],/d7/]. Thus, Xl = <[A,7/,A4],A,1> < 0(57/) and so X7 = <67/,A,7> <
C(Ay). By Lemma 3.6, this yields [A_7, A4] = 1, contradicting our assumption.
Therefore, Cyy_,(Az) = As. But this contradicts Ca_,(Az) # 1 by assumption.

Further, Cy4,,(Ag) = 1 or 1.2 (B) holds by 5.5, as [Ay, A_4] = 1 by Step 6.
In the first case we can repeat the above argument for & = 6 and § = 4. Thus,
A_y 5 Ay and [Ay, Ag) = 1 = [A_y, A_g]. Together with Step 6, this yields
[A_g, Ag) =1 =[A_3, A_g], which leads to 1.2 (B) by 5.5. O

6. Proof of 1.2 — main part II

In this section we assume that 1.2 (B) does not hold. We will show that then
1.2 (A) holds. By Section 4 and Section 5 we may, and do, suppose in view of
the proof of 1.2 that G(J) is of type Cy and that not all root subgroups A,,
a € J, commute with all root subgroups Ag, 5 € d \ ®. Further, we assume
Ca,(A-y) = 1 and C4 ,(As) = 1 for o € J, where W, = Az A, using the
notation of (3.4.1). First, we will prove that A3* = Aguwa for each n,, a € J,
and for each 8 € ®, where w, denotes the reflection along o on ®. Further, we
will show the analogous conjugation properties for all n,, a € ® \ J. Hence, the
assumptions of [10, Theorem 1] are satisfied for G with respect to 2F,. Thus, G
is of type 2F} under these circumstances.

To begin with, we show the following
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Lemma 6.1. Using the notation of (3.4.1), let W, = Ag A, for oo € J. Then
the following hold:

(1) Cw.(Aa) = Ag < Cw,(A-a) = Ay;
(2) [WQ,A_Q] = AW’ and [Wa,Aa] = Ag/,’
(3) Ca_(Ag)=1=Cy, (A)).

Proof. We have Cw, (A,) = Ag, since on the one hand, [Ag,A,] = 1 by (I)
and on the other hand, Cy_,(4,) = 1. Analogously, we obtain Cy, (A_a) = A,
Thus, (1) follows, since W, is X,-invariant.

By the commutator relations in (I), the group Az [Ag, A_,] is X,-invariant. Thus,
A,y/ = Agf" S Aﬁ/[Aﬁ/,A,a] by (1) Therefore, Aﬁ'A’Y' = Ag/[Ag/,A,a] and so
Ay =1[Ap,A_] = [Wa, A_s]. By symmetry, (2) follows.

We assume Cy__ (Ap) # 1, and lead this to a contradiction. Suppose there exists
an a_, € CAu_a(Ag/). Then X, = (a_q,As) < C(Ap), since [Ay, Ag] = 1 by
(I). But this contradicts Cg(A_,) = 1. Thus, Cs__(Ag) = 1, and (3) holds by
symmetry. U

Lemma 6.2. For all n,, o€ J, and 3 € ®, we have A% = Apuwa .
Proof. Let, without loss, a = —2.

Step 1: By 6.1(1), we get A7 <2+ Ay respectively A_g « =+ A_. By 6.1(1) and
(2), this implies

A,ll = [147/7 A,4] & [A5’7 A,g] == Ag/ (621)
and
Aig/ = [A,g)/, Ag] & [A,7/’ A4] == Al/a (622)

since G(J) is of type Cy by assumption.
Step 2: Next, we show

Cy (A1) =A 1AgA; AgAs. (6.2.3)
By (I), we get A_1AgA7A¢As C Cy_,(A_1/). To obtain the opposite inclusion,
we prove Cy,a,(A_1) = 1. Let ay € Ay and a3 € Az with [aga3, A_y] = 1.
Then we have 1 = [aya3,a_y1/| = [a4,a_1/]"[as,a_y/] for each a_yy € A_y. Thus,

las, A_y/] < Az, since [Ag, A_y] < Az and [A7, As] = 1. Suppose az # 1.
Then A 1/ A7 is (a3, A_3) = Xs-invariant. Combining 3.5 and 3.6, we obtain
[Ag, A_s/] = 1, a contradiction to Cy_,,(Ag) = 1. Further, ay = 1, since otherwise
we get a contradiction to 6.1(3). Hence, (6.2.3) holds.

Step 3: We prove

As <2 A, (6.2.4)
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and
A 525 A - (6.2.5)

Arguing analogously as in Step 2, we also have Cy_,(Ag) = A7 AgA5 A4 A3 and so
Cy ,(A_1) = A_1AgA7 AgAs <2 Oy, (Asy) = A7 AgAsALAs by (6.2.1). Further,
C’CU72(A3,)(A_1/) = A;AgAs, since otherwise the same argumentation as in (6.2.3)
yields a contradiction. Analogously, Cc, (4 (Ay) = A7AgAs. Therefore,
A7 AgAs is invariant under ng by (6.2.1). Asin (6.2.3), this implies C'u, 4,45 (A1) =
As and Ca,a44,(A_gy) = A7, Thus, (6.2.4) holds by (6.2.2). By symmetry, we
also have (6.2.5).

We get CCU72(A_1,)(A_3/> = A_1A8A7 <n—2> CCU72(A3/)(A1’) = A5A4A3, ar-
guing as in Step 3, and so Cp_,aua,(A_s) = A1 <2 Cyan,(A_m) = As.
Analogously, we obtain A_; <=+ A;.

Hence, using that G(J) is of type Cy by assumption, we obtain Aj? = Aguw,
for each 8 € ®. O

Next, we will show a result analogous to 6.2 for each root in @\ J.

Lemma 6.3. We have Ay* = Agua for all n,, a € ®\ J, and all § € P.

Proof. Without loss, we prove the appropriate conjugation relations for the root
—1.

Step 1: We use the notation of (3.4.2). First, we show Cj, (Ay) = Ag A, Ay and
Cu,(A_y) = Ay AL A, for each oo € @\ J. Without loss, let @ = —1. By Step
2 in the proof of 6.2, we have Cy;_,(A_1/) = AnAgAs . By symmetry, we also get
Cr_ (Ay) = A5 AyAg.

Step 2: We show

Ay 5 Ay (6.3.1)
and
Ay & Ay (6.3.2)

By Step 1, we have A7} < Cy (Ar) = Az Ay Ay respectively Ay <Cy (A_y) =
A7 AgAs. Thus, using the nilpotence argument, A7} < Ay Ay respectively Ay <
A7z Ag, as [ X5, Xq] = 1 by (I). Analogously, A", < A_,A_g respectively A™,, <
A_p A .

Let a_ya_y € (A™,)* with a_y € A_y and a_4 € A_, and let apag € (AL )F
with a7 € A7 and ag € Ag. Then

1 = la_gya_y,apag) = [a_y, apag]®*[a_y, apag]
= ([a,g,/, &6] [a/73’7 a7’]a6>a74 [CL,4, aﬁ] [a747 a7’]a6

= la_y,aglla—s, ag)[a_q, ar],
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since [A_7, Ag|™ = 1 by (I). Therefore, [a_4,a6] € A_y/, as [A_g, Ag]) < A_y, and
[A_4, Az] < A_y. On the other hand, we get [a_4,a6] € A_2As by (I). By the
Dedekind identity and Lemma 3.1(3), we obtain

A NAAs < (A A 1 NA QAN (A AsN A o Ag)
A 5(A A N A)NAg(A 1 AgN Ay)
AU sNAg) NA(U o2NAL)=ANAg=1.

(a4, ag]

VAN VAN

We show that [a_4, ag] = 1 implies a_4 = 1 = ag.

Suppose a_4 # 1 # ag. Then Xy = (a_4, Ay) < C(ag), a contradiction, since
G(J) is of type Cy by assumption. Therefore, it suffices to lead the case to a
contradiction, in which one of the elements is 1 and the other one is different from
1. Without loss, let a_4 = 1 and ag # 1. Then 1 = [a_3, arag] = [a_3,a6] and
so X¢ = (as, A_s) < C(a_3), contradicting C4__,(As) = 1. (We mention that
a_3 # 1, because a_gay = a_z € (14’117,)ti by assumption.) Thus, a_4 = 1 = ag.

Hence, A3' < Az and A™, < A_y. By symmetry, this yields (6.3.1) and
(6.3.2).

Step 3: We prove

Ag <25 A, (6.3.3)
and
Ay &5 A, (6.3.4)

By (6.3.1), we get Cy_, (Asy) <= Cy_, (A7), since U_; is Xj-invariant. Further,
CU_l(Agl) = A7A6A5A4A3A2, (635)

since we have A;AgAsA4A3Ay C Cy_,(As) by (I), and the opposite inclusion fol-
lows from Cy,(As) =1 by 6.1(3). Thus, (6.3.5) holds. By symmetry, we also get
Cy_, (A7) = AgA7AgAs AyAs. This implies Ayt < (C’Ufl(Aw))m = Cy_,(Ay) =
A7A6A5A4A3A2. B/[OI'GOVGI‘7 [Ag, A_l] =1 and so Agl S OUfl(A1’>- All in alL we
obtain Ag' < Ca,a454,454,(A1). Next, we prove

Caragasasagas (Arr) = AsAgAz A (6.3.6)

By (I), we have AsA4A345 C Ca,a4454,454,(A1).  Therefore, it remains to
show that Cy,a,(A1) = 1 holds. Let aras € Cy,a,(Ar) with a; € A; and
ag € Ag. Then we have 1 = |ayag,a1/| = |ar, a1/]*ag, ar] for each a; € Ay,
Thus, [a7, Ay/] < Ag, since [Ag, A1/] < Az and [As, Ag] = 1. Suppose a; # 1.
Then As Ay is (a7, A_7) = Xz-invariant. Combining 3.5 and 3.6, this yields
[A4, A_7] = 1, contradicting Cy_,,(A4) = 1. Further, ag = 1, since otherwise we
get a contradiction to 6.1(3). Hence, (6.3.6) holds.

Therefore, Ag' < A;A4A3A5, and an application of the nilpotence argument
yields Ag* < AyA3A,, since [ X5, X1] = 1 by (I). Thus, AZ* < Ca,a,4,(A_7/), since
[Ag, A_gy] =1 by (I) and A™,, = A_ by (6.3.2). This implies Ag' < A3A,, as
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[A3As, A_7] = 1 by (I) and Cyu,(A_7) = 1 by 6.1(3). Finally, we will conclude
AQ < A,

Suppose there exists an ag € Ag with ag' = agas for some ay € Ay and for
some as € Aﬂg. Then A_ = A", > [as, A_5]™ = [azas, A_5]. This implies
las, A_5| < A_7, since [Ag, A_y] < A_7 and [A_7, As] = 1. Therefore, A_7A_s5
is (a3, A_3) = Xs-invariant and so [ X3, A_5] = 1 by 3.5. Thus, [A_s, A_3] =1 by
3.6, contradicting Cy_,, (A_g) = 1. Therefore, Ag* < Ay. Analogously, A3 < As.
Hence, (6.3.3) holds, and, by symmetry, we also get (6.3.4).

Step 4: We prove

Ag A (6.3.7)
and
A, & A, (6.3.8)

We obtain CMil(Ag) = A71A6A5/A4 & OM,I(AQ) = A6A5/A4A3/, since CAB,(Ag)
=1= CA7,(A2>, A71A6A5/A4 S CM_I(Ag) by (I), A6A5/A4A3/ S CM_1 (AQ) by (I)
and Ag <2 Ay by Step 3. From this we analogously obtain Con_,(45)(A2) =
AgAg Ay CCM,l(Az)(At%) = AgAs Ay, ie. AgAs Ay is invariant under n;. Fi-
nally, we show that Caga ,4,(A—2) = As and Caga,,4,(A—s) = Ay By (I), we get
Ag € Cagaya,(A—z). To obtain the opposite conclusion, we show Cy_4,(A_2) =
1. Let ayas € Ca,a,(A_3) with ay € Ay and ay € Ay. Then we have 1 =
las ag, a_o] = [as, a_s]*[ay, a_s] for each a_y € A_5. This implies [ay4, A_5] < Ay,
since [As, A_s] < Ay and [A7, Ag] = 1. Suppose ag # 1. Then A A 1/ Ay is
(a4, A_y) = Xy-invariant. Thus, A™, < AgNU_g = 1 by 3.1(3), a contradic-
tion. Moreover, as = 1, since Cy,(A_2) = 1. Analogously, Cg,,4,(A—g) = Ay.
Hence, we get (6.3.7), as AgAs Ay is invariant under ny and by (6.3.4). By sym-
metry, we also have (6.3.8).

Step 5: By Step 2, Step 4 and 6.1(2), we have
Ay = [Ag, Ay] 5 [Ag, Ap] = Ay

Finally, we show

A, & A (6.3.9)
and
A - A (6.3.10)

By Step 3, we have CU_l(AW) = A8A7A6A5A4A3 and CU_1 (Ag/) = A7A6A5A4A3
As.

Further, we obtain from this C¢, ( a,)(Az) = Coy_( A (Az) = A7AgAs Ay As,
ie. M = A;AsA5A4 A3 is invariant under ny. Thus, arguing as in Step 3, we
get Cp(A_y) = A7AgAs and Cy(Ay) = AsA4As. Using the nilpotence argu-

ni

ment, this implies A7 A4 <« A4Az. By (6.3.2), we obtain Ay = Cy,4,(A_5) <



H. Oueslati: On Groups with Root System of Type 2F} 45

CA4A3 (A,7/) = 1437 because [A7,A,3/] =1= [Ag, A,7/] by (I) and CAG (A,-g,/) =1=
Ca,(A_7) by 6.1(3). Thus, (6.3.9) holds. By symmetry, we also obtain (6.3.10).
Hence, we have Aj' = Agw, for each 8 € ®. O

By 6.2 and 6.3, condition (III) is satisfied, if 1.2 (B) does not hold. Hence, G is
in this case of type ?F} by [10, Theorem 1].

Finally, we analyse 1.2 (A) in detail. We have already seen in Section 4 that
the A,, a € J, are all elementary Abelian 2-groups in this case. By 6.1, an
application of 2.1(7) to the operation of X, on W,, a € J, yields that the Ag,
fed \ @, are also elementary Abelian 2-groups. The restrictions of the surjective
homomorphism ¢: G — G described on page 26 to root subgroups A, are injective
(since kero < H, where H := <Hr|r € Ci>> with H, := Ny, (A,) N Nx, (A_,)).
Since a root subgroup of a Moufang octagon is of exponent at most 4, we have
ozfly = 1for each a, € A, withy € @\ J. Allin all, we get a far reaching conformity
with the properties of root subgroups corresponding to Moufang octagons (see
[17]).

Acknowledgments. This paper represents a part of my PhD thesis. I thank
Professor F. G. Timmesfeld for leading me to the problem and for many helpful
hints.

References

[1] Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 4-6. Springer, 2002.
Zbl 0983.17001

[2] Humphreys, J. E.: Reflection Groups and Cozeter Groups. Cambridge Uni-

versity Press, Cambridge 1990. Zbl 0768.20016
[3] Kurzweil, H.; Stellmacher, B.: Theorie der endlichen Gruppen. Springer,
1998. Zbl 0902.20006
[4] van Maldeghem, H.: Generalized Polygons. Monogr. Math. 93, Birkhauser,
1998. Zbl 0914.51005
[5] Miiller, C.: On the Steinberg presentation for Lie-type groups of type Cy. J.
Algebra 252 (2002), 150-160. Zbl 1016.20006
[6] Miiller, C.: Groups with root system of type Go. J. Algebra 294 (2005), 552—
568. Zbl 1102.20025
[7] Oueslati, H.: On groups with root system of type Gy. J. Algebra 319 (2008),
187-204. Zbl pre05235120
[8] Timmesfeld, F. G.: Structure and Presentations of Lie-type groups. Proc.
Lond. Math. Soc. 81 (2000), 428-484. Zbl 1028.20034
[9] Timmesfeld, F. G.: Abstract Root Subgroups and Simple Groups of Lie-Type.
Monogr. Math. 95, Birkhauser, 2001. Zbl 0984.20019

[10] Timmesfeld, F. G.: On the Steinberg-Presentation for Lie-Type Groups. Fo-
rum Math. 15 (2003), 645-663. Zbl 1054.20007



http://www.emis.de/MATH-item?0983.17001
http://www.emis.de/MATH-item?0768.20016
http://www.emis.de/MATH-item?0902.20006
http://www.emis.de/MATH-item?0914.51005
http://www.emis.de/MATH-item?1016.20006
http://www.emis.de/MATH-item?1102.20025
http://www.emis.de/MATH-item?05235120
http://www.emis.de/MATH-item?1028.20034
http://www.emis.de/MATH-item?0984.20019
http://www.emis.de/MATH-item?1054.20007

H. Oueslati: On Groups with Root System of Type 2Fy

Timmesfeld, F. G.: Groups with root system of type B;, C; or Fy. J. Algebra

284 (2005), 737-754. Zbl 1136.20027
Timmesfeld, F. G.: Steinberg-type presentation for Lie-type groups. J. Alge-
bra 300 (2006), 806-819. Zbl pre05047189
Tits, J.: Buildings of Spherical Type and Finite BN -Pairs. Lect. Notes Math.
386, Springer, 1974. Zbl 0295.20047
Tits, J.: Endliche Spiegelungsgruppen, die als Weylgruppen auftreten. Invent.
Math. 43 (1977), 283-295. Zbl 0399.20037
Tits, J.: Non-existence de certains polygones généralisés I1I. Invent. Math. 51
(1979), 267-269. Zbl 0429.20029
Tits, J.: Moufang octagons and the Ree groups of type 2Fy. Am. J. Math.
105 (1983), 539-594. Zbl 0521.20016
Tits, J.: Moufang polygons. I: Root data. Bull. Belg. Math. Soc.—Simon Stevin
1 (1994), 455-468. Zbl 0811.51006
Weiss, R.: The nonexistence of certain Moufang polygons. Invent. Math. 51
(1979), 261-266. Zbl 0409.05033

Received October 16, 2007


http://www.emis.de/MATH-item?1136.20027
http://www.emis.de/MATH-item?05047189
http://www.emis.de/MATH-item?0295.20047
http://www.emis.de/MATH-item?0399.20037
http://www.emis.de/MATH-item?0429.20029
http://www.emis.de/MATH-item?0521.20016
http://www.emis.de/MATH-item?0811.51006
http://www.emis.de/MATH-item?0409.05033

