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Abstract. Let Φ̃ be a root system of type 2F4, and let G be a group
generated by non-trivial subgroups Ar, r ∈ Φ̃, satisfying some gen-
eralized Steinberg relations, which are also satisfied by root subgroups
corresponding to a Moufang octagon. These relations can be considered
as a generalization of the element-wise commutator relations in Cheval-
ley groups. The Steinberg presentation specifies the groups satisfying
the Chevalley commutator relations. In the present paper some sort of
generalized Steinberg presentation for groups with root system of type
2F4 is provided. As a main result we classify the possible structures of
G.

1. Introduction

Let B be an irreducible, spherical Moufang building of rank l ≥ 2, A an apartment
of B and Φ the set of roots of A. Further, for r ∈ Φ let Ar be the root subgroup
of Aut(B) in the sense of Tits (see [9, I,4 and II,5]). We call G := 〈Ar | r ∈ Φ〉
ethe Lie-type group of B, where Aut(B) denotes the group of type preserving
automorphisms of B. Using the geometric realization of the Coxeter group of A
(see [9, I (4.6) and p. 125–126]), one can identify Φ with a root system of type
Al, Bl, Cl (l ≥ 2), Dl (l ≥ 4), El (6 ≤ l ≤ 8), F4 in the sense of Humphreys [2] or
a Coxeter system of type I2(m). Moreover, we have m ∈ {3, 4, 6, 8} by [15] and
[18], if B is of type I2(m). We stress that there is no Moufang building of type
H3 respectively H4 by [14, (3.7)] (see also [13, p. 275]). Furthermore, Φ can be
extended to a possibly non-reduced root system Φ̃, and new “root subgroups” Ar
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can be introduced as subgroups of the “original” ones for r ∈ Φ̃\Φ. For C̃l = BCl

see [1, p. 233]. Further, for the definition of 2F4 see [16]. For 2F4 we use the
notation Φ̃ = 2F4 and set Φ1 := {a ∈ Φ̃|a/(1 +

√
2) ∈ Φ̃} and then Φ := Φ̃ \ Φ1.

We set

R :=

{
N ∪ {0}+ (N ∪ {0})

√
2 for Φ̃ = 2F4

N otherwise

and

Φ̂ :=

{
Φ for Φ̃ = 2F4

Φ̃ otherwise.

Further, we denote the reflection along r on Φ̃ by wr for r ∈ Φ̂. Then the following
hold:

(I) [Ar, As] ≤
〈
Aλr+µs | λr + µs ∈ Φ̃, λ, µ ∈ R, λ > 0, µ > 0

〉
for r, s ∈ Φ̃ with

r 6∈ R− · s. (See [8, (3.3)] and [17, (6)].)

(II) Xr := 〈Ar, A−r〉 is a rank one group with unipotent subgroups Ar and A−r

for r ∈ Φ̂. (See [9, I (4.12)(3)] and [8, (3.2)].)

(III) Let r ∈ Φ̂ and nr ∈ Xr with Anr
r = A−r respectively Anr

−r = Ar. Then
Anr

s = Aswr for s ∈ Φ̃. (See [9, II (5.11)], [17, (6)] respectively [16, (1.4)].)
(The existence of nr is guaranteed by 2.1(4).)

Let G be an arbitrary group generated by subgroups Ar, r ∈ Φ̃, where Φ̃ is a root
system of type Al, Bl, Cl, BCl (l ≥ 2), Dl (l ≥ 4), El (6 ≤ l ≤ 8), F4, G2 or 2F4.
Suppose the Ar satisfy (I)–(III). Further, assume that A2r is a subgroup of Ar, if
2r ∈ Φ̃ for r ∈ Φ̃, respectively A(

√
2+1)r ≤ Ar, if (

√
2 + 1)r ∈ Φ̃ for r ∈ Φ̃. Then

it has been proved in [10, Theorem 1] that there exists an irreducible, spherical
Moufang building B with “extended” root system Φ̃ and there is a surjective
homomorphism σ : G → G, where G is a Lie-type group of B, such that the Ar

with r 6= 2s and r 6= (
√

2+1)s for all s ∈ Φ̃ are mapped onto the root subgroups of
G corresponding to some apartment of B and ker σ ≤ Z(G). In this situation we
call G a group of type B or Φ̃. We mention that the assumptions of [10, Theorem
1] are not satisfied by Φ̃ = 2F4, but the assertion holds in this case, too, since
in the proof it has been made use of the condition, that Xα is a rank one group,
only for α ∈ Φ. Now, Timmesfeld’s aim was to determine the structure of groups
satisfying (I) and (II). This can be considered as a generalization of the Steinberg
presentation of Chevalley groups. For a survey of his research work we refer to
[12, Introduction]. Before we state his main result [12, Theorem 1], we establish
some notation. Let G be a group, {Gi | 1 ≤ i ≤ n} a set of subgroups of G with
G = 〈Gi | 1 ≤ i ≤ n〉 and [Gi, Gj] = 1 for i 6= j. Then we call G a central product

of the subgroups Gi, 1 ≤ i ≤ n, and use the notation G = ∗n

i=1 Gi. Further, we
call the Gi central divisors of G.

Theorem 1.1. Let Φ̃ be a root system of type Al, Bl, Cl, BCl (l ≥ 2), Dl (l ≥ 4),
El (6 ≤ l ≤ 8) or F4. Further, let G be a group generated by subgroups Ar, r ∈ Φ̃,
satisfying (I) and (II). Let

Ψ = {r ∈ Φ̃ | 2r 6∈ Φ̃} ∪ {s ∈ Φ̃ | 2s ∈ Φ̃ and As 6= A2s}.
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Then Ψ = ∪̇Ψi, i ∈ I, such that the following hold:

1. Ψi carries the structure of a root system of one of the types An, Bn, Cn,
BCn (n ≥ 2), Dn (n ≥ 4), En (6 ≤ n ≤ 8) or F4 or Ψi = {±α} respectively
Ψi = {±α,±2α} for some α ∈ Ψ. Moreover, if Ψi is of type En, then Ψ = Φ̃
is of type El and n ≤ l.

2. Let G(Ψi) := 〈Ar | r ∈ Ψi〉. Then G is the central product of the G(Ψi) and
either G(Ψi) = Xα (if Ψi = {±α} respectively Ψi = {±α,±2α}) or there
exists a Moufang building Bi with “extended” root system Ψi such that G(Ψi)
is of type Bi.

A result for Φ̃ = G2, analogous to 1.1, has been proved in [7]. In the present paper
we solve the remaining problem when Φ̃ is of type 2F4, i.e. Φ̃ = {±r2i,±r2i−1,±
r(2i−1)′ | i ∈ {1, 2, 3, 4}}. To simplify notation, we write ±k instead of ±rk

respectively ±k′ instead of ±rk′ .

Theorem 1.2. Suppose G is generated by non-trivial subgroups Aα, α ∈ Φ̃, sat-
isfying (I) and (II) with Φ̃ of type 2F4. Let J := {±2i | i ∈ {1, 2, 3, 4}}. Moreover,
assume that Aα′ is a subgroup of Aα for α ∈ Φ \ J . Then one of the following
holds:

(A) G is of type 2F4.

(B) G = Xα ∗ CG(Xα) for some α ∈ Φ and Xβ ≤ CG(Xα) for β ∈ Φ \ {±α} or
G = G(J) ∗G(Φ̃ \ J) is of type C2 × C2.

2. Preliminaries

In this section we summarize preliminaries which are relevant to the proof of
1.2. Regarding commutators we use the notation of [3]. We will often use the
Dedekind identity in the following slightly modified sense: Let G be a group,
X ≤ G, 1 ∈ U ⊆ X and 1 ∈ A ⊆ G. Then U(A ∩ X) = UA ∩ X. Rank
one groups have been introduced by Timmesfeld. A group X generated by two
different nilpotent subgroups A and B satisfying: for each a ∈ A] there exists
a b ∈ B] with Ab = Ba and vice versa, is called a rank one group. We call the
conjugates of A (and B) unipotent subgroups of the rank one group X. For the
convenience of the reader, we will in the following collect some properties of rank
one groups which are needed for the proof of 1.2. Proofs of these properties are
given in [9, Chapter I].

Theorem 2.1. Let X = 〈A, B〉 be a rank one group with unipotent subgroups A
and B.

(1) Let σ : X → σ(X) be a homomorphism with σ(A) 6= σ(B). Then

σ(X) = 〈σ(A), σ(B)〉

is a rank one group with unipotent subgroups σ(A) and σ(B).

(2) We have NA(B) = 1 = NB(A).
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(3) For C, D ∈ AX with C 6= D and d ∈ D] we have X = 〈C, D〉 = 〈C, d〉.
(4) X acts doubly transitively on the set AX . In particular, there exists an x ∈ X

with Ax = B and Bx = A. (We use the notation A
x←→ B for this.)

(5)
〈
aX

〉
is not nilpotent for a ∈ A]. In particular, X is not nilpotent.

(6) Suppose X acts on the group M such that A or B acts trivially on M . Then
X acts trivially on M .

(7) Suppose A and B are elementary Abelian p-groups for some prime p, and
A acts on a ZX-module, say V , with V = [V, A] ⊕ [V, B]. Then V is an
elementary Abelian p-group.

In the following four sections we will prove Theorem 1.2. The proof will mainly
consist of extensive commutator calculations combined with applications of the
theory of rank one groups.

3. Notation and basic results

To begin with, we introduce some notation.

Let Φ̃ = {±r2i,±r2i−1,±r(2i−1)′ | i ∈ {1, 2, 3, 4}} be a root system of type 2F4.

1
1′

28
3

3′46

−1−1′

5

5′

7

7′

−8−7

−7′−6−4−3′
−5

−5′

−3−2

Assume G is generated by non-trivial subgroups Aα, α ∈ Φ̃, satisfying (I) and (II)
with Φ̃ = 2F4. Further, suppose that Aα′ is a subgroup of Aα for α ∈ Φ \ J . The
set J = {±2i | i ∈ {1, 2, 3, 4}} is a root subsystem of Φ̃ of type C2. For α ∈ Φ let

Uα := 〈Aβ | β ∈ Φ, α < β < −α〉 ,

where α < β < −α means that β is between α and −α clockwise. We notice that
the commutator relations in (I) provide the identity Uα =

∏
α<β<−α Aβ, where the

roots are ordered “from α to −α”. Notice that 2.1(4) guarantees the existence of

nα ∈ Xα with Aα
nα←→ A−α for each α ∈ Φ̂.

The next lemma is a direct consequence of (I) and (II).

Lemma 3.1. Let α ∈ Φ. Then:
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(1) Uα and U−α are Xα-invariant.

(2) AαUα and A−αUα are nilpotent.

(3) Aα ∩ Uα = 1 = A−α ∩ Uα. In particular, Aβ ∩ Aγ = 1 for β ∈ Φ̃ and
Φ̃ 3 γ 6∈ R+ · β.

Proof. Transferring the proof of [10, (2.1)] to 2F4, the result follows. �

Nilpotence argument 3.2. Let α, γ ∈ Φ and β ∈ Φ̃ with α < β 6= γ < −α and
[Xγ, Xα] = 1. Further, let Âβ be a non-empty subset of Aβ with Ânα

β ⊆ AγUγ.

Then Ânα
β ⊆ Uγ.

Proof. Transfering the proof of [7, (3.3)] to 2F4, the claimed result follows. �

Remark 3.3. We can conclude the analogous assertion for Ânα
β ≤ AγU−γ.

Lemma 3.4. Suppose there exist some roots α, β ∈ Φ̂ with [Xα, Aβ] = 1. Then

there is no a−β ∈ A]
−β with anα

−β ∈ Uβ or anα
−β ∈ U−β.

Proof. Without loss, suppose there exists an a−β ∈ A]
−β with anα

−β ∈ Uβ. Then we
have Xnα

β = 〈Aβ, a−β〉nα ≤ 〈Aβ, Uβ〉 = AβUβ, a contradiction to 3.1(2) and 2.1(5).
�

Let α ∈ J and β′, γ′, δ′, ε′ ∈ Φ̃ \ Φ with α < β′ < γ′ < δ′ < ε′ < −α. Then we set

Wα := Aγ′Aδ′ . (3.4.1)

For example, W−2 = A7′A5′ . The group Wα lies in the center of Uα and is Xα-
invariant by (I). Let α ∈ Φ \ J , β′, δ′, η′ ∈ Φ̃ \ Φ and γ, ε ∈ J with α < β′ < γ <
δ′ < ε < η′ < −α. Then we set

Mα := Aβ′AγAδ′AεAη′ . (3.4.2)

For example, M−1 = A7′A6A5′A4A3′ . We notice that Mα is an Abelian, Xα-
invariant subgroup of Uα.

Lemma 3.5. For α ∈ Φ \ J let Mα = Aβ′AγAδ′AεAη′ with β′, δ′, η′ ∈ Φ̃ \ Φ,
γ, ε ∈ J and α < β′ < γ < δ′ < ε < η′ < −α. Suppose Aβ′Aδ′ (respectively
Aδ′Aη′) is Xα-invariant. Then [Xα, Aβ′ ] = 1 (respectively [Xα, Aη′ ] = 1).

Proof. Without loss, let α = −1. Suppose A7′A5′ is X1-invariant. Then, using the
nilpotence argument, we obtain An1

7′ = A7′ and so [X1, A7′ ] = 1, since [A7′ , A−1] =
1 by (I). So the claimed result follows by symmetry. �

Lemma 3.6. Let Mα be as in (3.4.2).
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(1) Suppose [Xα, Aβ′ ] = 1. Then [Aα, Aγ] = 1 and [Aα′ , Aε] = 1. If further
[Aγ, A−α′ ] = 1, then [Xα, Mα] = 1.

(2) Suppose [Xα, Aη′ ] = 1. Then [A−α, Aε] = 1 and [A−α′ , Aγ] = 1. If further
[Aε, Aα′ ] = 1, then [Xα, Mα] = 1.

Proof. Without loss, let α = −1. Suppose

[X1, A7′ ] = 1. (3.6.1)

This yields [A−1, A6]
n1 ≤ An1

7′ ∩ [A1, M−1] ≤ A7′ ∩U7 = 1 by (I) and 3.1(3). Thus,

[A−1, A6] = 1. (3.6.2)

Moreover, [A−1′ , A4]
n1 ≤ An1

7′ ∩ [A1, M−1] ≤ A7′ ∩ U7 = 1 by (I) and 3.1(3), as
An1

7′ = A7′ by assumption. This means

[A−1′ , A4] = 1. (3.6.3)

If further,

[A6, A1′ ] = 1, (3.6.4)

then we have X1 = 〈A−1, A1′〉 ≤ C(A6) by (3.6.2). This yields

[A4, A−1]
n1 ≤ (A7′A6A5′)

n1 ∩ [M−1, A1] = A7′A6A5′ ∩ [A7′A6A5′A4A3′ , A1]

= A7′A6A5′ ∩ [A4, A1] ≤ A7′A6A5′ ∩ A3′ ≤ U−3 ∩ A3′ = 1

by (3.6.1), (I) and 3.1(3). This implies X1 = 〈A−1, A1′〉 ≤ C(A4), as [A4, A1′ ] =
1 by (I). So we have [M−1, A1′ ] = 1 by (I), (3.6.1) and (3.6.4). This shows
[M−1, A

n1

1′ ] = 1. As (1 6=)An1

1′ ≤ A−1, we get X1 = 〈An1

1′ , A1〉 ≤ C(A3′), since
[A3′ , A1] = 1 by (I). Hence, we obtain [X1, M−1] = 1, as required. So the claimed
result follows by symmetry. �

Lemma 3.7. Let Uα = AβAγAδAεAηAκAµ with α, γ, ε, κ ∈ J ; β, δ, η, µ ∈ Φ \ J
and α < β < γ < δ < ε < η < κ < µ < −α.

(1) Suppose [Xα, Aβ]=1. Then we have [Aα, Aδ]=1. If moreover G(J)=∗τ∈J Xτ

and [Wα, Xα] = 1, then AβAγAδAεAηAκ ⊆ CUα(Aα).

(2) Suppose [Xα, Aµ] = 1. Then [Aη, A−α] = 1. If furthermore G(J) =∗τ∈J Xτ

and [Wα, Xα] = 1, then AγAδAεAηAκAµ ⊆ CUα(A−α).

Proof. Without loss, let α = −2. Suppose [X2, A−1] = 1. Then

[A−2, A7]
n2 ≤ An2

−1′ ∩ [A2, U−2] = A−1′ ∩ [A2, U−2] ≤ A−1′ ∩ U−1 = 1

by (I) and 3.1(3). That is,

[A−2, A7] = 1. (3.7.1)
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Suppose G(J) =∗τ∈J Xτ and [W−2, X2] = 1. Then repeated use of the Dedekind
identity and Lemma 3.1(3) yield

[A5, A−2]
n2 ≤ (A−1′A8A7′)

n2 ∩ [U−2, A2]

= A−1′A8A7′ ∩ [A−1A8A7A6A5A4A3, A2]

= A−1′A8A7′ ∩ [A7A6A5A4A3, A2]

≤ A−1′A8A7′ ∩ U−1 ∩ U8 ∩ U7

= (A−1′ ∩ U−1)A8A7′ ∩ U8 ∩ U7

= (A8 ∩ U8)A7′ ∩ U7 = A7′ ∩ U7 = 1,

since (A−1′A8A7′)
n2 = A−1′A8A7′ by assumption. Together with (3.7.1), this

implies A−1A8A7A6A5A4 ⊆ CU−2(A−2), since G(J) is a central product of rank
one groups by assumption. Then the result follows by symmetry. �

Lemma 3.8. Suppose [Xα, Uα] = 1 and A−βA−γA−δA−εA−ηA−κ ⊆ CU−α(A−α) or
A−γA−δA−εA−ηA−κA−µ ⊆ CU−α(Aα) for some α ∈ Φ, where Uα = AβAγAδAεAη

AκAµ with α, β, γ, δ, ε, η, κ, µ ∈ Φ and α < β < γ < δ < ε < η < κ < µ < −α.
Then Xα is a central divisor of G.

Proof. Suppose [Xα, Uα] = 1 and A−γA−δA−εA−ηA−κA−µ ⊆ CU−α(Aα). Then

there exists an a−β ∈ A]
−β with [a−β, Aα] = 1. Since otherwise

Anα
−β ≤ CU−α(Aα) = A−γA−δA−εA−ηA−κA−µ ⊆ U−β,

contrary to 3.4.
Now let a−β ∈ A]

−β with [a−β, Aα] = 1. Then Xβ = 〈Aβ, a−β〉 ≤ C(Aα), as
[Aβ, Aα] = 1 by (I). Thus, [Aα, U−α] = 1. This implies [Xα, U−α] = 1 by 2.1(6),
since U−α is Xα-invariant. Hence, Xα is a central divisor of G, as required. �

4. The structure of G(J)

In this section we will determine the possible structures of G(J). Further, we will
describe the influence of the structure of G(J) on the structure of G(Φ̃).

As already mentioned, J is a root subsystem of Φ̃ of type C2. Thus, G(J)

satisfies the assumptions of [11, Corollary 3]. This yields that G(J) = ∗α∈J Xα

or G(J) is of type C2, or there exists a β ∈ J such that Xβ is a central divisor
of G(J) and G(J \ {±β}) is of type A2. The following lemma will allow us to
exclude the last possibility.

Lemma 4.1. One of the following holds:

(1) G(J) =∗α∈J Xα.

(2) G(J) is of type C2.
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Proof. By [11, Corollary 3], it suffices to prove that (1) holds if Xα is a central
divisor of G(J) for some α ∈ J . Without loss, let X2 be a central divisor of G(J).
Then we obtain 1 = [A8, A6A4A2] by (I), and so [X8, A6A4A2] = 1 by 2.1(6), since
the Abelian group A6A4A2 is X8-invariant. Analogously, [A−6A−4A−2, X8] = 1.
Hence, X8 is a central divisor of G(J). By symmetry, X4 is also a central divisor

of G(J). That is, G(J) =∗α∈J Xα, and we are done. �

Corollary 4.2. Suppose there is no α ∈ J such that Xα is a central divisor of
G(J). Then all Aα, α ∈ J , are elementary Abelian 2-groups.

Proof. By the commutator relations in (I), the claimed result follows from [5,
Proposition 1.4.]. �

Next, using the notation of (3.4.1), we will prove some implications starting from

the assumption G(J) =∗α∈J Xα.

Lemma 4.3. Suppose G(J) = ∗α∈J Xα and there exist “neighboring roots” β
and γ in J with [Xβ, Wβ] = 1 6= [Xγ, Wγ]. Then Xβ is a central divisor of G.

Proof. Without loss, let β = −2 and γ = −4. Then our assumptions mean
[X2, W−2] = 1 6= [X4, W−4].

Step 1: We show

A−1A8A7A6A5A4 ⊆ CU−2(A−2). (4.3.1)

We have 1 6= [A7′ , A−4] ≤ CA−1′
(A2) by assumption and by (I). This implies

X1 = 〈[A7′ , A−4], A1〉 ≤ C(A2). (4.3.2)

Thus, [X2, A−1] = 1. An application of 3.7 to U−2 yields (4.3.1), as [X2, W−2] = 1

and G(J) =∗α∈J Xα by assumption.

Step 2. We prove [X2, W2] = 1. Suppose [X2, W2] 6= 1.
Then [A2, A−5′ ] 6= 1. By (4.3.2), this implies 1 6= [A2, A−5′ ] ≤ CA−7′

(A−1).
Therefore, X7 = 〈[A2, A−5′ ], A7〉 ≤ CG(A−1′). By 3.6, this implies [A−4, A7′ ] = 1,
contrary to our assumption. Thus, [A2, A−5′ ] = 1 and so [X2, W2] = 1 by 2.1(6),
since W2 is X2-invariant and [A2, W2] = 1.

Step 3: We show

A−8A−7A−6A−5A−4A−3 ⊆ CU2(A−2). (4.3.3)

By (4.3.1), we get X5 = 〈A5, A−5′〉 ≤ C(A−2). In particular, [A−5, A−2] = 1. Fur-
ther, by Step 2 and (4.3.1), we obtain X7 = 〈A7, A−7′〉 ≤ C(A−2). In particular,
[A−7, A−2] = 1. This implies (4.3.3), since G(J) is a central product of rank one
groups by assumption.

Step 4: We prove

[X2, U2] = 1. (4.3.4)
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By (4.3.3), it suffices to prove that CA1(A−2) 6= 1. From this we namely see
X1 = 〈CA1(A−2), A−1〉 ≤ C(A−2), since [A−1, A−2] = 1 by (I). Thus, [A−2, U2] = 1,
and so (4.3.4) follows by 2.1(6), since U2 is X2-invariant.

We assume CA1(A−2) = 1, and lead this to a contradiction. By (4.3.3), we
obtain CU2(A−2) = A−8A−7A−6A−5A−4A−3 and so An2

1 ≤ CU2(A−2) ≤ U1. But
[X2, A−1] = 1 by Step 1, a contradiction to 3.4. Thus, CA1(A−2) 6= 1 and so
(4.3.4) holds.

By (4.3.1) and (4.3.4), the assumptions of 3.8 are satisfied for X2. Thus, X2

is a central divisor of G. �

Lemma 4.4. Suppose G(J) =∗α∈J Xα and [Xα, Wα] = 1 for each α ∈ J . Then
there exists an α ∈ J such that Xα is a central divisor of G.

Proof. Let α ∈ J and Wα = Aβ′Aγ′ with α < β′ < γ′ < −α and β′, γ′ appropriate
roots of Φ̃ \ J . To begin with, we show that either [Aβ′ , A−γ′ ] = 1 = [Aγ′ , A−β′ ] or
Xα is a central divisor of G.

Without loss, let α = −2. We prove that either

[A7′ , A−5′ ] = 1 (4.4.1)

or X2 is a central divisor of G.
We assume that X2 is no central divisor of G, and show that in this case (4.4.1)

holds. By the commutator relations in (I), we obtain [A−5′ , A7′ ] ≤ A−3′A−2A−1′ .
Let a−3′a−2a−1′ ∈ [A−5′ , A7′ ] with a−3′ ∈ A−3′ , a−2 ∈ A−2 and a−1′ ∈ A−1′ . Then
a−3′a−2a−1′ ∈ C(A2), as [A7′ , A2] = 1 = [A−5′ , A2] by assumption. By (I), this
implies [a−3′a−2a−1′ , A5′ ] = [a−3′ , A5′ ] ≤ CA−1′A8A7′

(A2), since [X2, W−2] = 1 by
assumption.

We assume a−3′ 6= 1, and lead this to a contradiction.
Let a?

−1′a
?
8a

?
7′ ∈ [a−3′ , A5′ ] with a?

−1′ ∈ A−1′ , a?
8 ∈ A8 and a?

7′ ∈ A7′ . Then
1 = [a?

−1′a
?
8a

?
7′ , A2] = [a?

−1′ , A2] = 1, as [A8, A2] = 1 = [A7′ , A2] by assumption.
Suppose a?

−1′ 6= 1. Then X1 =
〈
a?
−1′ , A1

〉
≤ C(A2) and so X2 = 〈A2, A−2〉 ≤

C(A−1). Arguing as in 4.3, we obtain that X2 is a central divisor of G, since
[X2, W2] = 1 by assumption, a contradiction. Thus, we have [a−3′ , A5′ ] ≤ A8A7′ .
Therefore, L := A8A7′A6A5′ is 〈a−3′ , A3〉 = X3-invariant. Conjugation with n3

yields [L, An3

3′ ] = 1, as [L, A3′ ] = 1. This implies X3 = 〈An3

3′ , A3〉 ≤ C(A5′). In
particular, [A5′ , A−3] = 1 and so X5 = 〈A5′ , A−5〉 ≤ C(A−3′), since [A−5, A−3′ ] = 1
by (I). From this we get [M−5, A5′ ] = 1 = [M−5, A

n5

5′ ], since [A−2, A5′ ] = 1 by
assumption. As (1 6=)An5

5′ ≤ A−5, this yields X5 = 〈An5

5′ , A5〉 ≤ C(A7′). Thus,
a−3′a−2a−1′ ∈ [A−5′ , A7′ ] = 1 and so

1 6= a−3′ = (a−2a−1′)
−1 ≤ A−3′ ∩ A−2A−1′ ≤ A−3′ ∩ U−3 = 1

by 3.1(3), contradicting our assumption.
Hence, [A7′ , A−5′ ] ≤ A−2A1′ . Assuming that X2 is no central divisor of G, the

analogous argument with a−1′ in place of a−3′ yields [A7′ , A−5′ ] ≤ A−2. Thus,
[A−5′ , A7′ ] ≤ CA−2(A2) = 1, since [A−5′ , A2] = 1 = [A7′ , A2] by assumption.
Analogously, either [A5′ , A−7′ ] = 1 or X2 is a central divisor of G.
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By the above argumentation, it suffices to prove that Xβ is a central divisor
of G for some β ∈ J , if [Aβ′ , A−γ′ ] = 1 = [Aγ′ , A−β′ ] for each α ∈ J . Lemma 3.6
yields [Xα, Mα] = 1 for each α ∈ J , using that [Xα, Wα] = 1 for each α ∈ J by
assumption. In particular, [X5, X2] = 1 = [X7, X2] and [X5, X8] = 1 = [X3, X8].
By 3.8, we get that either X2 is a central divisor of G or repeated use of the
nilpotence argument yields the conjugation relations A−1

n2←→ A3 and A−3
n2←→

A1, as [X2, X8] = [X2, X7] = [X2, X6] = [X2, X5] = [X2, X4] = 1. In particular,
[A1, A8]

n2 = [A−3, A8] = 1. Therefore, X8 is a central divisor of G by 3.8. Hence,
there exists an α ∈ J such that Xα is a central divisor of G, as required. �

Lemma 4.5. Suppose G(J) = ∗α∈J Xα. Then there exists an α ∈ J with
[Xα, Wα] = 1.

Proof. We assume [Xα, Wα] 6= 1 for each α ∈ J and G(J) = ∗α∈J Xα, and lead
this to a contradiction.

Step 1: We use the notation of 3.5. Firstly, we show CMα(Aα′) = Aβ′AγAδ′ and
CMα(A−α′) = Aδ′AεAη′ for each α ∈ Φ \ J . Without loss, let α = −1. By
symmetry, it suffices to prove

CM−1(A−1′) = A7′A6A5′ . (4.5.1)

By (I), we have A7′A6A5′ ≤ CM−1(A−1′). To get the opposite inclusion, we show
CA4A3′

(A−1′) = 1. Let a4 ∈ A4 and a3′ ∈ A3′ with [a4a3′ , A−1′ ] = 1. Then we have
1 = [a4a3′ , a−1′ ] = [a4, a−1′ ]

a3′ [a3′ , a−1′ ] for each a−1′ ∈ A−1′ . As [A4, A−1′ ] ≤ A7′

and [A7′ , A3′ ] = 1, this shows [a3′ , A−1′ ] ≤ A7′ . Suppose a3′ 6= 1. Then A−1′A7′ is
〈a3′ , A−3〉 = X3-invariant. Thus, [X3, A−1′ ] = 1 by 3.5. This implies [A−3′ , A6] = 1
by 3.6, contradicting our assumption. Suppose a4 6= 1. Then [a4, A−1′ ] = 1 and
so X4 = 〈a4, A−4〉 ≤ C(A−1′), a contradiction to [A4, A−1′ ] 6= 1 by assumption.
Hence, (4.5.1) holds.

Step 2. We show

An2
−1 ⊆ A7A6A5A4A3. (4.5.2)

We have A8A6A5′A4A3 ⊆ CU−2(A2), since [A8, A2] = 1 by assumption. Suppose
[a−1a7a5, A2] = 1 for some a−1 ∈ A−1, a7 ∈ A7 and a5 ∈ A5. Then we get

1 = [a−1a7a5, a2]

= [a−1, a2]
a7a5 [a7a5, a2]

= [a−1, a2]
a7a5 [a7, a2]

a5 [a5, a2]

for each a2 ∈ A2. As [A7, A2] ≤ A5′A4A3′ , [A5′A4A3′ , A5] = 1, [A5, A2] ≤ A3′ and
[A5′A4A3′ , A7] ≤ A5′ , this yields [a−1, A2] ≤ A5′A4A3′ . Suppose a−1 6= 1. Then
M−1A2 is 〈a−1, A1〉 = X1-invariant. By Step 1, we get from this [A7′ , A2]

n1 ≤
[CM−1(A1′), M−1A2] = [A5′A4A3′ , M−1A2] = 1, since A5′A4A3′ ≤ Z(M−1A2), con-
trary to our assumption.
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Thus, CU−2(A2) ⊆ A8A7A6A5A4A3, and an application of the nilpotence ar-
gument yields (4.5.2), since [X8, X2] = 1 by assumption.

Step 3: Next, we show

[A7′ , A−4]
n2 ≤ A7A6A5. (4.5.3)

We have [[A7′ , A−4], A2]
n2 ≤ [[A7′A5′ , A−4], A−2] ≤ A−1′ by the commutator rela-

tions in (I), since W−2 is X2-invariant and [A−4, X2] = 1 by assumption. Further,
by (4.5.2), we get [A7′ , A−4]

n2 ≤ A7A6A5A4A3. Let a7a6a5a4a3 ∈ [A7′ , A−4]
n2 with

ai ∈ Ai for i ∈ {3, 4, 5, 6, 7}. Then

A−1′ ≥ [a7a6a5a4a3, A−2] = [a7a5a4a3, A−2]

= [a7a4a5a3, A−2] = [a4a7[a7, a4]a5a3, A−2]

by (I). We have [a7, a4]a5 = a?
5 for some a?

5 ∈ A5. Thus, we obtain [a7a
?
5a3, A−2] ≤

A−1′ , since [a4, A−2] = 1 by assumption. This yields

A−1′ 3 [a7a
?
5a3, a−2]

= [a7, a−2]
a?
5a3 [a?

5a3, a−2]

= [a7, a−2]
a3 [a?

5, a−2]
a3 [a3, a−2]

for each a−2 ∈ A−2. Since [A7, A−2] ≤ A−1′ , [A−1′ , a3] ≤ A8A7′A6A5′ and
[A5, A−2] ≤ A−1′A8A7′ , we get [a3, A−2] ≤ M−3. Suppose a3 6= 1. Then A−2M−3

is 〈a3, A−3〉 = X3-invariant. By Step 1, this implies [A−2, A5′ ]
n3 ≤ [A−2M−3,

A−1′A8A7′ ] = 1, as A−1′A8A7′ ≤ Z(A−2M−3), contradicting our assumption.
This yields [A7′ , A−4]

n2 ≤ A7A6A5A4. Using the nilpotence argument, we ob-
tain (4.5.3), since [X4, X2] = 1 by assumption.

Step 4: We show

[A7′ , A−4]
n2 ≤ A7. (4.5.4)

We have [A7′ , A−4]
n2 ≤ [A7′A5′ , A−4] ≤ U−5 by (I), since W−2 is X2-invariant. We

get [A7′ , A−4]
n2 ≤ A7A6A5∩U−5 = A7A6(A5∩U−5) = A7A6 by (4.5.3) and 3.1(3),

using the Dedekind identity. Using the nilpotence argument, this implies (4.5.4),
as [X6, X2] = 1.

Finally, we lead our original assumption to a contradiction. We have [[A−4, A7′ ],
A−5′ ] = 1 by (I), and so [[A−4, A7′ ]

n2 , An2

−5′ ] = 1. Furthermore, there exists an

a−5′ ∈ A]
−5′ with an2

−5′ ∈ A]
−7′ , since [A−5′ , A2] 6= 1 by assumption. By (4.5.4),

this implies [a7, a−7′ ] = 1 for some a7 ∈ A]
7 and some a−7′ ∈ A]

−7′ . Thus, X7 =
〈a7, A−7〉 ≤ C(a−7′) since [a−7′ , A−7] = 1 by (I), a contradiction to NA−7(A7) = 1
by 2.1(2).

Hence, there exists an α ∈ J with [Xα, Wα] = 1, if G(J) = ∗α∈J Xα, as
required. �
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5. Proof of 1.2 – main part I

In this section we will show

Theorem 5.1. Suppose G(J) is of type C2 and CAβ′
(A−α) 6= 1 or CAγ′

(Aα) 6= 1
for some α ∈ J with Wα = Aβ′Aγ′, using the notation of (3.4.1). Then 1.2 (B)
holds.

Theorem 5.1 follows directly from the lemmas of this section.

Lemma 5.2. Suppose [Aα, G(J)] = 1 for each α ∈ Φ̃\Φ. Then [G(J), G(Φ̃\J)] =
1, and the root subgroups Aβ, β ∈ Φ̃ \ J , are closed under commutators. Further,

G(Φ̃ \ J) =∗α∈Φ\J Xα or G(Φ̃ \ J) is of type C2.

Proof.

Step 1: We have X3 = 〈A3′ , A−3〉 ≤ C(A−2), since [A3′ , A−2] = 1 by assump-
tion. Analogously, we get [A−2, X1] = 1 and [A2, X1] = 1. By 3.7, this implies
[A−2, A7] = 1. Thus, X7 = 〈A7, A−7′〉 ≤ C(A−2). Analogously, [A−2, X5] = 1.
Thus, [A−2, G(Φ̃ \ J)] = 1. By symmetry, we obtain

[G(J), G(Φ̃ \ J)] = 1. (5.2.1)

Step 2: Next, we show that the root subgroups Aα, α ∈ Φ̃ \ J , are closed under
commutators. For this it suffices to prove that the Aα, α ∈ Φ \ J , are closed under
commutators. Without loss, we show the appropriate commutator relations for
A1. By (5.2.1) and 2.1(2), we have [A1, A3] ≤ CA2(A−2) = 1. Further, [A1, A5] = 1
by (I). We show [A1, A7] ≤ A5A3 by a division into cases (see Lemma 4.1):

(a) Suppose G(J) is of type C2. Then we have

[A1, A7] ≤ A6A5A4A3A2 ∩ CG(A8) ∩ CG(A−8) ∩ CG(A−4)

≤ A6A5A4A3 ∩ CG(A−8) ∩ CG(A−4)

≤ A5A4A3 ∩ CG(A−4) ≤ A5A3

by (I) and (5.2.1)

(b) Suppose G(J) is a central product of rank one groups. Then we obtain

[A1, A7] ≤ A6A5A4A3A2 ∩ CG(A−2) ∩ CG(A−6) ∩ CG(A−4)

≤ A6A5A4A3 ∩ CG(A−6) ∩ CG(A−4)

≤ A5A4A3 ∩ CG(A−4) ≤ A5A3

by (I) and (5.2.1).
Finally, we show that, under these assumptions, Aα is Abelian for each α ∈

Φ \ J or G(Φ̃ \ J) = ∗α∈Φ\J Xα. Without loss, let α = 1. By Step 2, we get
[A7, A1, A1] ≤ [A5A3, A1] = 1. By (I) and the Three-Subgroup-Lemma, we obtain



H. Oueslati: On Groups with Root System of Type 2F4 37

A′
1 = [A1, A1] ≤ CA1′

(A7). Suppose A′
1 6= 1. Arguing as in the proof of 4.1, we

obtain G(Φ̃ \ J) =∗α∈Φ\J Xα.
Suppose A′

α = 1 for each α ∈ Φ \ J . Then the root subgroups Aα, α ∈ Φ \ J ,
satisfy the assumptions of [10, Theorem 1] with respect to a root system of type
C2. As in the proof of 4.1, we see from this that G(Φ̃ \ J) = G(Φ \ J) is of type

C2 or G(Φ̃ \ J) =∗α∈J Xα. �

Lemma 5.3. Suppose G(J) is of type C2 and there exist “neighboring roots” α
and β in J with CAδ′

(Aα)∩CAδ′
(A−β) 6= 1, where Wα = Aγ′Aδ′ and Wβ = Aδ′Aη′

with α < β < γ′ < δ′ < η′ < −α < −β for appropriate roots γ′, δ′, η′ ∈ Φ̃ \ J .
Then [Aδ′ , G(J)] = 1.

Proof. Let, without loss, α = −4, β = −2 and δ′ = 7′. Then our assumptions
mean [a7′ , A−4] = 1 = [a7′ , A2] for some a7′ ∈ A]

7′ . From this we get the fol-
lowing commutator relations: 1 = [a7′ , A2]

n4 = [a7′ , A−6] and 1 = [a7′ , A−4]
n2 =

[a7′ , A−8], since G(J) is of type C2 by assumption. This implies X7 = 〈a7′ , A−7〉 ≤
C(A−6), i.e. [X7, A−6] = 1 and so [A7, X6] = 1 respectively X7 = 〈a7′ , A−7〉 ≤
C(A−8), i.e. [X7, A−8] = 1 and so [A7, X8] = 1. Thus, [A7, A2]

n8 = [A7, A6] = 1
respectively [A7, A−4]

n6 = [A7, A8] = 1. Therefore, [A7′ , G(J)] = 1. �

Lemma 5.4. Suppose G(J) is of type C2 and there exist three roots α, β, τ in J
such that CAδ′

(Aα)∩CAδ′
(A−β) 6= 1 and [Xτ , Wτ ] 6= 1, where α and β respectively

β and τ are “neighbors” in J with α < β < τ , and Wα respectively Wβ are as in
5.3. Then Xδ is a central divisor of G.

Proof. Let, without loss, α = −4, β = −2 and τ = 8. Then, as in the proof of
5.3, we get

[X7, A−8] = 1 = [X7, A−6]. (5.4.1)

Moreover, [A5′ , A−8] 6= 1 by assumption. This implies that [a5′a4, A−7′ ] = 1 for
some a5′ ∈ A]

5′ and some a4 ∈ A4, as A4A3′A2A1′ ⊆ CM7(A−8) by (I), An7
−8 = A−8,

An7

5′ ≤ CM7(A−7′) and A3′A2A1′ ≤ CM7(A−7′). Then we obtain 1 = [a5′a4, a−7′ ] =
[a5′ , a−7′ ]

a4 [a4, a−7′ ] for each a−7′ ∈ A−7′ . Thus, [a5′ , A−7′ ] ≤ A1′ , since [A4, A−7′ ] ≤
A1′ and [A4, A1′ ] = 1. Hence, A1′A−7′ is 〈a5′ , A−5〉 = X5-invariant. By 3.5, this
yields [A−7′ , X5] = 1 and so X7 = 〈A−7′ , A7〉 ≤ C(A5′), as [A7, A5′ ] = 1 by (I).
Thus,

[A−8, A−5] = 1 = [A2, A−5′ ] (5.4.2)

respectively [A4, A7] = 1 by 3.6. Therefore, X4 = 〈A4, A−4〉 ≤ C(A7), since, as in
the proof of 5.3, [A7, A−4] = 1 holds. This implies [A7, A−2]

n4 = [A7, A6] = 1 and
so [X2, A7] = 1, since, as in the proof of 5.3, [A7, A2] = 1 holds.

Moreover, [A4, A−7′ ] = 1, since we obtain otherwise a contradiction to 3.4, as
[X4, A7] = 1. As [X7, A5′ ] = 1 and by 3.6, this implies

[M7, X7] = 1. (5.4.3)



38 H. Oueslati: On Groups with Root System of Type 2F4

By (5.4.2), we get 1 = [A−2, A−7′ ]
n4 = [A6, A−7′ ] and by (5.4.3), we obtain 1 =

[A4, A−7′ ]
n2 = [A8, A−7′ ]. Thus, the next commutator relations follow: [X7, A6] =

1 and so [X6, A−7] = 1 respectively [X7, A8] = 1 and so [X8, A−7] = 1. Moreover,
[A−2, A−7]

n8 = [A−6, A−7] = 1 and so [X7, A−2] = 1. Further,

[A−7, A−5]
n7 ≤ An7

−6 ∩ [A−7, U−7]
n7 ≤ A−6 ∩ U−6 = 1, (5.4.4)

as [X7, A−6] = 1 by (5.4.1). Thus,

X5 = 〈A−5, A5′〉 ≤ C(A−7) (5.4.5)

by (5.4.3). Analogously as in (5.4.4), we obtain [A7, A5] = 1, since [X7, A6] = 1.
By (5.4.5), this implies [X7, A5] = 1. We also have [A1, A−7] = 1, since [X7, A−8] =
1 by (5.4.1). All in all, [U7, A−7] = 1 and so [U7, X7] = 1 by 2.1(6), since U7 is
X7-invariant. Therefore, [M−7, X7] = 1, as A−5′A−4A−3′A−2 ⊆ CM−7(A−7), since
otherwise we would obtain a contradiction to 3.4. Thus, X1 = 〈A−1′ , A1〉 ≤
C(A−7). Hence, we get [U−7, A−7] = 1. Then, by 2.1(6), we also have [U−7, X7] =
1. All in all, we obtain that X7 is a central divisor of G. �

Lemma 5.5. Suppose G(J) is of type C2 and there exist “neighboring roots” α
and β in J such that CAδ′

(Aα) ∩ CAδ′
(A−β) 6= 1, where δ′ is as in 5.3. Then 1.2

(B) holds.

Proof. By 5.3 and 5.4, Xν is a central divisor of G for some ν ∈ Φ\J , or each root
subgroup Aα, α ∈ Φ̃ \ Φ, commutes with each root subgroup Aβ, β ∈ J . In the
latter case the assumptions of 5.2 are satisfied. So 1.2 (B) holds in both cases. �

Lemma 5.6. Suppose G(J) is of type C2 and there exist “neighboring roots” α
and β in J such that CAδ′

(A−β) 6= 1 and CAδ′
(Aα) ∩ CAδ′

(A−β) = 1, where Wα

and Wβ are as in 5.3. Then 1.2 (B) holds.

Proof. Let, without loss, α = −4, β = −2 and δ′ = 7′. Further, let a7′ ∈ A]
7′ with

[a7′ , A2] = 1 6= [a7′ , A−4].

Step 1: First, we show an4

7′ ∈ A−1′ .
We have an4

7′ = a−1′a
?
7′ , where a−1′ ∈ A−1′ and a?

7′ ∈ A7′ , since W−4 is

X4-invariant. Thus,
(
a7′ (a

?
7′)

−1)n4
= a−1′ , as an4

7′ ∈ CW−4(A−4) and A−1′ ≤
CW−4(A−4) by (I). Further, 1 = [a7′ , A2]

n4 = [a−1′a
?
7′ , A−6], since G(J) is of type

C2 by assumption. This implies 1 = [a−1′a
?
7′ , a−6] = [a−1′ , a−6]

a?
7′ [a?

7′ , a−6] for each
a−6 ∈ A−6. Since [A−1′ , A−6] ≤ A−3′ and [A−3′ , A7′ ] = 1, we get [a?

7′ , A−6] ≤ A−3′ .
Suppose a?

7′ 6= 1. Then A−6A−3′ is 〈a?
7′ , A−7〉 = X7-invariant. Further, an ap-

plication of the nilpotence argument yields An7
−6 = A−6, as [X3, X7] = 1 by (I).

Thus, [A−6, X7] = 1 and so [X6, A7] = 1. This yields [A7, A−4]
n6 = [A7, A8] = 1, a

contradiction to [a7′ , A−4] 6= 1 by assumption. Thus, a?
7′ = 1 and so an4

7′ ∈ A−1′ .

Step 2: Next, we show an2

−1′ ∈ A5A4A3 for a−1′ as in Step 1.



H. Oueslati: On Groups with Root System of Type 2F4 39

The group [A7′ , A−4]A7′ is X4-invariant. By Step 1 and the Dedekind identity,
we get

a−1′ = an4

7′ ∈ [A7′ , A−4]A7′ ∩ A−1′ = [A7′ , A−4](A7′ ∩ A−1′) = [A7′ , A−4]

by 3.1(3). By (I), this implies an2

−1′ ∈ [A7′ , A−4]
n2 ≤ [A7′A5′ , A−8] ⊆ A6A5A4A3A2

A1. Therefore, an2

−1′ ∈ CA6A5A4A3A2A1(a7′), since [a7′ , X2] = 1 by assumption and
[A7′ , A−1′ ] = 1 by (I). Further, CA6A5A4A3A2A1(a7′) = A6A5A4A3A2, since other-
wise [X1, A7′ ] = 1 and so [A4, A−1′ ] = 1 by 3.6, contrary to [A−4, A7′ ] 6= 1 by
assumption.

On the other hand, an2

−1′ ∈ U−2, since U−2 is X2-invariant by 3.1(1). Thus,

an2

−1′ ∈ A6A5A4A3A2 ∩ U−2 = A6A5A4A3(A2 ∩ U−2) = A6A5A4A3

by the Dedekind identity and 3.1(3). An application of the nilpotence argument
yields an2

−1′ ∈ A5A4A3, as [X6, X2] = 1.

Step 3: Next, we prove [A−5′ , A2] 6= 1.
Suppose [A−5′ , A2] = 1. Then, by Step 2, we get an2

−1′ ∈ A5A4A3 ∩ C(A−5′),
since [A−1′ , A−5′ ] = 1. Let a5 ∈ A5, a4 ∈ A4 and a3 ∈ A3 with an2

−1′ = a5a4a3.
Then we get

1 = [a5a4a3, a−5′ ] = [a5, a−5′ ]
a4a3 [a4a3, a−5′ ]

= [a5, a−5′ ]
a4a3 [a4, a−5′ ]

a3 [a3, a−5′ ]

for each a−5′ ∈ A−5′ . Therefore, [a5, A−5′ ] ≤ U5, since [a4, a−5′ ]
a3 = [a4,

a−5′ ][a4, a−5′ , a3] ∈ A3A2A1A−8A−7A−6 ⊆ U5. Suppose a5 6= 1. Then U5A−5′

is 〈a5, A−5〉 = X5-invariant, as [A−5, A−5′ ] = 1 by (I). Thus, X5 =
〈
An5

−5′ , A−5

〉
≤

U5A−5, a contradiction to 3.1(2) and 2.1(5). Hence, a5 = 1 and so an2

−1′ =
a4a3. Then 1 = [a4a3, a−6] = [a4, a−6]

a3 [a3, a−6] for each a−6 ∈ A−6, since
1 = [a7′ , A2]

n4n2 = [a−1′ , A−6]
n2 = [a4a3, A−6]. Thus, [a4, A−6] ≤ A1′A−8A−7′ ,

since [A3, A−6] ≤ A1′A−8A−7′ and (A1′A−8A−7′)
a3 ⊆ A1′A−8A−7′ . Suppose a4 6= 1.

Then A1′A−8A−7′A−6 is 〈a4, A−4〉 = X4-invariant. By 3.1(3), this implies A2 =
An4
−6 ≤ A2 ∩ U2 = 1, since G(J) is of type C2 by assumption, a contradiction.

Hence, a4 = 1 and so an2

−1′ = a3. Thus, X7 = 〈A−7′ , A7〉 ≤ C(a−1′), since

1 = [A−7′ , a3]
n−1

2 = [A−7′ , a−1′ ]. Therefore, X1 = 〈a−1′ , A1〉 ≤ C(A−7′). This
implies X7 = 〈A−7′ , A7〉 ≤ C(A−1′). But, by 3.6, this yields [A−4, A7′ ] = 1, a
contradiction to [a7′ , A−4] 6= 1 by assumption. Hence, [A−5′ , A2] 6= 1.

Step 4: Next, we show an2

−1′ ∈ A3 for a−1′ as in Step 1.

By Step 3, we have [A−5′ , A2] 6= 1. Thus, there exists an a−5′ ∈ A]
−5

with an2

−5′ = a−7′ . By Step 2, this yields 1 = [an2

−1′ , a−7′ ] = [a5a4a3, a−7′ ], since
[A−1′ , A−5′ ] = 1 by (I), where a5 ∈ A5, a4 ∈ A4, a3 ∈ A3 with an2

−1′ = a5a4a3. As
[A3, A−7′ ] = 1, this implies 1 = [a5a4a3, a−7′ ] = [a5a4, a−7′ ] = [a5, a−7′ ]

a4 [a4, a−7′ ].
Thus, [a5, a−7′ ] ∈ A1′ , since [A4, A−7′ ] ≤ A1′ and [A1′ , A4] = 1. Suppose a5 6= 1.
Then 〈a−7′〉A1′ is 〈a5, A−5〉 = X5-invariant. An application of the nilpotence ar-
gument yields 〈a−7′〉n5 ≤ 〈a−7′〉, since [X1, X5] = 1 by (I). Thus, [〈a−7′〉 , X5] = 1.
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This implies [X7, A5′ ] = 1 and so [X5, A−7′ ] = 1. Thus, [A2, A−5′ ] = 1 by 3.6, a
contradiction. Hence, a5 = 1 and so an2

−1′ = a4a3.
As in Step 3, we get a4 = 1 and so an2

−1′ = a3.

Step 5: Next, we show

CW2(A−2) = A−5′
n2←→ CW2(A2) = A−7′ . (5.6.1)

Let a−1′ and a3 be as in Step 4. By (I), we have A−5′ ⊆ CW2(A−2). We show
CA−7′

(A−2) = 1, to get the opposite inclusion. Let a−7′ ∈ CA−7′
(A−2). Then 1 =

[a−7′ , a3]
n−1

2 = [a−7′ , a−1′ ]. Suppose a−7′ 6= 1. Then X7 = 〈a−7′ , A7〉 ≤ C(a−1′),
since [A7, A−1′ ] = 1 by (I). As in Step 3, this leads to a contradiction. Hence,
CW2(A−2) = A−5′ . Now, we turn to the centralizer of A2 in W2. By (I), we have
A−7′ ⊆ CW2(A2). We prove CA−5′

(A2) = 1, to get the opposite inclusion. Let
a−5′ ∈ CA−5′

(A2). Then 1 = [a−5′ , a−1′ ]
n2 = [a−5′ , a3]. Suppose a−5′ 6= 1. Then we

get [X5, A3′ ] = 1. By 3.6, this yields [A5, A2] = 1. Thus, X5 = 〈A5, a−5′〉 ≤ C(A2),
a contradiction to [A2, A−5′ ] 6= 1. Therefore, CA−5′

(A2) = 1. All in all, we obtain
(5.6.1), since W2 is X2-invariant.

Step 6: Now, we prove [A−5′ , A8] = [A−7′ , A4] = 1.
By (5.6.1), we have [A−5′ , A8]

n2←→ [A−7′ , A4], since G(J) is of type C2 by
assumption. We assume [A−5′ , A8] 6= 1 6= [A−7′ , A4], and lead this to a contradic-
tion. Suppose [A−5′ , A8] 6= 1 6= [A−7′ , A4]. Then CW−2(A2) = A5′ . Since otherwise

there exists an â7′ ∈ A]
7′ with [â7′ , A2] = 1. This implies 1 = [[A−5′ , A8], â7′ ]

n2 =
[[A−7′ , A4], â7′ ]. Thus, X1 = 〈[A−7′ , A4], A−1〉 ≤ C(â7′) and so X7 = 〈â7′ , A−7〉 ≤
C(A1′). By Lemma 3.6, this yields [A−7′ , A4] = 1, contradicting our assumption.
Therefore, CW−2(A2) = A5′ . But this contradicts CA7′

(A2) 6= 1 by assumption.
Further, CA1′

(A6) = 1 or 1.2 (B) holds by 5.5, as [A1′ , A−4] = 1 by Step 6.
In the first case we can repeat the above argument for α = 6 and β = 4. Thus,
A−1′

n4←→ A7′ and [A7′ , A2] = 1 = [A−1′ , A−6]. Together with Step 6, this yields
[A−3′ , A6] = 1 = [A−3′ , A−8], which leads to 1.2 (B) by 5.5. �

6. Proof of 1.2 – main part II

In this section we assume that 1.2 (B) does not hold. We will show that then
1.2 (A) holds. By Section 4 and Section 5 we may, and do, suppose in view of
the proof of 1.2 that G(J) is of type C2 and that not all root subgroups Aα,
α ∈ J , commute with all root subgroups Aβ, β ∈ Φ̃ \ Φ. Further, we assume
CAβ′

(A−α) = 1 and CAγ′
(Aα) = 1 for α ∈ J , where Wα = Aβ′Aγ′ , using the

notation of (3.4.1). First, we will prove that Anα
β = Aβwα for each nα, α ∈ J ,

and for each β ∈ Φ̃, where wα denotes the reflection along α on Φ̃. Further, we
will show the analogous conjugation properties for all nα, α ∈ Φ \ J . Hence, the
assumptions of [10, Theorem 1] are satisfied for G with respect to 2F4. Thus, G
is of type 2F4 under these circumstances.

To begin with, we show the following
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Lemma 6.1. Using the notation of (3.4.1), let Wα = Aβ′Aγ′ for α ∈ J . Then
the following hold:

(1) CWα(Aα) = Aβ′
nα←→ CWα(A−α) = Aγ′;

(2) [Wα, A−α] = Aγ′ and [Wα, Aα] = Aβ′;

(3) CA−α(Aβ′) = 1 = CAα(Aγ′).

Proof. We have CWα(Aα) = Aβ′ , since on the one hand, [Aβ′ , Aα] = 1 by (I)
and on the other hand, CAγ′

(Aα) = 1. Analogously, we obtain CWα(A−α) = Aγ′ .
Thus, (1) follows, since Wα is Xα-invariant.

By the commutator relations in (I), the group Aβ′ [Aβ′ , A−α] is Xα-invariant. Thus,
Aγ′ = Anα

β′ ≤ Aβ′ [Aβ′ , A−α] by (1). Therefore, Aβ′Aγ′ = Aβ′ [Aβ′ , A−α] and so
Aγ′ = [Aβ′ , A−α] = [Wα, A−α]. By symmetry, (2) follows.

We assume CA−α(Aβ′) 6= 1, and lead this to a contradiction. Suppose there exists
an a−α ∈ CA]

−α
(Aβ′). Then Xα = 〈a−α, Aα〉 ≤ C(Aβ′), since [Aα, Aβ′ ] = 1 by

(I). But this contradicts Cβ′(A−α) = 1. Thus, CA−α(Aβ′) = 1, and (3) holds by
symmetry. �

Lemma 6.2. For all nα, α ∈ J , and β ∈ Φ̃, we have Anα
β = Aβwα .

Proof. Let, without loss, α = −2.

Step 1: By 6.1(1), we get A7′
n2←→ A5′ respectively A−5′

n2←→ A−7′ . By 6.1(1) and
(2), this implies

A−1′ = [A7′ , A−4]
n2←→ [A5′ , A−8] = A3′ (6.2.1)

and

A−3′ = [A−5′ , A8]
n2←→ [A−7′ , A4] = A1′ , (6.2.2)

since G(J) is of type C2 by assumption.

Step 2: Next, we show

CU−2(A−1′) = A−1A8A7A6A5. (6.2.3)

By (I), we get A−1A8A7A6A5 ⊆ CU−2(A−1′). To obtain the opposite inclusion,
we prove CA4A3(A−1′) = 1. Let a4 ∈ A4 and a3 ∈ A3 with [a4a3, A−1′ ] = 1.
Then we have 1 = [a4a3, a−1′ ] = [a4, a−1′ ]

a3 [a3, a−1′ ] for each a−1′ ∈ A−1′ . Thus,
[a3, A−1′ ] ≤ A7′ , since [A4, A−1′ ] ≤ A7′ and [A7′ , A3] = 1. Suppose a3 6= 1.
Then A−1′A7′ is 〈a3, A−3〉 = X3-invariant. Combining 3.5 and 3.6, we obtain
[A6, A−3′ ] = 1, a contradiction to CA−3′

(A6) = 1. Further, a4 = 1, since otherwise
we get a contradiction to 6.1(3). Hence, (6.2.3) holds.

Step 3: We prove

A5
n2←→ A7 (6.2.4)
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and

A−5
n2←→ A−7. (6.2.5)

Arguing analogously as in Step 2, we also have CU−2(A3′) = A7A6A5A4A3 and so

CU−2(A−1′) = A−1A8A7A6A5
n2←→ CU−2(A3′) = A7A6A5A4A3 by (6.2.1). Further,

CCU−2
(A3′ )

(A−1′) = A7A6A5, since otherwise the same argumentation as in (6.2.3)

yields a contradiction. Analogously, CCU−2
(A−1′ )

(A3′) = A7A6A5. Therefore,

A7A6A5 is invariant under n2 by (6.2.1). As in (6.2.3), this implies CA7A6A5(A1′) =
A5 and CA7A6A5(A−3′) = A7. Thus, (6.2.4) holds by (6.2.2). By symmetry, we
also have (6.2.5).

We get CCU−2
(A−1′ )

(A−3′) = A−1A8A7
n2←→ CCU−2

(A3′ )
(A1′) = A5A4A3, ar-

guing as in Step 3, and so CA−1A8A7(A−5′) = A−1
n2←→ CA5A4A3(A−7′) = A3.

Analogously, we obtain A−3
n2←→ A1.

Hence, using that G(J) is of type C2 by assumption, we obtain An2
β = Aβw2

for each β ∈ Φ̃. �

Next, we will show a result analogous to 6.2 for each root in Φ \ J .

Lemma 6.3. We have Anα
β = Aβwα for all nα, α ∈ Φ \ J , and all β ∈ Φ̃.

Proof. Without loss, we prove the appropriate conjugation relations for the root
−1.

Step 1: We use the notation of (3.4.2). First, we show CMα(Aα′) = Aβ′AγAδ′ and
CMα(A−α′) = Aδ′AεAη′ for each α ∈ Φ \ J . Without loss, let α = −1. By Step
2 in the proof of 6.2, we have CM−1(A−1′) = A7′A6A5′ . By symmetry, we also get
CM−1(A1′) = A5′A4A3′ .

Step 2: We show

A7′
n1←→ A3′ (6.3.1)

and

A−3′
n1←→ A−7′ . (6.3.2)

By Step 1, we have An1

7′ ≤ CM−1(A1′) = A5′A4A3′ respectively An1

3′ ≤CM−1(A−1′)=
A7′A6A5′ . Thus, using the nilpotence argument, An1

7′ ≤ A4A3′ respectively An1

3′ ≤
A7′A6, as [X5, X1] = 1 by (I). Analogously, An1

−7′ ≤ A−4A−3′ respectively An1

−3′ ≤
A−7′A−6.

Let a−3′a−4 ∈ (An1

−7′)
] with a−3′ ∈ A−3′ and a−4 ∈ A−4 and let a7′a6 ∈ (An1

3′ )
]

with a7′ ∈ A7′ and a6 ∈ A6. Then

1 = [a−3′a−4, a7′a6] = [a−3′ , a7′a6]
a−4 [a−4, a7′a6]

= ([a−3′ , a6][a−3′ , a7′ ]
a6)a−4 [a−4, a6][a−4, a7′ ]

a6

= [a−3′ , a6][a−4, a6][a−4, a7′ ],
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since [A−7′ , A3′ ]
n1 = 1 by (I). Therefore, [a−4, a6] ∈ A−1′ , as [A−3′ , A6] ≤ A−1′ and

[A−4, A7′ ] ≤ A−1′ . On the other hand, we get [a−4, a6] ∈ A−2A8 by (I). By the
Dedekind identity and Lemma 3.1(3), we obtain

[a−4, a6] ∈ A−1′ ∩ A−2A8 ≤ (A−2A−1′ ∩ A−2A8) ∩ (A−1′A8 ∩ A−2A8)

≤ A−2(A−2A−1′ ∩ A8) ∩ A8(A−1′A8 ∩ A−2)

≤ A−2(U−8 ∩ A8) ∩ A8(U−2 ∩ A−2) = A−2 ∩ A8 = 1.

We show that [a−4, a6] = 1 implies a−4 = 1 = a6.
Suppose a−4 6= 1 6= a6. Then X4 = 〈a−4, A4〉 ≤ C(a6), a contradiction, since

G(J) is of type C2 by assumption. Therefore, it suffices to lead the case to a
contradiction, in which one of the elements is 1 and the other one is different from
1. Without loss, let a−4 = 1 and a6 6= 1. Then 1 = [a−3′ , a7′a6] = [a−3′ , a6] and
so X6 = 〈a6, A−6〉 ≤ C(a−3′), contradicting CA−3′

(A6) = 1. (We mention that

a−3′ 6= 1, because a−3′a4 = a−3′ ∈ (An1

−7′)
] by assumption.) Thus, a−4 = 1 = a6.

Hence, An1

3′ ≤ A7′ and An1

−7′ ≤ A−3′ . By symmetry, this yields (6.3.1) and
(6.3.2).

Step 3: We prove

A8
n1←→ A2 (6.3.3)

and

A−2
n1←→ A−8. (6.3.4)

By (6.3.1), we get CU−1(A3′)
n1←→ CU−1(A7′), since U−1 is X1-invariant. Further,

CU−1(A3′) = A7A6A5A4A3A2, (6.3.5)

since we have A7A6A5A4A3A2 ⊆ CU−1(A3′) by (I), and the opposite inclusion fol-
lows from CA8(A3′) = 1 by 6.1(3). Thus, (6.3.5) holds. By symmetry, we also get
CU−1(A7′) = A8A7A6A5A4A3. This implies An1

8 ≤
(
CU−1(A7′)

)n1 = CU−1(A3′) =
A7A6A5A4A3A2. Moreover, [A8, A−1] = 1 and so An1

8 ≤ CU−1(A1′). All in all, we
obtain An1

8 ≤ CA7A6A5A4A3A2(A1′). Next, we prove

CA7A6A5A4A3A2(A1′) = A5A4A3A2. (6.3.6)

By (I), we have A5A4A3A2 ⊆ CA7A6A5A4A3A2(A1′). Therefore, it remains to
show that CA7A6(A1′) = 1 holds. Let a7a6 ∈ CA7A6(A1′) with a7 ∈ A7 and
a6 ∈ A6. Then we have 1 = [a7a6, a1′ ] = [a7, a1′ ]

a6 [a6, a1′ ] for each a1′ ∈ A1′ .
Thus, [a7, A1′ ] ≤ A3′ , since [A6, A1′ ] ≤ A3′ and [A3′ , A6] = 1. Suppose a7 6= 1.
Then A3′A1′ is 〈a7, A−7〉 = X7-invariant. Combining 3.5 and 3.6, this yields
[A4, A−7′ ] = 1, contradicting CA−7′

(A4) = 1. Further, a6 = 1, since otherwise we
get a contradiction to 6.1(3). Hence, (6.3.6) holds.

Therefore, An1
8 ≤ A5A4A3A2, and an application of the nilpotence argument

yields An1
8 ≤ A4A3A2, since [X5, X1] = 1 by (I). Thus, An1

8 ≤ CA4A3A2(A−7′), since
[A8, A−3′ ] = 1 by (I) and An1

−3′ = A−7′ by (6.3.2). This implies An1
8 ≤ A3A2, as
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[A3A2, A−7′ ] = 1 by (I) and CA4(A−7′) = 1 by 6.1(3). Finally, we will conclude
An1

8 ≤ A2.
Suppose there exists an a8 ∈ A8 with an1

8 = a3a2 for some a2 ∈ A2 and for
some a3 ∈ A]

3. Then A−7′ = An1

−3′ ≥ [a8, A−5′ ]
n1 = [a3a2, A−5′ ]. This implies

[a3, A−5′ ] ≤ A−7′ , since [A2, A−5′ ] ≤ A−7′ and [A−7′ , A2] = 1. Therefore, A−7′A−5′

is 〈a3, A−3〉 = X3-invariant and so [X3, A−5′ ] = 1 by 3.5. Thus, [A−8, A−3′ ] = 1 by
3.6, contradicting CA−3′

(A−8) = 1. Therefore, An1
8 ≤ A2. Analogously, An1

2 ≤ A8.
Hence, (6.3.3) holds, and, by symmetry, we also get (6.3.4).

Step 4: We prove

A6
n1←→ A4 (6.3.7)

and

A−4
n1←→ A−6. (6.3.8)

We obtain CM−1(A8) = A7′A6A5′A4
n1←→ CM−1(A2) = A6A5′A4A3′ , since CA3′

(A8)
= 1 = CA7′

(A2), A7′A6A5′A4 ≤ CM−1(A8) by (I), A6A5′A4A3′ ≤ CM−1(A2) by (I)

and A8
n1←→ A2 by Step 3. From this we analogously obtain CCM−1

(A8)(A2) =

A6A5′A4
n1←→ CCM−1

(A2)(A8) = A6A5′A4, i.e. A6A5′A4 is invariant under n1. Fi-

nally, we show that CA6A5′A4(A−2) = A6 and CA6A5′A4(A−8) = A4. By (I), we get
A6 ⊆ CA6A5′A4(A−2). To obtain the opposite conclusion, we show CA5′A4(A−2) =
1. Let a5′a4 ∈ CA5′A4(A−2) with a5′ ∈ A5′ and a4 ∈ A4. Then we have 1 =
[a5′a4, a−2] = [a5′ , a−2]

a4 [a4, a−2] for each a−2 ∈ A−2. This implies [a4, A−2] ≤ A7′ ,
since [A5′ , A−2] ≤ A7′ and [A7′ , A4] = 1. Suppose a4 6= 1. Then A−2A−1′A7′ is
〈a4, A−4〉 = X4-invariant. Thus, An4

−2 ≤ A6 ∩ U−6 = 1 by 3.1(3), a contradic-
tion. Moreover, a5′ = 1, since CA5′

(A−2) = 1. Analogously, CA6A5′A4(A−8) = A4.
Hence, we get (6.3.7), as A6A5′A4 is invariant under n1 and by (6.3.4). By sym-
metry, we also have (6.3.8).

Step 5: By Step 2, Step 4 and 6.1(2), we have

A−1′ = [A6, A−3′ ]
n1←→ [A4, A−7′ ] = A1′ .

Finally, we show

A7
n1←→ A3 (6.3.9)

and

A−7
n1←→ A−3. (6.3.10)

By Step 3, we have CU−1(A7′) = A8A7A6A5A4A3 and CU−1(A3′) = A7A6A5A4A3

A2.

Further, we obtain from this CCU−1
(A3′ )

(A7′) = CCU−1
(A7′ )

(A3′) = A7A6A5A4A3,
i.e. M := A7A6A5A4A3 is invariant under n1. Thus, arguing as in Step 3, we
get CM(A−1′) = A7A6A5 and CM(A1′) = A5A4A3. Using the nilpotence argu-
ment, this implies A7A6

n1←→ A4A3. By (6.3.2), we obtain A7 = CA7A6(A−3′)
n1←→
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CA4A3(A−7′) = A3, because [A7, A−3′ ] = 1 = [A3, A−7′ ] by (I) and CA6(A−3′) = 1 =
CA4(A−7′) by 6.1(3). Thus, (6.3.9) holds. By symmetry, we also obtain (6.3.10).

Hence, we have An1
β = Aβw1 for each β ∈ Φ̃. �

By 6.2 and 6.3, condition (III) is satisfied, if 1.2 (B) does not hold. Hence, G is
in this case of type 2F4 by [10, Theorem 1].

Finally, we analyse 1.2 (A) in detail. We have already seen in Section 4 that
the Aα, α ∈ J , are all elementary Abelian 2-groups in this case. By 6.1, an
application of 2.1(7) to the operation of Xα on Wα, α ∈ J , yields that the Aβ,
β ∈ Φ̃\Φ, are also elementary Abelian 2-groups. The restrictions of the surjective
homomorphism σ : G→ G described on page 26 to root subgroups Ar are injective

(since ker σ ≤ H, where H :=
〈
Hr|r ∈ Φ̃

〉
with Hr := NXr(Ar) ∩ NXr(A−r)).

Since a root subgroup of a Moufang octagon is of exponent at most 4, we have
a4

γ = 1 for each aγ ∈ Aγ with γ ∈ Φ\J . All in all, we get a far reaching conformity
with the properties of root subgroups corresponding to Moufang octagons (see
[17]).
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