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Introduction

Geometric transversal theory mainly studies affine subspaces of some dimension
k, 0 ≤ k ≤ n− 1, that intersect every member of a given family of convex sets in
Rn (see, e. g., the handbook [2] for general references). Significantly less attention
in the literature is given to more general, convex transversals, whose study is
related to matroids and combinatorial optimization (see, for example, [3],[5],[6]).
We recall that a set X ⊂ Rn is a transversal of a given family F = {S1, . . . , Sk}
of nonempty sets provided X ∩ Si 6= ∅ for all i = 1, . . . , k. A transversal is called
convex if it is a convex set.

Our interest in convex transversals is partly motivated by the paper [6], whose
main geometric ingredient is the assertion that the intersection of all convex trans-
versals of a given family of n + 1 linear segments in Rn is an n-simplex, provided
that it has nonempty interior. The following theorem shows that the nature of
this assertion is far more general.

Theorem 1. For any family F = {S1, . . . , Sk} of nonempty sets in Rn, the in-
tersection, T (F), of convex transversals of F is a convex polytope.
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Equivalently, Theorem 1 states that the intersection of convex polytopes of the
form conv {x1, . . . , xk}, where x1 ∈ S1, . . . , xk ∈ Sk, is again a convex polytope.
(See [10] for some other classes of convex polytopes whose intersections are again
convex polytopes.) It would be interesting to establish an upper bound for the
number of vertices (or j-faces) of the polytope T (F) as a function of n and k. We
will show that for k = n+1, the intersection of the convex transversals is a simplex
provided it is n-dimensional. We would certainly like to be able to describe T (F)
as an intersection of closed halfspaces that support some subfamilies of F . The
difficulty of this problem, even when T (F) is n-dimensional, is partly caused by
lack of results on support hyperplanes of finite families of convex sets in Rn. Using
existing results on support properties of small families of convex bodies (see [8]),
we are able to characterize the hyperplanes spanned by the facets of the simplex
as those hyperplanes which support n of the sets S1, . . . , Sn+1 and separate those
n sets from the remaining one.

Theorem 2. Let F = {S1, . . . , Sn+1} be a family of nonempty sets in Rn such
that the intersection T (F) of convex transversals of F has dimension n. Then
T (F) is a simplex. If, in addition, the sets Si are bounded, then this simplex is
the intersection of n + 1 closed halfspaces supporting, respectively, the subfamilies
F \ {Si}, i = 1, . . . , n + 1.

The proof of Theorem 1 is based on the following result of proper interest. In what
follows, by polyhedron we mean a finite union of intersections of the form ∩Qi,
where each Qi is either a closed or an open halfspace in Rn. A convex polyhedron
is a polyhedron which is a convex set. Finally, a convex polytope is the convex
hull of finitely many points.

Theorem 3. If C1, . . . , Ck are any convex sets in Rn, then the set

S = conv (Rn \ (C1 ∪ · · · ∪ Ck))

is a convex polyhedron.

In particular, if the complement of a convex set C ⊂ Rn is also convex, then both
C and Rn \ C are convex polyhedra as defined above (see [4]).

We conclude this section with the list of necessary notation. In what follows,
the usual abbreviations aff, bd, conv, dim, int, pos, and rint, are used for affine
hull, boundary, convex hull, dimension, interior, positive hull, and relative interior
(taken in the affine hull), respectively. The notations [x, y], ]x, y[, (x, y), [x, y)
mean, respectively, closed line interval, open line interval, the line passing through
different points x, y, and the closed halfline with apex x passing through the point
y. For any vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, the dot product
x·y denotes the sum x1y1 + · · ·+ xnyn (also called the scalar product of x and y).
To distinguish similarly looking elements, we write 0 for number zero, and 0 for
zero point (also called the origin) of Rn: 0 = (0, . . . , 0).
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Proof of Theorem 1

Clearly,
T (F) = ∩{conv {x1, . . . , xk} | x1 ∈ S1, . . . , xk ∈ Sk}. (1)

Assuming that T (F) 6= ∅, let H be the collection of closed halfspaces of Rn which
are transversals of the family F .

Lemma 1. The following equality holds:

T (F) = ∩{X ⊂ Rn | X ∈ H}. (2)

Proof. Since the inclusion ∩{X ⊂ Rn | X ∈ H} ⊂ T (F) trivially holds, it
remains to establish the opposite inclusion. From (1) it follows that T (F) is a
compact convex set. If x /∈ T (F), then we may choose a closed halfspace H ⊂ Rn

such that x /∈ H and T (F) ⊂ H. Because H is a transversal of F , we have
x /∈ ∩{X ⊂ Rn | X ∈ H}. Thus T (F) ⊂ ∩{X ⊂ Rn | X ∈ H}. �

In view of Lemma 1, we may assume that S1, . . . , Sk are convex sets, because a
closed halfspace is a transversal of F if and only if it is a transversal of the family
{conv S1, . . . , conv Sk}. Also, we may assume that the sets S1, . . . , Sk are closed.
Indeed, let H be a closed halfspace which is a transversal of {cl S1, . . . , cl Sk}.
Expressing H as the intersection Hα of closed halfspaces properly containing H,
we observe that each Hα is a transversal of F .

Given a point x ∈ Rn, let

Hx = {(u, t) ∈ Rn × R | u·x ≤ t}.

For (u, t) ∈ Rn+1, with u ∈ Rn and t ∈ R, put

G(u, t) = {x ∈ Rn | u·x ≤ t}.

Clearly,
x ∈ G(u, t) if and only if (u, t) ∈ Hx. (3)

Also, Hx is a closed halfspace of Rn+1, and G(u, t) is a closed halfspace of Rn if
u 6= 0. For every i = 1, . . . , k, let

Yi = {(u, t) ∈ Rn+1 | G(u, t) ∩ Si 6= ∅}.

From (3), it is clear that
Yi = ∪{Hx | x ∈ Si}. (4)

For λ > 0 and (u, t) ∈ Yi, we have (λu, λt) ∈ Yi. Thus the sets Y1, . . . , Yk are
closed cones with common apex 0 .

Lemma 2. The sets

Rn+1 \ Yi = ∩{Rn+1 \Hx | x ∈ Si}, i = 1, . . . , k,

are convex.
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Proof. That the equality holds is clear from (4). The set is convex, being an
intersection of open halfspaces. �

Put Y = Y1 ∩ · · · ∩ Yk. By the above, Y is a cone with apex 0 , and

Y = {(u, t) ∈ Rn+1 | G(u, t) is a transversal of F},

which, together with Lemma 1, implies that

T (F) = ∩{G(u, t) | (u, t) ∈ Y }. (5)

Lemma 3. The set Rn+1 \ Y is the union of k convex sets.

Proof. It is clear that Rn+1 \ Y coincides with

(Rn+1 \ Y1) ∪ · · · ∪ (Rn+1 \ Yk),

and the convexity of these sets is given by Lemma 2. �

Lemma 3 shows that Rn+1 \ Y is a union of k convex cones with common apex
0 , and Theorem 3 (see the proof below) implies that the set Z = cl conv Y is a
closed convex polyhedral cone with apex 0 .

Lemma 4. We have

T (F) = ∩{G(u, t) | (u, t) ∈ Z}.

Proof. By (5), since Y ⊂ Z, we obtain

∩{G(u, t) | (u, t) ∈ Z} ⊂ T (F).

Assume for a moment the existence of a point

x0 ∈ T (F) \ ∩ {G(u, t) | (u, t) ∈ Z}.

Then there is a point (u0, t0) ∈ Z such that x0 ∈ T (F) \G(u0, t0), which implies
the inequality u0 ·x0 > t0. Since Rn \ G(u0, t0) is an open halfspace, there is a
point (u′

0, t
′
0) ∈ conv Y such that x0 ∈ Rn \G(u′

0, t
′
0); that is, u′

0 ·x0 > t′0. Write

(u′
0, t

′
0) = λ1(u1, t1) + · · ·+ λk(uk, tk)

as a convex combination of some points (ui, ti) ∈ Yi, i = 1, . . . , k. Then there is
an index j ∈ {1, . . . , k} such that uj ·x0 > tj. Indeed, otherwise we would have

u′
0 ·x0 = (λ1u1 + · · ·+ λkuk)·x0 ≤ λ1t1 + · · ·+ λktk = t′0,

a contradiction. Thus x0 ∈ T (F) \G(uj, tj), which is impossible by the definition
of Yj. Hence the statement holds. �

Since Z is a closed convex polyhedral cone, there is a finite set W ⊂ Z such that
Z = pos W .
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Lemma 5. We have

T (F) = ∩{G(u, t) | (u, t) ∈ W}.

Proof. Indeed, T (F) ⊂ ∩{G(u, t) | (u, t) ∈ W} because of W ⊂ Z. Assume for
a moment the existence of a point

x0 ∈ ∩{G(u, t) | (u, t) ∈ W} \ T (F).

By Lemma 4, there is a point (u0, t0) ∈ Z such that x0 /∈ G(u0, t0), which implies
the inequality u0 ·x0 > t0. Write

(u′
0, t

′
0) = µ1(u1, t1) + · · ·+ µm(um, tm)

as a positive combination of points (ui, ti) ∈ W , i = 1, . . . ,m. Put

µ = µ1 + · · ·+ µm, (u′
i, t

′
i) = µi(ui, ti), λi = µi/µ, i = 1, . . . ,m.

Then (u′
0, t

′
0) is a convex combination of the points (u′

i, t
′
i), i = 1, . . . ,m:

(u′
0, t

′
0) = λ1(u

′
1, t

′
1) + · · ·+ λm(u′

m, t′m).

Since
x0 ∈ G(ui, ti) = G(µiui, µiti) = G(u′

i, t
′
i),

we have u′
i ·x0 ≤ t′0 for all i = 1, . . . ,m. Hence

x0 ·u0 = (λ1u
′
1 + · · ·+ λku

′
k)·x0 ≤ λ1t

′
1 + · · ·+ λkt

′
k = t0,

a contradiction. Thus the equality holds. �

To finalize the proof of Theorem 1, we observe that T (F) is a convex polytope as
a compact convex set which is an intersection of finitely many closed halfspaces
(see Lemma 5).

Proof of Theorem 2

Suppose now that k = n + 1, so that F = {S1, . . . , Sn+1}. By the remarks that
follow Lemma 1, the sets S1, . . . , Sk+1 are assumed to be closed and convex. Since
dim T (F) = n, any transversal of F is n-dimensional. Put

T̃ = ∩{int C | C is a convex transversal of F}.

Clearly T̃ ⊂ T (F). Since each convex transversal C of F satisfies the inclusion

int T (F) ⊂ int C, we have int T (F) ⊂ T̃ and T (F) = cl T̃ . Let

Z = conv (S1 ∪ · · · ∪ Sn+1)

and
Zj = conv (S1 ∪ · · ·Sj−1 ∪ Sj+1 · · · ∪ Sn+1), j = 1, . . . , n + 1.
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Lemma 6. We have
T̃ = Z \ (Z1 ∪ · · · ∪ Zn+1).

Proof. Let x ∈ T̃ . Choosing any points p1 ∈ S1, . . . , pn+1 ∈ Sm+1, we have
x ∈ int conv {p1, . . . , pn+1} ⊂ Z. Hence T̃ ⊂ Z. Suppose, for contradiction, that
x ∈ Zj for some index j ∈ {1, . . . , n + 1}. Then there are some points

ui ∈ Si, i = 1, . . . , n + 1, i 6= j,

such that x ∈ conv U , where

U = {u1, . . . , uj−1, uj+1, . . . , un+1}.

Since |U | ≤ n, there is a hyperplane H containing U . Then one of the two closed
halfspaces bounded by H, say P , is a transversal of F . Then x ∈ H = bd P in
contradiction with the assumption x ∈ T̃ . It follows that

T̃ ⊂ Z \ (Z1 ∪ · · · ∪ Zn+1).

To prove the opposite inclusion, choose any point x /∈ T̃ . We are going to show
that x /∈ Z\(Z1∪· · ·∪Zn+1). Assume that this is not the case, so that x ∈ Z\(Z1∪
· · · ∪ Zn+1). The inclusion x ∈ Z = conv (S1 ∪ · · · ∪ Sn+1) and Carathéodory’s
theorem (see [1]) imply the existence of a set Q ⊂ S1 ∪ · · · ∪ Sn+1 such that
|Q| ≤ n + 1 and x ∈ conv Q. Since x /∈ Z1 ∪ · · · ∪Zn+1, it follows that |Q| = n + 1
and x lies in the convex hull of no proper subset of Q. Thus Q is contained in
no hyperplane. Furthermore, |Q ∩ Si| = 1 for all i = 1, . . . , n + 1. Hence conv Q,
being of dimension n, is an n-simplex.

Since x /∈ T̃ , there exists a convex polytope

P = conv {p1, . . . , pn+1}, p1 ∈ S1, . . . , pn+1 ∈ Sn+1,

such that x /∈ int P . Then x /∈ P because of P ⊂ int P ∪ Z1 ∪ · · · ∪ Zn+1.
By Radon’s theorem (see [9]), there is a partition of {p1, . . . , pn+1} into disjoint
subsets, say {A, B}, such that conv (x ∪ A) ∩ conv B 6= ∅. Choose a point

y ∈ conv (x ∪ A) ∩ conv B.

We observe that x 6= y because of y ∈ conv B ⊂ P . Since x ∈ conv Q and x 6= y,
there is a point z ∈ bd conv Q such that x ∈ [y, z]. Let w ∈ conv A be such that
y ∈ [x, w]. Let k ∈ {1, . . . , n + 1} be an index such that z ∈ Zk. If pk ∈ A,
then y ∈ Zk because of y ∈ conv B, and if pk ∈ B, then w ∈ Zk because of
w ∈ conv A. It follows that x ∈ [y, z] ∩ [w, z] ⊂ Zk, contradicting the assumption
x ∈ Z \ (Z1 ∪ · · · ∪ Zn+1). �

Lemma 7. If T (F) has nonempty interior, then T (F) is an n-simplex. Fur-
thermore, T (F) can be expressed as the intersection of n + 1 closed halfspaces
H1, . . . , Hn+1 such that each Hi is the (unique) closed halfspace whose boundary
hyperplane supports Zi and separates Zi from T . Finally,

Si ⊂ Rn \ (∪{ int Hj | i = 1, . . . , n + 1, j 6= i}), i = 1, . . . , n + 1.
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Proof. As it is shown in the proof of Lemma 6, T̃ and Zj are disjoint convex

sets. Choose a closed halfspace Hj that contains T̃ such that Zj ⊂ Rn \ int Hi,
j = 1, . . . , n + 1. Hence

Si ⊂ ∩{Zj | i = 1, . . . , n + 1, j 6= i}
⊂ Rn \ (∪{ int Hj | i = 1, . . . , n + 1, j 6= i}), i = 1, . . . , n + 1.

Since every halfspace Hi, i = 1, . . . , n + 1, contains T̃ , we have

T (F) = cl T̃ ⊂ H1 ∩ · · · ∩Hn+1.

To prove the opposite inclusion, choose any points x /∈ T (F) and u ∈ int T ⊂ T̃ .
Then the halfline [u, x) intersects the boundary of T (F), which lies in cl (Z1 ∪
· · · ∪ Zn+1). Then there is an index k ∈ {1, . . . , n + 1} such that [u, x) intersects
cl Zk at some point w. In this case, u ∈ int T ⊂ int Hk and w ∈ Rn \ int Hk, which
implies that x /∈ Hk. Hence

T (F) = H1 ∩ · · · ∩Hn+1.

Since int T (F) 6= ∅, we conclude that T (F) is an n-simplex and the halfspaces
H1, . . . , Hn+1 are uniquely determined. �

To complete the proof of Theorem 2, it remains to consider the case when the sets
S1, . . . , Sn+1 are compact. We will say that a closed halfspace Q ⊂ Rn supports a
set C provided cl C has nonempty intersection with Q but not with the interior
of Q. Furthermore, a closed halfspace Q supports a family of sets provided each
of the sets is supported by Q. The next lemma is a particular case of a result on
supporting hyperplanes of a family of n convex bodies in Rn proved in [8].

Lemma 8. Let K = {K1, . . . , Kn} be a family of n compact convex sets in Rn

having no convex transversal of dimension less than n− 1. Then there are exactly
two closed halfspaces each supporting K. �

Lemma 9. For every i = 1, . . . , n + 1 there is a unique closed halfspace Pi con-
taining Si and supporting the family F \ {Si}.

Proof. Let, for example, i = n + 1. If S1 ∪ · · · ∪ Sn lies in a hyperplane H,
then the closed halfspace Pn+1 bounded by H and containing Sn+1 satisfies the
conclusion. Hence we may assume, in what follows, that S1 ∪ · · · ∪Sn does not lie
in a hyperplane.

By Lemma 8, there are two closed halfspaces, P ′ and P ′′, both supporting the
family F \{Sn+1}. Since int T (F) 6= ∅, the set Sn+1 is disjoint from bd P ′∪bd P ′′.
We claim that Sn+1 lies in the interior of one of the halfspaces P ′, P ′′. Indeed,
assume for a moment that Sn+1 ⊂ Rn \ (int P ′ ∪ int P ′′). Since Sn+1 ∩ (bd P ′ ∪
bd P ′′) = ∅, we have Sn+1 ⊂ Rn \ (P ′ ∪ P ′′). Choose a point xn+1 ∈ Sn+1 and
denote by H the hyperplane through xn+1 such that:
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(a) H is parallel to bd P ′ if bd P ′ and bd P ′′ are parallel,

(b) H contains bd P ′ ∩ bd P ′′ if bd P ′ and bd P ′′ are not parallel.

Because the family F \ {Sn+1} is supported by both bd P ′ and bd P ′′, the hy-
perplane H intersects every set of this family. Hence H is a transversal of F ,
contradicting int T (F) 6= ∅. The obtained contradiction shows that Sn+1 lies in
the interior of (exactly) one of the halfspaces P ′, P ′′. �

Lemma 10. If P1, . . . , Pn+1 are the halfspaces determined by Lemma 9, then
T (F) = P1 ∩ · · · ∩ Pn+1.

Proof. Let Q = P1 ∩ · · · ∩ Pn+1. Since each of P1, . . . , Pn+1 is a transversal of F ,
we have T (F) ⊂ Q. Therefore Q is a closed convex polyhedron with nonempty
interior.

To prove the opposite inclusion Q ⊂ T (F), choose any points z1 ∈ S1, . . . ,
zn+1 ∈ Sn+1. Clearly, z1, . . . , zn+1 are affinely independent and their convex hull
C = conv {z1, . . . , zn+1} is an n-simplex. As it is shown in the proof of Lemma 9,
the halfspace Pi contains zi in its interior, and the (n− 1)-face

Fi = conv {z1, . . . , zi−1, zi+1, . . . , zn+1},

of C has empty intersection with int Pi, i = 1, . . . , n+1. This implies the inclusion,
Q ⊂ C. Since T (F) is the intersection of the simplices conv {x1, . . . , xn+1} with
an arbitrary choice of points x1 ∈ S1, . . . , xn+1 ∈ Sn+1, we have Q ⊂ T (F). �

Proof of Theorem 3

We study the convex hull of the complement of the convex sets C1, . . . , Ck. Given
a point x ∈ Rn, put

λ(x) = {i ∈ {1, . . . , k} | x ∈ Ci}.

We begin with the special case in which the sets Ci are assumed to be closed.

Lemma 11. Let C1, . . . , Ck ⊂ Rn be closed convex sets such that the set

S = conv (Rn \ (C1 ∪ · · · ∪ Ck))

is nonempty and bounded. If y and z are distinct exposed point of the set P = cl S,
then λ(y) 6⊂ λ(z).

Proof. The statement is trivial for n = 1, so we may put n ≥ 2. Assume, for
contradiction, that λ(y) ⊂ λ(z) for a pair of distinct exposed points y and z of P .
Let H ⊂ Rn be a closed halfspace with the properties P ⊂ H and P ∩bd H = {y}.
Choose an open ball U centered at y such that U ∩ Ci = ∅ for all i /∈ λ(z).

Put T = conv ({z}∪ (U \H)). We claim that T \{z} ⊂ C1∪ · · ·∪Ck. Indeed,
let w ∈ T \ {z}. Then there is a point u ∈ U \ H such that w ∈ [u, z], and
we may assume (since U \ H is open) that u 6= w. Because u /∈ P , there is an
index j ∈ {1, . . . , k} such that u ∈ Cj. Thus j ∈ λ(y) by the choice of U . From
λ(y) ⊂ λ(z) we conclude that z ∈ Cj. Hence w ∈ [u, z] ⊂ Cj ⊂ C1 ∪ · · · ∪ Ck.
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Since T \ {z} ⊂ C1 ∪ · · · ∪ Ck and the union C1 ∪ · · · ∪ Ck is a closed set, we
have T ⊂ cl (T \{z}) ⊂ C1∪· · ·∪Ck. Furthermore, z ∈ int H because z ∈ P \{y}.
Then y ∈ int T ⊂ int (C1 ∪ · · · ∪ Ck). In this case, y cannot be an exposed point
of P , a contradiction. �

Lemma 12. There exists a function α(k) such that, whenever C1, . . . , Ck ⊂ Rn

are closed convex sets for which the set

S = conv (Rn \ (C1 ∪ · · · ∪ Ck))

is bounded, the set P = cl S is a convex polytope with α(k) or fewer vertices.

Proof. This is an immediate corollary of the preceding lemma. Using Sperner’s
Lemma, we may put α(k) =

(
k

b k
2
c

)
. �

Lemma 13. There exists a function β(m) for which the following holds. Let
X1, . . . , Xm be convex sets such that cl X1 ∪ · · · ∪ cl Xm = Rn. Then there exists
a family of β(m) or fewer proper affine subspaces of Rn whose union covers Rn \
(X1 ∪ · · · ∪Xm).

Proof. We show that β(m) = 2m − 1 is such a function. For each nonempty set
Ω ⊂ {1, . . . ,m}, denote by AΩ the affine hull of the convex set YΩ = ∩{cl Xi | i ∈
Ω} (so that AΩ = ∅ if YΩ = ∅). Let

H = {Ω ⊂ {1, . . . ,m} | ∅ 6= AΩ 6= Rn}.

We claim that
Rn \ (X1 ∪ · · · ∪Xm) ⊂ ∪{AΩ | Ω ∈ H}. (6)

Indeed, choose a point x ∈ Rn \ (X1 ∪ · · · ∪Xm) and put

Ω′ = {i ∈ {1, . . . ,m} | x ∈ cl Xi}.

Clearly, Ω′ 6= ∅ and x ∈ YΩ′ ⊂ AΩ′ . We are going to show that AΩ′ 6= Rn. For
this, it is sufficient to verify that int YΩ′ = ∅. Suppose this is not the case and
choose a point y ∈ int YΩ′ . Let U be an open ball centered at x and disjoint from
∪{cl Xi | i /∈ Ω′}.

Choose a point z ∈ U such that x ∈ [y, z[. Clearly, z /∈ ∪{cl Xi | i /∈ Ω′} by the
choice of U . If there existed an index i ∈ Ω′ with z ∈ cl Xi, then x ∈ [y, z[⊂ int Xi

due to y ∈ int YΩ′ ⊂ int Xi. But the inclusion x ∈ int Xi is impossible due
to the assumption x ∈ Rn \ (X1 ∪ · · · ∪ Xm). Hence z /∈ ∪{cl Xi | i ∈ Ω′}.
Summing up, z ∈ Rn \ (cl X1 ∪ · · · ∪ cl Xm), which contradicts the hypothesis
cl X1 ∪ · · · ∪ cl Xm = Rn. Thus AΩ′ 6= Rn and (6) holds.

Since there are fewer than 2m nonempty subsets of {1, . . . ,m}, the family H
has fewer than 2m elements. �

Using Sperner’s Lemma, it is easy to show that the function β(m) above may be
taken to be

(
k

b k
2
c

)
.
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Lemma 14. Let C1, . . . , Ck ⊂ Rn be convex sets such that the set

S = conv (Rn \ (C1 ∪ · · · ∪ Ck))

is bounded. Then the set P = cl S is a convex polytope. Furthermore, there exists
a function η(n, k) such that the number of vertices of P is bounded by η(n, k).

Proof. We proceed by induction on n. The statement is clearly true for n = 1.
Suppose that n > 1 and that the result holds for n− 1. Let η = η(n− 1, k) be a
bound on the number of vertices of P in the lower-dimensional case. Put

Y0 = conv (Rn \ (cl C1 ∪ · · · ∪ cl Ck)).

Lemma 12 implies that cl Y0 is a convex polytope with α(k) or fewer vertices.
Obviously, Y0 ⊂ P and cl Y0 ∪ cl C1 ∪ · · · ∪ cl Ck = Rn. By Lemma 13, there are
proper affine subspaces A1, . . . , Am ⊂ Rn, m ≤ β(k), such that

Rn \ (Y0 ∪ C1 ∪ · · · ∪ Ck) ⊂ A1 ∪ · · · ∪ Am.

Without loss of generality, we may assume that all A1, . . . , Am are hyperplanes.
Put

Yi = conv (Ai \ (C1 ∪ · · · ∪ Ck)), i = 1, . . . ,m.

By the inductive assumption, each set cl Yi, i = 1, . . . ,m, is a convex polytope
with η(n− 1, k) or fewer vertices. Hence the set

Q = cl conv (Y0 ∪ Y1 ∪ · · · ∪ Ym) = conv (cl Y0 ∪ cl Y1 ∪ · · · ∪ cl Ym)

is a convex polytope with at most α(k) + β(k)η(n− 1, k) vertices.
Put η(n, k) = α(k) + β(k)η(n − 1, k). To complete the proof, we show that

P = Q. Indeed, since Yi ⊂ P for all i = 0, 1, . . . ,m, we have Q ⊂ P . Conversely,
let x ∈ Rn\(C1∪· · ·∪Ck). Then either x ∈ Y0, or there is an index i ∈ {1, . . . ,m}
such that x ∈ Yi. Hence

Rn \ (C1 ∪ · · · ∪ Ck) ⊂ Y0 ∪ Y1 ∪ · · · ∪ Ym,

and P = cl conv (Rn \ (C1 ∪ · · · ∪ Ck)) ⊂ cl conv (Y0 ∪ Y1 ∪ · · · ∪ Ym) = Q. �

Lemma 15. Let Q1 ⊂ Q2 ⊂ · · · be an ascending sequence of convex polytopes in
Rn, each with m or fewer facets. Then Q = cl (Q1 ∪Q2 ∪ · · · ) is a closed convex
polyhedron with m or fewer facets.

Proof. Since dim Q1 ≤ dim Q2 ≤ · · · ≤ n, we may assume, without loss of
generality, that all polytopes Q1, Q2, . . . have dimension n. Assume also that
the origin 0 of Rn lies in int Q1. Then the polar polytopes form a descending
sequence, Q◦

1 ⊃ Q◦
2 ⊃ · · · , each of them having m or fewer vertices. Clearly,

Q◦ = Q◦
1 ∩Q◦

2 ∩ · · · . Hence Q◦ is compact.
Assuming, for contradiction, the existence of m + 1 distinct exposed points of

Q◦, we can choose m + 1 pairwise disjoint neighborhoods U1, . . . , Um+1 of these
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points. Then there should be an index i0 such that any polytope Q◦
i , i ≥ i0,

has an exposed point in each of the sets U1, . . . , Um+1, which is impossible by the
above. Hence Q◦ is a convex polytope with m or fewer exposed points. So Q◦ is
a convex polytope with m or fewer vertices, and Q is a convex polyhedron with
m or fewer facets. �

Lemma 16. For any convex sets C1, . . . , Ck ⊂ Rn the set

P = cl conv (Rn \ (C1 ∪ · · · ∪ Ck))

is a convex polyhedron.

Proof. Choose an ascending sequence of simplices T1 ⊂ T2 ⊂ · · · whose union
is Rn. Express every simplex Ti, i = 1, 2, . . ., as the intersection of n + 1 closed
halfspaces Hi,1, . . . , Hi,n+1. By Lemma 14, the sets

Pi = cl conv
(
Rn \ (C1 ∪ · · · ∪ Ck ∪Hi,1 ∪ · · · ∪Hi,n+1)

)
, i = 1, 2, . . . ,

are convex polytopes, and there is a common bound η(n, k) on the number of
vertices of every Pi. The same is true for the numbers of facets of the Pi’s, albeit
with a different upper bound. Since P1 ⊂ P2 ⊂ · · · and P = cl (P1 ∪ P2 ∪ · · · ),
Lemma 15 implies that P is a convex polyhedron. �

Lemma 17. For any convex sets C1, . . . , Ck ⊂ Rn the set

S = conv (Rn \ (C1 ∪ · · · ∪ Ck))

is a convex polyhedron.

Proof. We proceed by induction on the dimension of S. The statement is trivial
when dim S = 0. Suppose that dim S > 0 and that the result holds in all smaller-
dimensional cases. By Lemma 16, cl S is a convex polyhedron. Since S is convex,
its relative interior coincides with that of cl S. Clearly, S is the union of its relative
interior and the sets A ∩ S, where A is an affine subspace spanned by one of the
finitely-many facets of cl S. For any such affine subspace A, we have

A ∩ S = conv (A \ (A ∩ C1) ∪ · · · ∪ (A ∩ Ck)),

so, by the inductive assumption, A ∩ S is a finite union of relatively open convex
polyhedra. Thus S is a convex polyhedron. �

Notes

Several combinatorial questions are raised but not treated in the foregoing. In
particular, we note the problems of finding the best (smallest) functions α, β, and
η from Lemmas 12–14. The paper [7] contains some material related to this. In
particular, it can be seen that, unlike the situation for α and β, the dependence
of η upon the dimension is necessary, for, in each dimension n ≥ 1, it is possible
to find three convex sets in Rn such that the complement of their union is the set
of vertices of an n-simplex.
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