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1. Introduction

Let G be a group and F a field. For any FG-module V , let L(V ) be the free Lie
algebra on V (the free Lie algebra freely generated by any basis of V ), and regard
L(V ) as an FG-module by extending the action of G on V so that G acts on L(V )
by Lie algebra automorphisms. For each positive integer n, the nth homogeneous
component Ln(V ) is a submodule of L(V ), called the nth Lie power of V .

In the case where V is finite-dimensional the modules Ln(V ) have been studied
in considerable depth: see [3] and the papers cited there. The results are best
when F has characteristic 0, but there has recently been substantial progress in
the case of prime characteristic p. In [3], a general decomposition theorem was
obtained which reduces the study of arbitrary Lie powers of V to the study of Lie
powers of the form Lpi

(Br), where, for each r, Br is a certain direct summand of
the rth tensor power V ⊗r. This is a reduction to Lie powers of p-power degree.
Information about the isomorphism types of the modules Br is given in [4] and
[2].

Recently, Marianne Johnson and Ralph Stöhr have studied torsion in certain
‘free central extensions’ of groups and have found that they can make striking use
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of the decomposition theorem of [3] and the results of [4] and [2] provided that
these results are available for infinite-dimensional modules V (see [9] and [10]).
The purpose of the present paper is to derive such results by utilising the results in
the finite-dimensional case and some facts about modules for Schur algebras. One
attractive consequence of the arguments here is a reformulation and sharpening of
the previous results in terms of idempotents of the group algebras of the symmetric
groups. This gives results that are uniform for all fields of the same characteristic.

2. Preliminaries

All modules considered in this paper will be right modules, except for left modules
arising from the action of symmetric groups on tensor powers, as explained below.
We shall use the Schur algebras associated with the general linear group, as defined
in [6]. However, [6] treats only infinite fields and uses left modules. Thus we give
a self-contained summary of the basic facts (following the treatment in [3, §2]).

Let F be a field. Let n and r be positive integers, and let I(n, r) be the set
of all ordered r-tuples i = (i1, . . . , ir), where i1, . . . , ir ∈ {1, . . . , n}. Let AF (n, r)
be the homogeneous component of degree r in the polynomial ring over F in
n2 commuting indeterminates cij (1 6 i, j 6 n). Thus AF (n, r) has an F -basis
consisting of the monomials of degree r. For i, j ∈ I(n, r), where i = (i1, . . . , ir)
and j = (j1, . . . , jr), we write ci, j for the monomial ci1j1 · · · cirjr . The ci, j are not
distinct (when n, r > 1) but they give a basis (with repetitions) of AF (n, r).

Let SF (n, r) = HomF (AF (n, r), F ). Therefore SF (n, r) has a basis (with rep-
etitions) consisting of the elements ξi, j (with i, j ∈ I(n, r)), where ξi, j(ci, j) = 1
and ξi, j(ci′, j′) = 0 if ci′, j′ 6= ci, j. Multiplication in SF (n, r) may be defined as in
[6, §2.3]: for ξ, η ∈ SF (n, r),

(ξη)(ci, j) =
∑

k∈I(n,r)

ξ(ci,k)η(ck, j).

In this way SF (n, r) becomes an associative F -algebra with identity element. This
is the Schur algebra of degree r. If E is an extension field of F then we usually
identify E ⊗F SF (n, r) with SE(n, r) in the obvious way.

For g = (aij) ∈ GL(n, F ), define ζg ∈ SF (n, r) by

ζg(ci1j1 · · · cirjr) = ai1j1 · · · airjr ∈ F.

Then (see [6, §2.4]) the map g 7→ ζg extends to an algebra homomorphism

FGL(n, F ) −→ SF (n, r) (2.1)

that is surjective if F is infinite. If U is a (right) SF (n, r)-module then U may be
regarded as a (right) FGL(n, F )-module by means of (2.1), and such FGL(n, F )-
modules are called polynomial modules of degree r.

Let V be an n-dimensional F -space (that is, vector space over F ) with basis
{x1, . . . , xn} and consider the rth tensor power V ⊗r. For i ∈ I(n, r), where i =
(i1, . . . , ir), write xi = xi1 ⊗ · · · ⊗ xir ∈ V ⊗r. Thus the elements xi form a
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basis of V ⊗r. With respect to the basis {x1, . . . , xn}, the identity representation
GL(n, F ) → GL(n, F ) gives V the structure of an FGL(n, F )-module, called the
‘natural’ module. Hence V ⊗r becomes an FGL(n, F )-module under the ‘diagonal’
action of GL(n, F ). It is straightforward to check (see [6, §2.6]) that V ⊗r is a
polynomial module of degree r. Indeed, for all ξ ∈ SF (n, r), we have

xiξ =
∑

j

ξ(ci, j)xj. (2.2)

In particular, with r = 1, V is an SF (n, 1)-module, called the natural module.
We take the symmetric group Σr to act on the right on {1, . . . , r}. Then, if

V is any F -space (of finite or infinite dimension), V ⊗r may be given the structure
of a left FΣr-module by making Σr act on V ⊗r by ‘place permutations’; that is,
for σ ∈ Σr and v1, . . . , vr ∈ V , we take

σ(v1 ⊗ · · · ⊗ vr) = v1σ ⊗ · · · ⊗ vrσ. (2.3)

It is easily seen that the action of FΣr on V ⊗r is faithful when dimV > r.
Let V be an F -space with basis {xi : i ∈ I}, where I is some index set. The

free associative algebra freely generated by {xi : i ∈ I} is denoted by T (V ) and,
for each r, the rth homogeneous component is denoted by T r(V ). However, we
shall write products in T (V ) as tensor products so that T (V ) is thought of as the
‘tensor algebra’ on V and T r(V ) = V ⊗r. Let ψ ∈ EndF (V ). Then, since T (V ) is
free on {xi : i ∈ I}, there is a unique algebra endomorphism ψ∗ of T (V ) such that
vψ∗ = vψ for all v ∈ V . The restriction of ψ∗ to V ⊗r gives ψ⊗r ∈ EndF (V ⊗r), and
it is easy to verify that ψ⊗r commutes with the action of σ on V ⊗r for all σ ∈ Σr.

Let G be a group and let V be an FG-module. Then, for each g ∈ G, the
action of g on V is given by an (invertible) map ψg ∈ EndF (V ). We can make T (V )
into an FG-module by taking the action of g to be the algebra automorphism ψ∗

g .
Thus V ⊗r is a submodule on which g acts as ψ⊗r

g . (This is the ‘diagonal’ action
we have already met.) Hence the actions of FG and FΣr on V ⊗r commute; in
other words, V ⊗r is an (FΣr, FG)-bimodule.

In particular, if V is the natural FGL(n, F )-module, we see that V ⊗r is an
(FΣr, FGL(n, F ))-bimodule. Indeed, from (2.2) and (2.3), it is straightforward
to verify the stronger fact that V ⊗r is an (FΣr, SF (n, r))-bimodule. For u ∈ FΣr,
the right ideal uFΣr of FΣr may be regarded as a (right) FΣr-module.

Lemma 2.1. Let F be a field and r a positive integer. Let e1, . . . , es, f1, . . . , ft

be idempotent elements of FΣr such that there is an isomorphism

e1FΣr ⊕ · · · ⊕ esFΣr
∼= f1FΣr ⊕ · · · ⊕ ftFΣr

of FΣr-modules. (These are ‘external’ direct sums: we do not assume that the
ideals span their direct sums within FΣr.) Then, if A is an F -algebra and M is
an (FΣr, A)-bimodule, there is an isomorphism of A-modules

e1M ⊕ · · · ⊕ esM ∼= f1M ⊕ · · · ⊕ ftM.
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Proof. There is an isomorphism of A-modules α : FΣr ⊗FΣr M → M given by
u⊗ v 7→ uv for all u ∈ FΣr, v ∈M . Let e be an idempotent of FΣr. Since eFΣr

is a direct summand of FΣr, the A-module eFΣr ⊗FΣr M may be regarded as a
direct summand (and hence submodule) of FΣr ⊗FΣr M and α restricts to give
an isomorphism eFΣr ⊗FΣr M

∼= eM . Thus

e1M ⊕ · · · ⊕ esM ∼= (e1FΣr ⊕ · · · ⊕ esFΣr)⊗FΣr M

∼= (f1FΣr ⊕ · · · ⊕ ftFΣr)⊗FΣr M
∼= f1M ⊕ · · · ⊕ ftM,

as required. �

The next lemma is a version of the well-known fact that the Schur functor has a
‘right inverse’: see [6, §6]. However, we have found no reference that gives exactly
what is needed here (with F arbitrary and dimV > r), so we sketch a short
self-contained proof.

Let F be a field and let n and r be positive integers, where n > r. Let
φ : FΣr → SF (n, r) be the linear map satisfying σφ = ξ(1,...,r),(1σ,...,rσ) for all
σ ∈ Σr, and write ξ1 = 1φ. It can be checked from the definition of multiplication
in SF (n, r) that (στ)φ = (σφ)(τφ) for all σ, τ ∈ Σr. If M is an SF (n, r)-module
then it is easily seen that Mξ1 is invariant under (FΣr)φ. Thus Mξ1 becomes a
right FΣr-module, denoted by s(M) (where s indicates the Schur functor).

Lemma 2.2. Let F be a field and r a positive integer. Let V be an F -space of
finite dimension n, where n > r, and regard V ⊗r as an (FΣr, SF (n, r))-bimodule.
Then, for any right FΣr-module U , we have s(U ⊗FΣr V

⊗r) ∼= U .

Proof. Let {x1, . . . , xn} be a basis of V and let Z be the subspace of V ⊗r spanned
by {x1σ ⊗ · · · ⊗ xrσ : σ ∈ Σr}. Clearly there is an isomorphism of F -spaces
θ : FΣr → Z given by σθ = x1σ⊗· · ·⊗xrσ for all σ ∈ Σr. It is easily checked that
s(V ⊗r) = (V ⊗r)ξ1 = Z and that θ is an isomorphism of (FΣr, FΣr)-bimodules.

In particular, Z is injective as a left FΣr-module, hence a direct summand of
V ⊗r. Thus U ⊗FΣr Z is isomorphic to a direct summand W of U ⊗FΣr V

⊗r, where
W is the subspace of U ⊗FΣr V

⊗r spanned by {u⊗ z : u ∈ U, z ∈ Z}. Also,

s(U ⊗FΣr V
⊗r) = (U ⊗FΣr V

⊗r)ξ1 = W, (2.4)

since (V ⊗r)ξ1 = Z. However, it is easily seen that U⊗FΣrZ and W are isomorphic
as right FΣr-modules. Therefore

W ∼= U ⊗FΣr Z
∼= U ⊗FΣr FΣr

∼= U.

Thus the result follows from (2.4). �

Corollary 2.3. Let F , r and V be as in Lemma 2.2. Let e1, . . . , es, f1, . . . , ft be
idempotents of FΣr such that there is an isomorphism of SF (n, r)-modules

e1V
⊗r ⊕ · · · ⊕ esV

⊗r ∼= f1V
⊗r ⊕ · · · ⊕ ftV

⊗r.
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Then, if A is an F -algebra and M is an (FΣr, A)-bimodule, there is an isomor-
phism of A-modules

e1M ⊕ · · · ⊕ esM ∼= f1M ⊕ · · · ⊕ ftM.

Proof. Let U1 = e1FΣr ⊕ · · · ⊕ esFΣr and U2 = f1FΣr ⊕ · · · ⊕ ftFΣr. Then, as
in the proof of Lemma 2.1,

U1 ⊗FΣr V
⊗r ∼= e1V

⊗r ⊕ · · · ⊕ esV
⊗r

∼= f1V
⊗r ⊕ · · · ⊕ ftV

⊗r ∼= U2 ⊗FΣr V
⊗r.

Thus, by Lemma 2.2, U1
∼= U2. Hence the result follows by Lemma 2.1. �

Let F be a field and suppose that V is an F -space of finite dimension n. Let r be
a positive integer, and regard V ⊗r as an (FΣr, SF (n, r))-bimodule. Thus there are
maps α : FΣr → EndF (V ⊗r) and β : SF (n, r) → EndF (V ⊗r), where (FΣr)α and
SF (n, r)β are subalgebras of EndF (V ⊗r). Let EndFΣr(V

⊗r) and EndSF (n,r)(V
⊗r)

denote the centralizers in EndF (V ⊗r) of (FΣr)α and SF (n, r)β, respectively. We
require a version of ‘Schur–Weyl duality’. However, this is usually stated only for
infinite fields: see, for example, [11, Theorem 1.2]. Thus we give the simple extra
argument needed to deduce the result for an arbitrary field F .

Lemma 2.4 (Schur-Weyl duality) In the above notation,

EndSF (n,r)(V
⊗r) = (FΣr)α, EndFΣr(V

⊗r) = SF (n, r)β.

Proof. Let E be an infinite extension field of F and write VE = E ⊗F V . We
identify V ⊗r

E with E ⊗F V
⊗r. The analogues of α and β over E are

αE : EΣr −→ EndE(V ⊗r
E ), βE : SE(n, r) −→ EndE(V ⊗r

E ).

Identifying EndE(V ⊗r
E ) with E ⊗F EndF (V ⊗r) we find that

(EΣr)αE = E ⊗F (FΣr)α, SE(n, r)βE = E ⊗F SF (n, r)β. (2.5)

Clearly,
(FΣr)α ⊆ EndSF (n,r)(V

⊗r), SF (n, r)β ⊆ EndFΣr(V
⊗r). (2.6)

However, by [11, Theorem 1.2],

EndSE(n,r)(V
⊗r
E ) = (EΣr)αE, EndEΣr(V

⊗r
E ) = SE(n, r)βE. (2.7)

By (2.7) and (2.5), we have EndSE(n,r)(V
⊗r
E ) = E ⊗F (FΣr)α. However,

EndSE(n,r)(V
⊗r
E ) ∼= E ⊗F EndSF (n,r)(V

⊗r),

by [5, (29.5)], since SE(n, r) may be identified with E ⊗F SF (n, r). Hence

E ⊗F EndSF (n,r)(V
⊗r) ∼= E ⊗F (FΣr)α.
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Therefore, from (2.6) and consideration of dimension, EndSF (n,r)(V
⊗r) = (FΣr)α.

A similar argument gives the result for EndFΣr(V
⊗r). �

We require some background from [3], and for this we follow [3, §2] with only
minor variations of notation and terminology.

Let F be a field and recall that, for any F -space V , we write T (V ) for the
tensor algebra on V . Let F (∞) denote an F -space with a countably infinite basis
{x1, x2, . . .} and, for each positive integer n, let F (n) denote the subspace of F (∞)
with basis {x1, . . . , xn}. Then, with the obvious identifications,

T (F (1)) ⊆ T (F (2)) ⊆ · · · ⊆ T (F (∞)).

For positive integers n1 and n2, where n1 6 n2, define πn2,n1 ∈ EndF (F (n2)) by

xiπn2,n1 =

{
xi for i ∈ {1, . . . , n1},
0 for i ∈ {n1 + 1, . . . , n2}.

This extends to an endomorphism of T (F (n2)) with image T (F (n1)), and the
restriction of this to F (n2)

⊗r gives π⊗r
n2,n1

∈ EndF (F (n2)
⊗r) with image F (n1)

⊗r.
For each n we regard F (n) as the natural SF (n, 1)-module, so that F (n)⊗r is an

SF (n, r)-module. Suppose that {W (n) : n ∈ N} is a family of modules such that,
for all n, W (n) is an SF (n, r)-submodule of F (n)⊗r and W (n2)π

⊗r
n2,n1

= W (n1) for
all n1 and n2 with n1 6 n2. Then we say that the family {W (n) : n ∈ N} is a
uniform submodule family of {F (n)⊗r : n ∈ N}.

Lemma 2.5. Suppose that {W (n) : n ∈ N} is a uniform submodule family of
{F (n)⊗r : n ∈ N} such that, for some m > r, W (m) is a direct summand of
F (m)⊗r. Then there exists an idempotent e of FΣr such that W (n) = eF (n)⊗r

for all n.

Proof. By the hypothesis on W (m), there is an idempotent SF (m, r)-module
homomorphism ρ : F (m)⊗r → F (m)⊗r with image W (m). By Lemma 2.4, there
exists e ∈ FΣr such that uρ = eu for all u ∈ F (m)⊗r. Thus W (m) = eF (m)⊗r.
Also, since ρ is idempotent and FΣr acts faithfully on F (m)⊗r, e is an idempotent.

Now consider the family of modules {eF (n)⊗r : n ∈ N}. Since π⊗r
n2,n1

commutes
with the action of FΣr, we have (eF (n2)

⊗r)π⊗r
n2,n1

= eF (n1)
⊗r, for all n1 and n2

with n1 6 n2. Thus {eF (n)⊗r} is a uniform submodule family of {F (n)⊗r}. Since
W (m) = eF (m)⊗r, we may apply π⊗r

m,r to obtain W (r) = eF (r)⊗r. Therefore, by
[3, Lemma 2.5], W (n) = eF (n)⊗r for all n. �

3. Lie powers

Let V be a vector space over a field F with basis {xi : i ∈ I}. The tensor algebra
T (V ) has the structure of a Lie algebra over F under the multiplication given by
[u, v] = u ⊗ v − v ⊗ u for all u, v ∈ T (V ), and, by a theorem of Witt, the Lie
subalgebra generated by {xi : i ∈ I} is a free Lie algebra, freely generated by
{xi : i ∈ I}, which we denote by L(V ). For each positive integer r, we write

Lr(V ) = L(V ) ∩ T r(V ) = L(V ) ∩ V ⊗r.
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If G is a group and V is an FG-module then, as seen in §2, T (V ) is an FG-module,
and it is easily verified that L(V ) and Lr(V ) are submodules. We call the module
Lr(V ) the rth Lie power of V . If V has finite dimension n and is regarded as the
natural SF (n, 1)-module then Lr(V ) is an SF (n, r)-submodule of V ⊗r (see [3, §2]).

In [3, §2, page 177] it was observed that if B is a subspace of Ls(V ), for some
s, then the Lie subalgebra of L(V ) generated by B may be identified with the free
Lie algebra L(B), and then, for all r, Lr(B) is a subspace of Lrs(V ). We make
such identifications in the statement of the ‘Decomposition Theorem’ from [3].

Theorem 3.1. [3, Theorem 4.4] Let F be a field of prime characteristic p. Let
G be a group and V a finite-dimensional FG-module. For each positive integer r
there is a submodule Br of Lr(V ) such that Br is a direct summand of V ⊗r and,
for m > 0 and k not divisible by p,

Lpmk(V ) = Lpm

(Bk)⊕ Lpm−1

(Bpk)⊕ · · · ⊕ L1(Bpmk). (3.1)

We shall extend this to modules V that may be infinite-dimensional.
Let p be a prime and let Fp be a field of p elements. Let k be a positive integer

not divisible by p. By [3, Theorem 4.2], for each positive integer s there exists a
uniform submodule family {Bsk(n) : n ∈ N} of {Fp(n)⊗sk : n ∈ N} such that, for
all n, Bsk(n) ⊆ Lsk(Fp(n)), Bsk(n) is a direct summand of Fp(n)⊗sk, and there is
an equality of subspaces of L(Fp(n)),

Lk(Fp(n))⊕ L2k(Fp(n))⊕ L3k(Fp(n))⊕ · · ·

= L(Bk(n))⊕ L(B2k(n))⊕ L(B3k(n))⊕ · · · .
(3.2)

Therefore, for all m > 0, {Bpmk(n)} is a uniform submodule family of {Fp(n)⊗pmk}
such that, for all n,

Bpmk(n) ⊆ Lpmk(Fp(n)) (3.3)

and Bpmk(n) is a direct summand of Fp(n)⊗pmk. Furthermore, from (3.2), by
comparing terms of degree pmk within L(Fp(n)), we have

Lpmk(Fp(n)) = Lpm

(Bk(n))⊕ Lpm−1

(Bpk(n))⊕ · · · ⊕ L1(Bpmk(n)). (3.4)

Lemma 2.5, applied to the families {Bpmk(n)}, gives the following result.

Lemma 3.2. For each m > 0 there exists an idempotent bpmk of FpΣpmk such
that, for all n,

Bpmk(n) = bpmk

(
Fp(n)⊗pmk

)
. (3.5)

We now ignore module structure and regard Fp(n) simply as an Fp-space. Thus,
by (3.3), (3.4) and (3.5), if W is any finite-dimensional Fp-space, we have

bpmkW
⊗pmk ⊆ Lpmk(W ) (3.6)

and

Lpmk(W ) = Lpm

(bkW
⊗k)⊕ Lpm−1

(bpkW
⊗pk)⊕ · · · ⊕ L1(bpmkW

⊗pmk). (3.7)
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Let F be any extension field of Fp. By tensoring the terms of (3.6) and (3.7) with
F we find that (3.6) and (3.7) hold for any finite-dimensional F -space W . We
now generalise to arbitrary dimension.

Proposition 3.3. Let p be a prime and let Fp be a field of p elements. Let k be
a positive integer not divisible by p. Then, for each m > 0, there is an idempotent
bpmk of FpΣpmk such that if F is any extension field of Fp and V is any F -space
(of finite or infinite dimension) we have

bpmkV
⊗pmk ⊆ Lpmk(V ) (3.8)

and

Lpmk(V ) = Lpm

(bkV
⊗k)⊕ Lpm−1

(bpkV
⊗pk)⊕ · · · ⊕ L1(bpmkV

⊗pmk). (3.9)

Proof. We use the idempotents bpmk of Lemma 3.2. Suppose that (3.8) does not
hold. Then there exist v1, . . . , vpmk ∈ V such that bpmk(v1⊗· · ·⊗vpmk) /∈ Lpmk(V ).
Let W be the subspace of V spanned by v1, . . . , vpmk. Then bpmkW

⊗pmk 6⊆
Lpmk(W ), contrary to (3.6) over the field F . Thus (3.8) holds.

Write SV for the subspace of L(V ) defined by

SV = Lpm

(bkV
⊗k) + Lpm−1

(bpkV
⊗pk) + · · ·+ L1(bpmkV

⊗pmk).

If the sum on the right is not a direct sum then there exists a finite-dimensional
subspaceW of V such that the corresponding sum SW is not a direct sum, contrary
to (3.7) over F . Similarly, if Lpmk(V ) 6⊆ SV then there exists a finite-dimensional
subspace W of V such that Lpmk(W ) 6⊆ SW , again contrary to (3.7) over F . By
(3.8), SV ⊆ Lpmk(V ). Thus (3.9) holds. �

In the rest of this paper, whenever F is a field of characteristic p, we assume that
F is an extension field of Fp (rather than a field isomorphic to Fp) so that the
idempotents of Proposition 3.3 are available. This is essentially a notational issue.
We can now derive our first main result.

Theorem 3.4. Theorem 3.1 holds for an FG-module V of arbitrary dimension,
where we take Bpmk = bpmkV

⊗pmk for all m > 0 and all k not divisible by p.

Proof. Since V ⊗pmk is an (FΣpmk, FG)-bimodule, Bpmk is an FG-submodule of
V ⊗pmk. It is a direct summand, since bpmk is an idempotent, and, by (3.8), it is a
submodule of Lpmk(V ). Finally, (3.9) gives (3.1). �

It is easily seen, by induction, that the modules Bpmk satisfying (3.1), for a given
finite-dimensional module V , are determined uniquely up to isomorphism: thus
we may take them to be the modules bpmkV

⊗pmk. Some information about the
isomorphism types was given in [4]. In stating the result of interest here we use
the notation

⊕r B for the direct sum of r copies of an F -space B.
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Theorem 3.5. [4, Theorem 4.2]. In the notation of Theorem 3.1, for each m > 0
there is an isomorphism of FG-modules

(
⊕pm

Bpmk)⊕ (
⊕pm−1

B⊗p
pm−1k)⊕ · · · ⊕ (

⊕pB⊗pm−1

pk )⊕B⊗pm

k
∼= Lk(V ⊗pm

).
(3.10)

We shall extend this to modules V that may be infinite-dimensional, taking Bi to
be biV

⊗i for all i. However, we need some preliminary facts.
Let k be any positive integer and let `k be the element of ZΣk defined, using

the cycles (2, 1), (3, 2, 1), . . . , (k, . . . , 2, 1) of Σk, by

`k = (1− (k, . . . , 2, 1)) · · · (1− (3, 2, 1))(1− (2, 1)).

Let V be a vector space over a field F , and interpret `k as an element of FΣk.
Then it is well known and straightforward to verify that

`k(v1 ⊗ v2 ⊗ · · · ⊗ vk) = [· · · [[v1, v2], v3], . . . , vk] , (3.11)

for all v1, v2, . . . , vk ∈ V . It follows that Lk(V ) = `kV
⊗k.

Suppose, for the moment, that charF = 0. Then, by (3.11) and the Dynkin-
Specht-Wever criterion for Lie elements [7, Theorem V.8], we have

`2k(v1 ⊗ v2 ⊗ · · · ⊗ vk) = k`k(v1 ⊗ v2 ⊗ · · · ⊗ vk).

However, FΣk acts faithfully on V ⊗k when dimV > k. Hence `2k = k`k.
Now let F be any field such that charF - k. Thus 1/k exists in the prime

subfield F of F and we can define an idempotent ωk of FΣk (sometimes called the
‘Dynkin idempotent’) by ωk = (1/k)`k. Then, for any F -space V ,

Lk(V ) = ωkV
⊗k. (3.12)

Let r and s be positive integers, and partition the set {1, . . . , rs} as

{1, . . . , s} ∪ {s+ 1, . . . , 2s} ∪ · · · ∪ {(r−1)s+ 1, . . . , rs}. (3.13)

This gives, in an obvious way, an embedding µ : Σs × · · · × Σs → Σrs, where
the direct product has r factors. Let δ : Σs → Σs × · · · × Σs be the ‘diagonal’
embedding given by σδ = (σ, . . . , σ) for all σ ∈ Σs. Then, by composition of δ
and µ, we obtain an embedding λ : Σs −→ Σrs. Consider the partition

{1, s+1, . . . , (r−1)s+1}∪{2, s+2, . . . , (r−1)s+2}∪· · ·∪{s, 2s, . . . , rs}, (3.14)

with s parts. It is easily checked that, for all σ ∈ Σs, σλ is the permutation that
permutes these s parts according to σ, while preserving the order of the numbers
within each part.

Let F be any field and identify F (Σs × · · · × Σs) with FΣs ⊗F · · · ⊗F FΣs.
Then we may extend µ and λ linearly to obtain embeddings

µ : FΣs ⊗ · · · ⊗ FΣs −→ FΣrs, λ : FΣs −→ FΣrs.
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For u, u1, . . . , ur ∈ FΣs we write u1# · · ·#ur to denote (u1 ⊗ · · · ⊗ ur)µ and
u#r for u# · · ·#u. Also, for u ∈ FΣs, we write u[r] to denote uλ. (In general,
when u is a proper linear combination of group elements, u[r] 6= u#r.) Note
that, if u, u1, . . . , ur are idempotents of FΣs then u1# · · ·#ur, u

#r and u[r] are
idempotents of FΣrs.

Let G be a group and let V be an FG-module. As usual, we index the factors
of V ⊗rs by the set {1, . . . , rs}: more formally, V ⊗rs is identified with

⊗rs
i=1 Vi

where, for each i, there is a fixed isomorphism from Vi to V . Let Σrs act on V ⊗rs

by place permutations. Now consider V ⊗r ⊗ · · · ⊗ V ⊗r, that is (V ⊗r)⊗s, where
the rs factors V are indexed by {1, . . . , rs} in the order given by the partition
(3.14). Let Σrs act on (V ⊗r)⊗s by place permutations according to this indexing.
It follows that V ⊗rs and (V ⊗r)⊗s are isomorphic as (FΣrs, FG)-bimodules. Note
that FΣs also acts on (V ⊗r)⊗s by place permutations, with V ⊗r instead of V in
the usual construction. Then, for w1, . . . , ws ∈ V ⊗r and σ ∈ Σs we find that

(σλ)(w1 ⊗ · · · ⊗ ws) = w1σ ⊗ · · · ⊗ wsσ = σ(w1 ⊗ · · · ⊗ ws).

Thus σλ and σ act in the same way on (V ⊗r)⊗s. Hence, for u ∈ FΣs, u
[r] and u

act in the same way on (V ⊗r)⊗s.
Suppose that k is a positive integer not divisible by charF . By (3.12),

Lk(V ⊗r) = ωk((V
⊗r)⊗k). Thus (taking s = k in the above analysis), we have

Lk(V ⊗r) = ω
[r]
k ((V ⊗r)⊗k). Hence we obtain an FG-module isomorphism

Lk(V ⊗r) ∼= ω
[r]
k V

⊗rk. (3.15)

We next identify V ⊗rs with V ⊗s⊗· · ·⊗V ⊗s, that is (V ⊗s)⊗r, where the rs factors
V are indexed in natural order, as given by (3.13). We also take FΣs to act on
V ⊗s by place permutations. Then, for u1, . . . , ur ∈ FΣs, we find that

(u1# · · ·#ur)(V
⊗s)⊗r = (u1V

⊗s)⊗ · · · ⊗ (urV
⊗s).

Thus there is an FG-module isomorphism

(u1# · · ·#ur)V
⊗rs ∼= (u1V

⊗s)⊗ · · · ⊗ (urV
⊗s). (3.16)

In particular, for u ∈ FΣs,

u#rV ⊗rs ∼= (uV ⊗s)⊗r. (3.17)

Suppose that V is a finite-dimensional FG-module, as in Theorem 3.5, where we
take Bi = biV

⊗i for all i. Thus, by (3.10), (3.15) and (3.17), we have

(
⊕pm

b#1
pmkV

⊗pmk)⊕ (
⊕pm−1

b#p
pm−1kV

⊗pmk)⊕ · · ·

· · · ⊕ (
⊕p b#pm−1

pk V ⊗pmk)⊕ b#pm

k V ⊗pmk ∼= ω
[pm]
k V ⊗pmk.

(3.18)

Let W be an F -space of finite dimension n, where n > pmk, and regard W as
the natural SF (n, 1)-module. Let E be an infinite extension field of F . Thus we
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may regard E ⊗F W as the natural SE(n, 1)-module or, equivalently, the natural
EGL(n,E)-module. By (3.18) there is an isomorphism of EGL(n,E)-modules

(
⊕pm

b#1
pmk(E ⊗W )⊗pmk)⊕ · · · ⊕ b#pm

k (E ⊗W )⊗pmk ∼= ω
[pm]
k (E ⊗W )⊗pmk.

(3.19)
Since E is infinite, this is an isomorphism of SE(n, pmk)-modules (see [6, §2.4]).

The spaces b#pm−i

pik
W⊗pmk and ω

[pm]
k W⊗pmk are SF (n, pmk)-modules, and we make

the identifications SE(n, pmk) = E ⊗ SF (n, pmk),

b#pm−i

pik
(E⊗W )⊗pmk = E⊗ b#pm−i

pik
W⊗pmk, ω

[pm]
k (E⊗W )⊗pmk = E⊗ω[pm]

k W⊗pmk.

Hence, by (3.19) and the Noether-Deuring theorem [5, (29.11)], there is an SF (n,
pmk)-module isomorphism

(
⊕pm

b#1
pmkW

⊗pmk)⊕ · · · ⊕ b#pm

k W⊗pmk ∼= ω
[pm]
k W⊗pmk. (3.20)

We can now derive our second main result.

Theorem 3.6. Theorem 3.5 holds for an FG-module V of arbitrary dimension,
where we take Bpik = bpikV

⊗pik for all i > 0.

Proof. By (3.20) and Corollary 2.3, there is an isomorphism of the form (3.18) for
arbitrary V . Thus, by (3.15) and (3.17), we obtain (3.10) for arbitrary V . �

4. Decomposition of the modules Bpmk

Let F be a field and let k be a positive integer not divisible by charF . Let E be
the field obtained from F by adjoining (if necessary) a primitive kth root of unity
ε, and let 〈ε〉 denote the multiplicative group generated by ε, consisting of all kth
roots of unity in E. For ξ ∈ 〈ε〉 write |ξ| for the multiplicative order of ξ.

Let V be an F -space and write VE = E⊗FV . Let σk be the k-cycle (1, 2, . . . , k)
of Σk, and, for each ξ ∈ 〈ε〉, let eξ be the element of EΣk defined by

eξ =
1

k

k−1∑
i=0

ξ−iσi
k. (4.1)

It is easy to verify that eξ is an idempotent of EΣk and that eξV
⊗k
E is the ξ-

eigenspace of V ⊗k
E under the action of σk. Thus V ⊗k

E =
⊕

ξ∈〈ε〉 eξV
⊗k
E .

If A is an E-algebra such that V ⊗k
E is an (EΣk, A)-bimodule, then each eξV

⊗k
E

is an A-submodule of V ⊗k
E . For l prime to k, σk and σl

k are conjugate in Σk. It
follows easily that there is an isomorphism of A-modules

eξV
⊗k
E

∼= eξ′V
⊗k
E when |ξ| = |ξ′|. (4.2)

Now suppose that G is a group and that V is a finite-dimensional FG-module.
As shown in [2, §2], by means of [1], there exist FG-modules (V ⊗k)ξ such that

E ⊗F (V ⊗k)ξ
∼= eξV

⊗k
E , (4.3)
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V ⊗k ∼=
⊕

ξ∈〈ε〉(V
⊗k)ξ, and (V ⊗k)ξ

∼= (V ⊗k)ξ′ when |ξ| = |ξ′|. As in [2], for each

(positive) divisor d of k, let Uk,d denote an FG-module satisfying

Uk,d
∼= (V ⊗k)ξ when |ξ| = d. (4.4)

Theorem 4.1 [2, Theorem 4.2]. Let F be a field of prime characteristic p, G
a group, and V a finite-dimensional FG-module. Let k be a positive integer not
divisible by p and let m be a non-negative integer. Let Bpmk be the module given
by Theorem 3.1 and, for each divisor d of k, let Uk,d be the module of (4.4). Then
there is an index set Λ0, and, for each λ ∈ Λ0, a pm-tuple (λ(1), . . . , λ(pm)) of
divisors of k, such that

Bpmk
∼=

⊕
λ∈Λ0

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm).

The purpose of this section is to generalise this theorem to modules V that are
allowed to be infinite-dimensional. We begin with a general result.

Lemma 4.2. Let k be a positive integer and let E be a field with prime field F.
Let w be an idempotent of EΣk. Then there exists an idempotent w0 of FΣk such
that the ideals wEΣk and w0EΣk of EΣk are isomorphic as EΣk-modules.

Proof. Suppose that P is a principal indecomposable FΣk-module and let R denote
the radical of FΣk. Thus P/PR is irreducible (see [5, (54.11)]). We have

E ⊗F (P/PR) ∼= (E ⊗F P )/(E ⊗F P )(E ⊗F R).

Since F is a splitting field for Σk (see [8, Theorem 11.5]), E ⊗F (P/PR) is irre-
ducible. Hence (E⊗FP )/(E⊗FP )(E⊗FR) is irreducible. However, E⊗FR is the
radical of E ⊗F FΣk (see [5, (29.22)]). It follows that E ⊗F P is indecomposable.

In the rest of the proof we identify E⊗FFΣk with EΣk. Write FΣk as a direct
sum of principal indecomposables, FΣk =

⊕r
j=1 Pj. Thus EΣk =

⊕r
j=1E ⊗F Pj,

and, by what was proved above, each E ⊗F Pj is indecomposable. Since w is an
idempotent, the right ideal wEΣk is a direct summand of EΣk. Hence, by the
Krull-Schmidt theorem, it is isomorphic, as a right EΣk-module, to the direct
sum of some subset of the modules E ⊗F Pj. Hence there is a direct summand U
of FΣk such that wEΣk

∼= E ⊗F U . Since U is a direct summand, we may write
U = w0FΣk for some idempotent w0 of FΣk. It follows that wEΣk

∼= w0EΣk. �

Recall from Section 2 that if F is a field and n is a positive integer then F (n)
denotes an F -space of dimension n regarded as the natural SF (n, 1)-module.

Let F be a prime field and let k be a positive integer not divisible by char F.
Let C be the (cyclotomic) field obtained from F by adjoining a primitive kth root

of unity εk. For each divisor d of k write εd = ε
k/d
k , so that |εd| = d, and let

eεd
∈ CΣk be defined as in (4.1) with ξ = εd. By Lemmas 4.2 and 2.1 there exists

an idempotent uk,d of FΣk such that, for any positive integer n, eεd
C(n)⊗k and
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uk,dC(n)⊗k are isomorphic SC(n, k)-modules. Hence, by (4.2), if η is any element
of 〈εk〉 of order d, there is an isomorphism of SC(n, k)-modules

eηC(n)⊗k ∼= uk,dC(n)⊗k. (4.5)

Let E be any extension field of F such that E contains a primitive kth root of
unity ε, and write C ′ = F(ε). Let χ be an isomorphism from C to C ′. Of course,
χ is the identity on F. Applying χ to (4.5) and recalling that uk,d ∈ FΣk, we get
an SC′(n, k)-module isomorphism eξC

′(n)⊗k ∼= uk,dC
′(n)⊗k, for all ξ ∈ C ′ with

|ξ| = d. Hence, by tensoring with E, we get an SE(n, k)-module isomorphism

eξE(n)⊗k ∼= uk,dE(n)⊗k, (4.6)

for all ξ ∈ E with |ξ| = d.
Now suppose that F is any extension field of F and let E be obtained from F

by adjoining (if necessary) a primitive kth root of unity. Let G be a group and let
V be an FG-module of finite dimension n. For each divisor d of k let Uk,d be an
FG-module satisfying (4.4). We regard VE as the natural SE(n, 1)-module. Let
ξ ∈ E with |ξ| = d. Then, by (4.6), there is an SE(n, k)-module isomorphism

α : eξV
⊗k
E −→ uk,dV

⊗k
E . (4.7)

If we think of VE as the natural EGL(n,E)-module, the map α of (4.7) is an
isomorphism of EGL(n,E)-modules. Also, since V is an FG-module, VE is an
EG-module, and there is an associated homomorphism ρ : G → GL(n,E). The
action of G on V ⊗k

E is given by the composition of ρ and the action of GL(n,E)
on V ⊗k

E . It follows that α is an isomorphism of EG-modules.
By (4.3) and (4.4), E ⊗ Uk,d and eξV

⊗k
E are isomorphic EG-modules. Thus,

since (4.7) is an EG-module isomorphism, E ⊗ Uk,d and uk,dV
⊗k
E are isomorphic

EG-modules. Hence, by the Noether-Deuring theorem, Uk,d and uk,dV
⊗k are

isomorphic FG-modules. Thus we have proved the following proposition.

Proposition 4.3. Let F be a prime field, k a positive integer not divisible by
char F, and d a divisor of k. Then there is an idempotent uk,d of FΣk such that
if G is any group, F is any extension field of F, and V is any finite-dimensional
FG-module, then the FG-module Uk,d of (4.4) satisfies Uk,d

∼= uk,dV
⊗k.

From now on we assume that p is a prime and F is an extension field of Fp, the
field of p elements. We take k to be a positive integer not divisible by p. For each
divisor d of k we use the idempotent uk,d of FpΣk given by Proposition 4.3.

Let m be a non-negative integer and let W be an F -space of dimension pmk.
Let E be an infinite extension field of F and write WE = E ⊗F W , where we
regard WE as the natural EGL(pmk,E)-module.

We apply Theorem 4.1 but with E replacing F , G = GL(pmk,E) and V =
WE. Recall that Bpmk may be written up to isomorphism as bpmkW

⊗pmk
E and, by

Proposition 4.3, for each divisor d of k, Uk,d may be written up to isomorphism
as uk,dW

⊗k
E . Hence Theorem 4.1 gives an isomorphism of EGL(pmk,E)-modules

bpmkW
⊗pmk
E

∼=
⊕
λ∈Λ0

uk,λ(1)W
⊗k
E ⊗ · · · ⊗ uk,λ(pm)W

⊗k
E .
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Therefore, by (3.16),

bpmkW
⊗pmk
E

∼=
⊕
λ∈Λ0

(uk,λ(1)# · · ·#uk,λ(pm))W
⊗pmk
E . (4.8)

Since E is infinite, (4.8) is an isomorphism of SE(pmk, pmk)-modules. Hence, by
the Noether-Deuring theorem, there is an SF (pmk, pmk)-module isomorphism

bpmkW
⊗pmk ∼=

⊕
λ∈Λ0

(uk,λ(1)# · · ·#uk,λ(pm))W
⊗pmk. (4.9)

Let V be an FG-module of arbitrary, possibly infinite, dimension. Then, by (4.9)
and Corollary 2.3, there is an isomorphism of FG-modules

bpmkV
⊗pmk ∼=

⊕
λ∈Λ0

(uk,λ(1)# · · ·#uk,λ(pm))V
⊗pmk.

In other words, by (3.16),

bpmkV
⊗pmk ∼=

⊕
λ∈Λ0

uk,λ(1)V
⊗k ⊗ · · · ⊗ uk,λ(pm)V

⊗k.

Thus we have proved the following result.

Theorem 4.4. Theorem 4.1 holds for an FG-module V of arbitrary dimension,
where we take Bpmk = bpmkV

⊗pmk and Uk,d = uk,dV
⊗k for every divisor d of k.

We conclude with an observation on the idempotent uk,k.

Proposition 4.5. Under the hypotheses of Theorem 4.4, uk,kV
⊗k ∼= Lk(V ).

Proof. We use the idempotent ωk of FpΣk defined in Section 3. Let E be an infinite
extension field of F and let W be an F -space of dimension k. Write WE = E⊗FW
and regard WE as the natural EGL(k,E)-module. By [2, Lemma 2.3] combined
with Proposition 4.3, uk,kW

⊗k
E and Lk(WE) are isomorphic as EGL(k,E)-modules.

Thus, by (3.12), uk,kW
⊗k
E

∼= ωkW
⊗k
E . Since E is infinite, this is an isomorphism of

SE(k, k)-modules. Hence, by the Noether-Deuring theorem, uk,kW
⊗k and ωkW

⊗k

are isomorphic as SF (k, k)-modules. By Corollary 2.3, if V is an FG-module of
arbitrary dimension, uk,kV

⊗k and ωkV
⊗k are isomorphic as FG-modules. Thus,

by (3.12), uk,kV
⊗k ∼= Lk(V ). �
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