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Abstract. We study the arithmetical ranks and the cohomological
dimensions of an infinite class of Cohen-Macaulay varieties of minimal
degree. Among these we find, on the one hand, infinitely many set-
theoretic complete intersections, on the other hand examples where the
arithmetical rank is arbitrarily greater than the codimension.
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Introduction

Let K be an algebraically closed field, and let R be a polynomial ring in N
indeterminates over K. Let I be a proper reduced ideal of R and consider the
variety V (I) defined in the affine space KN (or in the projective space PN−1

K , if I
is homogeneous and different from the maximal irrelevant ideal) by the vanishing
of all polynomials in I. By Hilbert’s Basissatz there are finitely many polynomials
F1, . . . , Fr ∈ R such that V (I) is defined by the equations F1 = · · · = Fr = 0. By
Hilbert’s Nullstellensatz this is equivalent to the ideal-theoretic condition

I =
√

(F1, . . . , Fr).

Suppose r is minimal with respect to this property. It is well known that
codim V (I) ≤ r. If equality holds, V (I) is called a set-theoretic complete in-
tersection on F1, . . . , Fr.
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Exhibiting significant examples of set-theoretic complete intersections (or,
more generally, determining the minimum number of equations defining given
varieties, the so-called arithmetical rank, denoted ara, of their defining ideals) is
one of the hardest problems in algebraic geometry. In [2] we already determined
infinitely many set-theoretic complete intersections among the Cohen-Macaulay
varieties of minimal degree which were classified geometrically by Bertini [6], Del
Pezzo [11], Harris [14] and Xambó [27], and whose defining ideals were determined
in an explicit algorithmic way in [5]. In this paper we present a new class of min-
imal varieties, where the gap between the arithmetical rank and the codimension
can be arbitrarily high. It includes an infinite set of set-theoretic complete in-
tersections. For the arithmetical ranks of the complementary set of varieties we
determine a lower bound (given by étale cohomology) and an upper bound (re-
sulting from the computation of an explicit set of defining equations) that only
differ by one: the equality between the lower bound and the actual value of the
arithmetical rank is shown in few special cases. We also determine the cohomo-
logical dimensions of the defining ideals of each of these varieties. This invariant,
in general, also provides a lower bound for the arithmetical rank, and the cases
where it is known to be smaller are rare. Those which were found so far are the
determinantal and Pfaffian ideals considered in [9] and in [1]: there the strict
inequality holds in all positive characteristics. We prove that the same is true for
the minimal varieties investigated in the present paper that are not set-theoretic
complete intersections.

Some crucial results on arithmetical ranks and cohomological dimensions are
due to Bruns et al. and are quoted from [9] and [10].

1. Preliminaries

For all integers s ≥ 2 and t ≥ 1 consider the two-row matrix

As,t =

(
x1 x2 · · · xs y0 y1 · · · yt−1

xs+1 xs+2 · · · x2s z1 z2 · · · zt

)
,

where x1, x2, . . . , x2s, y0, y1, . . . , yt−1, z1, z2, . . . , zt are N indeterminates over K.
We assume that they are pairwise distinct, possibly with the following exception:
we can have x2s = y0 or zi = yj for some indices i and j such that 1 ≤ i ≤ j ≤ t−1,
but no entry appears more than twice in As,t. We have the least possible number
of indeterminates if x2s = y0 and zi = yi for 1 = 1, . . . , t − 1, in which case
N = 2s + t, and the matrix takes the following form:

Ās,t =

(
x1 x2 · · · xs x2s y1 · · · yt−1

xs+1 xs+2 · · · x2s y1 y2 · · · yt

)
.

If the indeterminates are pairwise distinct, then N = 2s + 2t. The matrix As,t

belongs to the class of so-called barred matrices introduced in [4] and can be
associated with the ideal Js,t of R = K[x1, x2, . . . , x2s, y0, y1, . . . , yt−1, z1, z2, . . . , zt]
generated by the union of
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(I) the set M of two-minors of the submatrix of As,t formed by the first s
columns (the so-called first big block);

(II) the set of products xizj, with 1 ≤ i ≤ s and 1 ≤ j ≤ t;

(III) the set of products yizj, with 0 ≤ i ≤ j − 2 ≤ t− 2.

We will denote by J̄s,t the ideal associated with the matrix Ās,t.
As shown in [4], Section 1, Js,t it is the defining ideal of a Cohen-Macaulay

variety of minimal degree and it admits the prime decomposition

Js,t = J0 ∩ J1 ∩ · · · ∩ Jt,

where
J0 = (M,D0), and Ji = (Pi,Di) for i = 1, . . . , t,

with
Pi = {x1, . . . , xs, y0, . . . , yi−2} for i = 1, . . . , t,

Di = {zi+1, . . . , zt} for i = 0, . . . , t.

Thus the sequence of ideals J0, J1, . . . , Jt fulfils condition 2 of Theorem 1 in [21],
which implies that it is linearly joined; this notion was introduced by Eisenbud,
Green, Hulek and Popescu [12], and was later intensively investigated by Morales
[21]. We also have

height Js,t = s + t− 1. (1)

In the sequel, we will set Vs,t = V (Js,t), and also V̄s,t = V (J̄s,t). Note that Js,1

has the same generators as J̄s,1, because the indeterminate y0 does not appear
in these generators. Consequently, we can identify Vs,1 with V̄s,1. One should
observe that, apart from this special case, for any integers s and t, Js,t does
not denote a single ideal, but a class of ideals, namely the ideals attached to
a matrix As,t for some choice of the (identification between) the indeterminates
x1, x2, . . . , x2s, y0, y1, . . . , yt−1, z1, z2, . . . , zt. The same remark applies to the vari-
ety Vs,t.

For the proofs of the theorems on arithmetical ranks contained in the next
section we will need the following two technical results, which are valid in any
commutative unit ring R.

Lemma 1. ([3], Corollary 3.2) Let α1, α2, β1, β2, γ ∈ R. Then√
(α1β1 − α2β2, β1γ, β2γ) =√

(α1(α1β1 − α2β2) + β2γ, α2(α1β1 − α2β2) + β1γ).

The next claim is a slightly generalized version of [3], Lemma 2.1 (which, in turn,
extends [25], Lemma, p. 249). The proof is the same as the one given in [3], and
will therefore be omitted here.

Lemma 2. Let P be a finite subset of elements of R, and I an ideal of R. Let
P1, . . . , Pr be subsets of P such that
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(i)
⋃r

`=1 P` = P ;

(ii) if p and p′ are different elements of P` (1 ≤ ` ≤ r) then (pp′)m ∈ I +(⋃`−1
i=1 Pi

)
for some positive integer m.

Let 1 ≤ ` ≤ r, and, for any p ∈ P`, let e(p) ≥ 1 be an integer. We set q` =∑
p∈P`

pe(p). Then we get√
I + (P ) =

√
I + (q1, . . . , qr),

where (P ) denotes the ideal of R generated by P .

2. The arithmetical rank for s = 2: set-theoretic complete intersections

In this section we will show that, for all t ≥ 1, the variety V2,t is a set-theoretic
complete intersection. Recall that its defining ideal is the ideal J2,t of R =
K[x1, x2, x3, x4, y0, y2, . . . , yt−1, z1, z2, . . . , zt], which is associated with the matrix

A2,t =

(
x1 x2 y0 y1 · · · yt−1

x3 x4 z1 z2 · · · zt

)
,

and is generated by the elements

x1x4 − x2x3, x1z1, x1z2, . . . , x1zt,
x2z1, x2z2, . . . , x2zt,
y0z2, . . . , . . . , y0zt,

y1z3, . . . , y1zt,
. . . , . . . , . . . , yt−2zt.

The next result generalizes Example 5 in [2].

Theorem 1. For all integers t ≥ 1, ara J2,t = t + 1, i.e., V2,t is a set-theoretic
complete intersection.

Proof. We proceed by induction on t, by showing that there are F1, . . . , Ft+1 ∈
R = K[x1, x2, x3, x4, y0, . . . , yt−1, z1, z2, . . . , zt] such that

(a)
√

(F1, . . . , Ft+1) = J2,t,

(b) F1, F2 ∈ (x1, x2),

(c) Fi ∈ (x1, x2, y0, . . . , yi−3) for all i = 3, . . . , t + 1.
For the induction basis consider the case where t = 1. We have J2,1 = (x1x4 −
x2x3, x1z1, x2z1). Set

F1 = x4(x1x4 − x2x3) + x2z1, F2 = x3(x1x4 − x2x3) + x1z1. (2)

Then F1 and F2 fulfil condition (b) and, by virtue of Lemma 1, they also fulfil
condition (a). Now assume that t ≥ 2 and suppose that G1, . . . , Gt are polynomials
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fulfilling the claim for t− 1. By condition (b) we have G1 = Px1 −Qx2 for some
P, Q ∈ R. Set

F1 = QG1 + x1zt

F2 = PG1 + x2zt

F3 = G2 + y0zt

...

Fi = Gi−1 + yi−3zt

...

Ft+1 = Gt + yt−2zt.

Then F1, F2 ∈ (G1, x1, x2) ⊂ (x1, x2). Moreover, for all i = 3, . . . , t + 1,

Fi ∈ (Gi−1, yi−3) ⊂ (x1, x2, y0, . . . , yi−4, yi−3),

because Gi−1 fulfils condition (c). Hence F1, . . . , Ft+1 fulfil conditions (b) and (c).
Furthermore, by Lemma 1,√

(F1, F2) =
√

(G1, x1zt, x2zt), (3)

and, for all i = 2, . . . , t, the product of the two summands of Fi+1 is

Gi · yi−2zt ∈ (x1, x2, y0, . . . , yi−3) · (zt) = (x1zt, x2zt) + (y0zt, . . . , yi−3zt),

⊂
√

(F1, F2) + (y0zt, . . . , yi−3zt),

where the first membership relation is true because Gi fulfils condition (c). It
follows that (Gi · yi−2zt)

m belongs to (F1, F2) + (y0zt, . . . , yi−3zt) for some positive
integer m. Hence the assumption of Lemma 2 is fulfilled for I = (F1, F2) and
Pi = {Gi+1, yi−1zt} (i = 1, . . . , t− 1). Consequently,√

(F1, F2, F3, . . . , Ft+1) =
√

(F1, F2, G2, . . . , Gt, y0zt, . . . , yt−2zt)

=
√

(G1, G2, . . . , Gt, x1zt, x2zt, y0zt, . . . , yt−2zt)

= J2,t−1 + (x1zt, x2zt, y0zt, . . . , yt−2zt) = J2,t,

where the second and the third equality follow from (3) and induction, respectively.
Thus F1, . . . , Ft+1 fulfil condition (a) as well. This completes the proof.

Remark 1. The polynomials F1, . . . , Ft+1 defined in the proof of Theorem 1 still
fulfil the required properties if in all monomial summands x1zt, x2zt, y0zt, . . . ,
yt−2zt the factors zt are raised to the same arbitrary positive power. This allows
us, e.g., to replace the polynomials in (2) by

F1 = x4(x1x4 − x2x3) + x2z
2
1 , F2 = x3(x1x4 − x2x3) + x1z

2
1 ,

which are homogeneous. Then, by a suitable adjustment of exponents, one can
recursively construct a sequence of homogeneous polynomials F1, . . . , Ft+1 for any
t ≥ 2.
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Example 1. Equalities (2) explicitly provide the defining polynomials for V2,1.
They are the starting point of the recursive procedure, described in the proof of
Theorem 1, which allows us to construct t + 1 polynomials defining V2,t, for any
t ≥ 2. We perform the construction for t = 2, 3. First take t = 2. We have

A2,2 =

(
x1 x2 y0 y1

x3 x4 z1 z2

)
,

and
J2,2 = (x1x4 − x2x3, x1z1, x1z2, x2z1, x2z2, y0z2).

Let us rewrite the polynomials given in (2):

G1 = x1x
2
4 − x2x3x4 + x2z1, G2 = x1x3x4 − x2x

2
3 + x1z1.

Then, with the notation of the proof of Theorem 1, P = x2
4 and Q = x3x4 − z1.

Thus

F1 = (x3x4 − z1)G1 + x1z2

= x1x3x
3
4 − x1x

2
4z1 − x2x

2
3x

2
4 + 2x2x3x4z1 − x2z

2
1 + x1z2,

F2 = x2
4G1 + x2z2 = x1x

4
4 − x2x3x

3
4 + x2x

2
4z1 + x2z2,

F3 = G2 + y0z2 = x1x4x3 − x2x
2
3 + x1z1 + y0z2

are three defining polynomials for V2,2. Now let t = 3. We have

A2,3 =

(
x1 x2 y0 y1 y2

x3 x4 z1 z2 z3

)
,

J2,3 = (x1x4 − x2x3, x1z1, x1z2, x1z3, x2z1, x2z2, x2z3, y0z2, y0z3, y1z3).

In order to obtain four defining polynomials for V2,3 we take the above polynomials
F1, F2, F3 as G1, G2, G3. Thus P = x3x

3
4−x2

4z1 + z2 and Q = x2
3x

2
4− 2x3x4z1 + z2

1 .
Hence, the four sought polynomials are

F1 = (x2
3x

2
4 − 2x3x4z1 + z2

1)G1 + x1z3 = x1x
3
3x

5
4 − 3x1x

2
3x

4
4z1 + 3x1x3x

3
4z

2
1

−x1x
2
4z

3
1 − x2x

4
3x

4
4 + 4x2x

3
3x

3
4z1

−6x2x
2
3x

2
4z

2
1 + 4x2x3x4z

3
1 − x2z

4
1

+x1x
2
3x

2
4z2 − 2x1x3x4z1z2 + x1z

2
1z2 + x1z3,

F2 = (x3x
3
4 − x2

4z1 + z2)G1 + x2z3 = x1x
2
3x

6
4 − 2x1x3x

5
4z1 + 2x1x3x

3
4z2

+x1x
4
4z

2
1 − 2x1x

2
4z1z2 − x2x

3
3x

5
4 − x2x

2
3x

2
4z2

+3x2x
2
3x

4
4z1 − 3x2x3x

3
4z

2
1 + 2x2x3x4z1z2

+x2x
2
4z

3
1 − x2z

2
1z2 + x1z

2
2 + x2z3,

F3 = G2 + y0z3 = x1x
4
4 − x2x3x

3
4 + x2x

2
4z1 + x2z2 + y0z3,

F4 = G3 + y1z3 = x1x3x4 − x2x
2
3 + x1z1 + y0z2 + y1z3.
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3. The arithmetical rank for s ≥ 3: upper and lower bounds

The aim of this section is to show that, for s ≥ 3, the ideal Js,t is never a set-
theoretic complete intersection. We will determine a lower bound for ara Js,t,
which shows that the difference between the arithmetical rank and the height
strictly increases with s. For our purpose we will need the following cohomological
criterion by Newstead [22].

Lemma 3. ([9], Lemma 3′) Let W ⊂ W̃ be affine varieties. Let d = dim W̃ \W .
If there are r polynomials F1, . . . , Fr such that W = W̃ ∩ V (F1, . . . , Fr), then

Hd+i
et (W̃ \W, Z/mZ) = 0 for all i ≥ r

and for all m ∈ Z which are prime to char K.

We refer to [19] or [20] for the basic notions on étale cohomology. We are now
ready to prove the first of the two main results of this section.

Theorem 2. For all integers s ≥ 2 and t ≥ 1

ara Js,t ≥ 2s + t− 3.

Proof. For s = 2 the claim is a trivial consequence of Theorem 1. So let s ≥ 3.
It suffices to prove the claim for J̄s,t, because ara Js,t ≥ ara J̄s,t: in fact, given r
defining polynomials for Vs,t, they can be transformed in r defining polynomials for
V̄s,t by performing on them the suitable identifications between the indeterminates.
Let p be a prime different from charK. According to Lemma 3, it suffices to show
that

H4s+2t−4
et (K2s+t \ V̄s,t, Z/pZ) 6= 0, (4)

since this will imply that V̄s,t cannot be defined by 2s + t − 4 equations. By
Poincaré Duality (see [20], Theorem 14.7, p. 83) we have

HomZ/pZ(H
4s+2t−4
et (K2s+t \ V̄s,t, Z/pZ), Z/pZ) ' H4

c (K2s+t \ V̄s,t, Z/pZ), (5)

where Hc denotes étale cohomology with compact support. For the sake of sim-
plicity, we will omit the coefficient group Z/pZ henceforth. In view of (5), it
suffices to show that

H4
c (K2s+t \ V̄s,t) 6= 0. (6)

Let W be the subvariety of K2s+t defined by the vanishing of yt and of all gen-
erators of J̄s,t listed in Section 1 under (I) and (II), and those listed in (III) for
which j ≤ t− 1. Then W ⊂ V̄s,t, and

V̄s,t \W =

{(x1, . . . x2s, y1, . . . , yt)|x1 = · · · = xs = x2s = y1 = · · · = yt−2 = 0, yt 6= 0}
' Ks × (K \ {0}). (7)
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It is well known that

H i
c(K

r) '
{

Z/pZ if i = 2r
0 else,

(8)

and

H i
c(K

r \ {0}) '
{

Z/pZ if i = 1, 2r
0 else.

(9)

Moreover, in view of (7), by the Künneth formula for étale cohomology ([20],
Theorem 22.1),

H i
c(V̄s,t \W ) '

⊕
h+k=i

Hh
c (Ks)⊗Hk

c (K \ {0}),

so that, by (8) and (9), we have H i
c(V̄s,t \W ) 6= 0 if and only if i = 2s + 1, 2s + 2.

But 4 < 2s ≤ 2s + 1, so that, in particular

H3
c (V̄s,t \W ) = H4

c (V̄s,t \W ) = 0. (10)

We have a long exact sequence of étale cohomology with compact support (see
[19], Remark 1.30, p. 94):

· · · → H3
c (V̄s,t \W ) → H4

c (K2s+t \ V̄s,t) → H4
c (K2s+t \W ) → H4

c (V̄s,t \W ) → · · · .

By (10) it follows that

H4
c (K2s+t \ V̄s,t) ' H4

c (K2s+t \W ). (11)

Note that W can be described as the variety of K2s+t defined by the vanishing of
yt and of all polynomials defining V̄s,t−1 in K2s+t−1. Note that a point of K2s+t

belongs to K2s+t\W if and only if it fulfils one of the two following complementary
cases:

– either its yt-coordinate is zero, and it does not annihilate all polynomials of
J̄s,t−1, or

– its yt-coordinate is non zero.

Therefore we have

K2s+t \W = (K2s+t−1 \ V̄s,t−1) ∪ Z, (12)

where the union is disjoint, and Z is the open subset given by

Z = K2s+t−1 × (K \ {0}). (13)

We thus have a long exact sequence of étale cohomology with compact support:

· · · → H4
c (Z) → H4

c (K2s+t \W ) → H4
c (K2s+t−1 \ V̄s,t−1) → H5

c (Z) → · · · . (14)

By the Künneth formula for étale cohomology, (8), (9) and (13), we have H i
c(Z) 6=

0 if and only if i = 4s+2t− 1, 4s+2t. But 4s+2t− 1 > 5, whence, in particular,

H4
c (Z) = H5

c (Z) = 0.
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It follows that (14) gives rise to an isomorphism:

H4
c (K2s+t \W ) ' H4

c (K2s+t−1 \ V̄s,t−1).

Hence, in view of (11), claim (6) follows by induction on t if it is true that

H4
c (K2s \ Vs,0) 6= 0, (15)

where Vs,0 ⊂ K2s denotes the variety defined by the vanishing of the two-minors of
the first big block of As,t. But according to [9], Lemma 2′, H4s−4

et (K2s \ Vs,0) 6= 0,
from which (15) can be deduced by Poincaré Duality. This completes the proof
of the theorem.

Remark 2. According to (1) and Theorem 2, the difference between the arith-
metical rank and the height of Js,t is at least 2s+ t− 3− (s+ t− 1) = s− 2. Thus
it strictly increases with s. In view of Theorem 1, it is zero if and only if s = 2.

Corollary 1. The variety Vs,t is a set-theoretic complete intersection if and only
if s = 2.

Next we give an upper bound for ara Js,t. In the sequel, for the sake of simplicity,
we will denote by [ij] (1 ≤ i < j ≤ s) the minor formed by the ith and the
jth column of As,t. We will call Is the ideal generated by these minors (it is the
defining ideal of the variety Vs,0 mentioned in the proof of Theorem 2). Moreover,
for all k = 1, . . . , 2s− 3, we set

Sk =
∑

i+j=k+2

[ij].

We preliminarily recall an important result by Bruns et al.

Theorem 3. ([9], Theorem 2 and [10], Corollary 5.21) With the notation just
introduced,

ara Is = 2s− 3,

and
Is =

√
(S1, . . . , S2s−3).

We can now prove the second result of this section.

Theorem 4. For all integers s ≥ 2 and t ≥ 1,

ara Js,t ≤ 2s + t− 2.
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Proof. Again, in view of Theorem 1, it suffices to prove the claim for s ≥ 3. Let
Ls,t be the ideal generated by the products listed in Section 1 under (II) and (III).
For convenience of notation we set

ξi = xi (1 ≤ i ≤ s)

ξi = yi−s−1 (s + 1 ≤ i ≤ s + t).

In other words, the entries of the first row of As,t are denoted by ξ1, . . . , ξs+t, and
the monomial generators of Ls,t are

ξizj, where 1 ≤ i ≤ s + t− 1, i− s + 1 ≤ j ≤ t. (16)

Let

Th =
s+t−1∑

i=1

ξizi+t−h (1 ≤ h ≤ s + t− 1),

where we have set zj = 0 for j 6∈ {1, . . . , t}. Then the set of non zero monomial
summands in T1, . . . , Ts+t−1 coincides with the set of monomial generators of Ls,t,
as the following elementary argument shows. On the one hand, given a non zero
monomial summand ξizi+t−h of some Th, it holds

i− s + 1 = i + t− s− t + 1 ≤ i + t− h,

so that ξizi+t−h is of the form (16). On the other hand, given a monomial ξizj as
in (16), we have j = i + t − h for h = i + t − j, where j ≤ t and i − s + 1 ≤ j.
Therefore,

1 ≤ i ≤ h ≤ i + t− (i− s + 1) = s + t− 1,

which implies that ξizj is a monomial summand of Th.
Moreover, T1 = ξ1zt. Now consider, for any h such that 1 ≤ h ≤ s + t − 1,

the product of two non zero distinct monomial summands of Th: it is of the form
ξpzp+t−hξqzq+t−h with 1 ≤ p < q ≤ s + t − 1. Hence it is divisible by ξpzq+t−h =
ξpzp+t−(h+p−q), which is one of the non zero monomial summands of Th+p−q. Since
q + t − h ≤ t, we have h − q ≥ 0, whence it follows that 1 ≤ p ≤ h + p − q < h.
Thus the assumption of Lemma 2 is fulfilled if we take I = (T1), Ph equal to the
set of all non zero monomial summands of Th and qh = Th for h = 2, . . . , s+ t− 1.
Therefore

Ls,t =
√

(T1, . . . , Ts+t−1). (17)

For some arbitrarily fixed ` with 1 ≤ ` ≤ 2s − 3, let [ij] be a summand of S`.
Then the monomial terms of [ij] are of the form

ξuxv, where 1 ≤ u ≤ ` + 1. (18)

For some fixed h such that 1 ≤ h ≤ s + t− 1, let ξizi+t−h be a non zero monomial
summand of Th. Then i + t− h ≥ 1 implies that

h− i ≤ t− 1. (19)
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For all ` = 1, . . . , s− 2 let
U` = S` + T`+t+1. (20)

Then, if ξuxv is a monomial term in S` and ξizi+t−(`+t+1) a non zero monomial
summand in T`+t+1, their product is divisible by

ξuzi+t−(`+t+1) = ξuzu+t−(`+t+1+u−i). (21)

Set h′ = ` + t + 1 + u − i. Now, according to (18), u ≤ ` + 1, so that, applying
(19) for h = ` + t + 1, we obtain h′ = ` + t + 1 − i + u ≤ t − 1 + ` + 1 = ` + t.
On the other hand, since zi+t−(`+t+1) 6= 0, we have i + t − (` + t + 1) ≤ t, i.e.,
` + t + 1 ≥ i. This implies that h′ = ` + t + 1 + u− i ≥ u ≥ 1. Thus (21) shows
that the product of each two-minor appearing as a summand in S` and each non
zero monomial summand of T`+t+1 is divisible by a monomial summand of Th′ , for
some h′ such that 1 ≤ h′ < `+ t+1. Thus Lemma 1 applies to I = (T1, . . . , Tt+1),
P ′

` = {S`, T`+t+1} and q′` = U` for ` = 1, . . . , s − 2, whence, in view of (20), we
conclude that √

(T1, . . . , Tt+1, U1, . . . , Us−2) =√
(T1, . . . , Tt+1, Tt+2, . . . , Ts+t−1, S1, . . . , Ss−2) =

√
Ls,t + (S1, . . . , Ss−2),

where the last equality is a consequence of (17). Thus we have√
(T1, . . . , Tt+1, U1, . . . , Us−2, Ss−1, . . . , S2s−3) = (22)√

Ls,t + (S1, . . . , S2s−3) =
√

Ls,t + Is = Js,t,

where the second equality follows from Theorem 3. Since the number of generators
of the ideal in (22) is t + 1 + 2s− 3 = 2s + t− 2, this completes the proof.

The gap between the lower bound given in Theorem 2 and the upper bound given
in Theorem 4 is equal to 1. Theorem 1 also shows that the lower bound is sharp.

Corollary 2. For all integers s ≥ 2 and t ≥ 1,

2s + t− 3 ≤ ara Js,t ≤ 2s + t− 2.

If s = 2, then the first inequality is an equality.

There are other cases where the lower bound is sharp. In fact it is the exact value
of ara Js,1 for s = 3, 4, 5, i.e., we have ara J3,1 = 4, ara J4,1 = 6, ara J5,1 = 8. This
is what we are going to show in the next example: it will suffice to produce, in
the three aforementioned cases 4, 5 and 6 defining polynomials, respectively.

Example 2. With the notation introduced above, we have

A3,1 =

(
x1 x2 x3 y0

x4 x5 x6 z1

)
,
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and
J3,1 = ([12], [13], [23], x1z1, x2z1, x3z1),

where

[12] = x1x5 − x2x4, [23] = x2x6 − x3x5, [13] = x1x6 − x3x4.

We show that four defining polynomials are:

F1 = [23]

F2 = x1z1 + x4[12]

F3 = [13] + x2z1 + x5[12]

F4 = x3z1 + x6[12].

Since F1, F2, F3, F4 ∈ J3,1, by virtue of Hilbert’s Nullstellensatz it suffices to prove
that every v = (x1, . . . , x6, z1) ∈ K7 which annihilates all four polynomials an-
nihilates all generators of J3,1. In the sequel, we will use, when this does not
cause any confusion, the same notation for the polynomials and for their values
at v. From F1 = 0 we immediately get [23] = 0. Moreover, since v annihilates
F2, F3, F4, we have that the triple ([13], z1, [12]) is a solution of the 3 × 3 system
of homogeneous linear equations associated with the matrix 0 x1 x4

1 x2 x5

0 x3 x6

 ,

whose determinant is
∆ = −x1x6 + x3x4 = −[13].

By Cramer’s Rule, whenever ∆ 6= 0, the only solution is the trivial one, so that,
in particular, [13] = 0, a contradiction. Thus we always have ∆ = 0, i.e., [13] = 0.
Hence, in view of Lemma 1, F2 = F3 = 0 implies that [12] = x1z1 = x2z1 = 0.
Consequently, F4 = 0 implies that x3z1 = 0. Thus v annihilates all generators of
J3,1, as required. This shows that ara J3,1 = 4.

Now consider

A4,1 =

(
x1 x2 x3 x4 y0

x5 x6 x7 x8 z1

)
.

By Theorem 3 we have

J4,1 = ([12], [13], [14], [23], [24], [34], x1z1, x2z1, x3z1, x4z1),

=
√

([12], [13], [14] + [23], [24], [34], x1z1, x2z1, x3z1, x4z1), (23)

where

[12] = x1x6 − x2x5, [13] = x1x7 − x3x5, [14] = x1x8 − x4x5,

[23] = x2x7 − x3x6, [24] = x2x8 − x4x6, [34] = x3x8 − x4x7.
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Six defining polynomials are:

F1 = [24]

F2 = [14] + [23]

F3 = [34] + x1z1 + x5[12]

F4 = [13] + x2z1 + x6[12]

F5 = x3z1 + x7[12]

F6 = x4z1 + x8[12].

Suppose that all these polynomials vanish at v = (x1, . . . , x8, z1) ∈ K9. We show
that then v annihilates all generators of the ideal appearing under the radical sign
in (23). From F1 = F2 = 0 we get that [24] = [14] + [23] = 0. Moreover, since v
annihilates F3, . . . , F6, we have that the quadruple ([34], [13], z1, [12]) is a solution
of the 4× 4 system of homogeneous linear equations associated with the matrix

1 0 x1 x5

0 1 x2 x6

0 0 x3 x7

0 0 x4 x8

 ,

whose determinant is
∆ = x3x8 − x4x7 = [34].

By Cramer’s Rule, if ∆ 6= 0, the only solution is the trivial one, so that, in
particular, [34] = 0, a contradiction. Hence we always have ∆ = 0, i.e., [34] = 0.
Hence, in analogy to what has been shown for J3,1, F3 = F4 = F5 = 0 implies
that [13] = x1z1 = x2z1 = x3z1 = [12] = 0. Consequently, F6 = 0 implies that
x4z1 = 0. Thus v annihilates all generators of the ideal in (23), as required. This
shows that ara J4,1 = 6.

Finally consider

A5,1 =

(
x1 x2 x3 x4 x5 y0

x6 x7 x8 x9 x10 z1

)
.

By Theorem 3 we have

J5,1 =

([12], [13], [14], [15], [23], [24], [25], [34], [35], [45], x1z1, x2z1, x3z1, x4z1, x5z1) =√
([12], [13], [14] + [23], [15] + [24], [25] + [34], [35], [45], x1z1, x2z1, x3z1, x4z1, x5z1).

where

[12] = x1x7 − x2x6, [13] = x1x8 − x3x6, [14] = x1x9 − x4x6, [15] = x1x10 − x5x6,

[23] = x2x8 − x3x7, [24] = x2x9 − x4x7, [25] = x2x10 − x5x7, [34] = x3x9 − x4x8,

[35] = x3x10 − x5x8, [45] = x4x10 − x5x9.
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Eight defining polynomials are:

F1 = [14] + [23]

F2 = [15] + [24]

F3 = [25] + [34]

F4 = [35] + x1z1 + x6[12]

F5 = [13] + x2z1 + x7[12]

F6 = [45] + x3z1 + x8[12]

F7 = x4z1 + x9[12]

F8 = x5z1 + x10[12].

Suppose that all these polynomials vanish at v = (x1, . . . , x10, z1) ∈ K11. We show
that then v annihilates all generators of the ideal appearing under the radical
sign in (24). From F1 = F2 = F3 = 0 we get that [14] + [23] = [15] + [24] =
[25] + [34] = 0. Moreover, since v annihilates F4, . . . , F8, we have that the 5-uple
([45], [35], [13], z1, [12]) is a solution of the 5 × 5 system of homogeneous linear
equations associated with the matrix

0 1 0 x1 x6

0 0 1 x2 x7

1 0 0 x3 x8

0 0 0 x4 x9

0 0 0 x5 x10

 ,

whose determinant is
∆ = x4x10 − x5x9 = [45].

By Cramer’s Rule, if ∆ 6= 0, the only solution is the trivial one, so that, in
particular, [45] = 0, a contradiction. Hence we always have ∆ = 0, i.e., [45] = 0.
Hence, in analogy to what has been shown for J4,1, F4 = F5 = F6 = F8 = 0
implies that [13] = [35] = x1z1 = x2z1 = x3z1 = x5z1 = [12] = 0. Consequently,
F7 = 0 implies that x4z1 = 0. Thus v annihilates all generators of the ideal in
(24), as required. This shows that ara J5,1 = 8.

4. On cohomological dimensions

Recall that, for any proper ideal I of R, the (local) cohomological dimension of I
is defined as the number

cd I = max{i|H i
I(R) 6= 0},

= min{i|Hj
I (M) = 0 for all j > i and all R-modules M},

where H i
I denotes the ith right derived functor of the local cohomology functor ΓI ;

we refer to Brodmann and Sharp [7] or to Huneke and Taylor [17] for an extensive
exposition of this subject. In this section we will determine cd Js,t for all integers
s ≥ 2 and t ≥ 1. We will use the following technical results on De Rham (HDR)



M. Barile: On the Arithmetical Rank of a Special Class . . . 61

and singular cohomology (H) with respect to the coefficient field C. The first
involves sheaf cohomology (see [7], Chapter 20, or [17], Section 2.3) with respect
to the structure sheaf R̃ of KN . The second result is analogous to Lemma 3.

Lemma 4. ([16], Proposition 7.2) Let V ⊂ KN be a non singular complex variety
of dimension d such that H i(V, R̃) = 0 for all i ≥ r. Then H i

DR(V, C) = 0 for all
i ≥ d + r.

Lemma 5. ([9], Lemma 3) Let W ⊂ W̃ be affine complex varieties such that
W̃ \W is non singular of pure dimension d. If there are r polynomials F1, . . . , Fr

such that W = W̃ ∩ V (F1, . . . , Fr), then

Hd+i(W̃ \W, C) = 0

for all i ≥ r.

We also recall that, for every proper ideal I of R,

cd I ≤ ara I, (24)

which is shown in [15], Example 2, p. 414 (and also in [7], Corollary 3.3.3, and
in [17], Theorem 4.4). Equality holds if I is generated by a regular sequence, in
which case the arithmetical rank is equal to the length of that sequence.

In the proof of the next result we will use the well known characterization of
local cohomology in terms of Koszul (or C̆ech) cohomology (see [7], Section 5.2, or
[17], Section 2.1). Let u1, . . . , uh ∈ R be non zero generators of the proper ideal I
of R. For all S ⊂ {1, . . . , h} let RS denote the localization of R with respect to the
multiplicative set of R generated by {ui|i ∈ S}; set R∅ = R. Then, according to
[17], Theorem 2.10, or [7], Theorem 5.1.19, for all i ≥ 0, H i

I(R) is isomorphic to the
ith cohomology module of a cochain complex (C ·, φ·) of R-modules constructed
as follows (see [7], Proposition 5.1.5). For all i ≥ 0, set

Ci =
⊕

S⊂{1,...,h}
|S|=i

RS.

Given any α ∈ Ci, for all i ≥ 1 and all S ⊂ {1, . . . , h} such that |S| = i, αS will
denote the component of α in RS. The map φi−1 : Ci−1 → Ci is defined in such
a way that, for every α ∈ Ci−1, and for all S ⊂ {1, . . . , h} for which |S| = i,

φi−1(α)S =
∑
k∈S

cS,k

αS\{k}

1
,

where cS,k ∈ {−1, 1} and
αS\{k}

1
is the image of αS\{k} under the localization map

RS\{k} → RS.

Lemma 6. Let z be one of the indeterminates of R and let I be an ideal of R
generated by polynomials in which z does not occur. Then, for all i ≥ 0,
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(i) z is regular on H i
I(R);

(ii) if H i
I(R) 6= 0, then H i

I(R) 6= zH i
I(R).

Proof. Let u1, . . . , uh be non zero generators of I not containing the indeterminate
z. Let S ⊂ {1, . . . , h}. In this proof, we will say that an element a ∈ RS does not
contain the indeterminate z if

a =
f∏

k∈S

usk
k

,

where f ∈ R is a polynomial not containing the indeterminate z. This definition
is of course independent of the choice of f and of the exponents sk. Moreover,
there is a unique decomposition

a = ā + zã

such that ā, ã ∈ RS and ā does not contain z. Given α ∈ Ci, for some i ≥ 0, we
will set ᾱ = (ᾱS)S and α̃ = (α̃S)S, so that we have

α = ᾱ + zα̃. (25)

We will say that α is z-free whenever α = ᾱ. The decomposition (25) is unique,
and will be called the z-decomposition of α. From the definition of φi it immedi-
ately follows that if α is z-free, so is φi(α). Hence

φi(α) = φi(ᾱ) + zφi(α̃) (26)

is the z-decomposition of φi(α). We thus have, for all α ∈ Ci,

α ∈ Ker φi ⇐⇒ ᾱ, α̃ ∈ Ker φi, (27)

α ∈ Im φi−1 ⇐⇒ ᾱ, α̃ ∈ Im φi−1. (28)

Let α ∈ Ci. First suppose that zα ∈ Im φi−1. Then, for some β ∈ Ci−1, zα =
φi−1(β) = φi−1(β̄) + zφi−1(β̃), whence φi−1(β̄) = 0 and α = φi−1(β̃). Thus
α ∈ Im φi−1. This proves part (i) of the claim. Now suppose that H i

I(R) 6= 0.
Then there is α ∈ Ker φi such that α 6∈ Im φi−1. From (27) and (28) we can easily
deduce that one can choose α to be z-free. Suppose that α ∈ Im φi−1 + z Ker φi,
i.e., α = φi−1(β) + zα′ for some β ∈ Ci−1, α ∈ Ker φi. By the uniqueness of the
z-decomposition of α it follows that α = φi−1(β̄), a contradiction. This shows
that Ker φi 6= Im φi−1 + z Ker φi, so that H i

I(R) 6= zH i
I(R). This shows part (ii)

of the claim and completes the proof.

Lemma 7. Let I be a proper ideal of R generated by polynomials in which the
indeterminate z does not occur. Then

cd (I + (z)) = cd I + 1.
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Proof. The claim for I = (0) is true because, by the observation following (24), we
have that cd (z) = 1. So assume that I 6= (0). Set d = cd I. We prove the claim
by showing the two inequalities separately. We have the following exact sequence,
the so-called Brodmann sequence (see [17], Theorem 3.2):

· · · → H i−1
I (Rz) → H i

I+(x)(R) → H i
I(R) → H i

I(Rz) → · · · .

We deduce that H i
I+(x)(R) = 0 whenever H i−1

I (Rz) = H i
I(R) = 0, which is cer-

tainly the case if i > d+1. It follows that cd (I+(z)) ≤ d+1. By virtue of Lemma
6, part (i), multiplication by z on Hd

I (R) gives rise to a short exact sequence

0 → Hd
I (R) → Hd

I (R) → H i
I(R)/zHd

I (R) → 0

from which, in turn, we obtain the long exact sequence of local cohomology:

· · · → H0
(z)(H

d
I (R)) → H0

(z)(H
d
I (R)/zHd

I (R)) → H1
(z)(H

d
I (R)) → · · · . (29)

Now H0
(z)(H

d
I (R)) ' Γ(z)(H

d
I (R)) = 0, because z is regular on Hd

I (R) by Lemma

6, part (i). Moreover, H0
(z)(H

d
I (R)/zHd

I (R)) ' Γ(z)(H
d
I (R)/zHd

I (R)) = Hd
I (R)/

zHd
I (R), since Hd

I (R)/zHd
I (R) is annihilated by z. Hence, by Lemma 6, part (ii),

we deduce that H0
(z)(H

d
I (R)/zHd

I (R)) 6= 0. Therefore, from (29) it follows that

H1
(z)(H

d
I (R)) 6= 0,

whereas from (24) we know that

H i
(z)(H

d
I (R)) = 0 for all i > 1.

We have a Grothendieck spectral sequence for local cohomology (see [24], Theorem
11.38, or [18], Theorem 12.10),

Epq
2 = Hp

(z)(H
q
I (R)) ⇒ Hp+q

I+(z)(R).

The maximum value of p + q for which Epq
2 6= 0 is d + 1 and is obtained only for

p = 1 and q = d. Thus we get

Hd+1
I+(z)(R) 6= 0,

which yields cd (I + (z)) ≥ d + 1. This completes the proof.

Before coming to the main result of this section, we first show one special case of
its claim. This case deserves to be considered separately, because it is the only
one where the cohomological dimension is independent of the characteristic of the
ground field. The next proposition is an application of a recent result by Morales
[21].

Proposition 1. Let t ≥ 1 be an integer. Then

cd J2,t = t + 1.
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Proof. We refer to the prime decomposition of J2,t given in Section 1. Since
M = {x1x4−x2x3}, all ideals J0, J1, . . . , Jt are complete intersections. According
to [21], Theorem 4, this implies that

cd J2,t = max
j=1,...,t

dimK(〈Pi〉+ 〈Di−1〉)− 1. (30)

Here the angle brackets denote linear spaces. It is evident from their definition
that, for all i = 1, . . . , t, Pi and Di−1 are disjoint sets of i + 1 and t − i + 1
indeterminates, respectively. Hence dimK(〈Pi〉 + 〈Di−1〉) = |Pi| + |Di−1| = t + 2
for all i = 1, . . . , t, whence, in view of (30), the claim follows.

Theorem 5. Let s ≥ 2 and t ≥ 1 be integers. Then
(a) if char K > 0, cd Js,t = s + t− 1,

(b) if char K = 0, cd Js,t = 2s + t− 3.

Proof. Claim (a) follows from (1) and [23], Proposition 4.1, p. 110, since Js,t is
Cohen-Macaulay. We prove claim (b) by induction on t. Suppose that charK = 0.
The claim for s = 2 and any integer t ≥ 1 is given by Proposition 1. Next we
consider the case where s = 3 and t = 1. We have cd J3,1 ≤ 4: this follows from
(24), since we have seen in Example 1 that ara J3,1 = 4. The same inequality
has also been proven, by other means, in [2], Example 6. In order to prove the
opposite inequality, we have to show that

H4
J3,1

(R) 6= 0. (31)

By virtue of the flat basis change property of local cohomology (see [7], Theorem
4.3.2, or [17], Proposition 2.11 (1)), if this is true for K = C, it remains true if K
is replaced by Z; then the same property allows us to conclude that it also holds
for any algebraically closed field K of characteristic zero.

So let us prove the claim (31) for K = C. As a consequence of Deligne’s Corre-
spondence Theorem (see [7], Theorem 20.3.11) for all indices i we have

H i
J3,1

(R) ' H i−1(C7 \ V3,1, R̃).

Hence our claim can be restated equivalently as

H3(C7 \ V3,1, R̃) 6= 0.

Therefore, in view of Lemma 4, it suffices to show that

H10
DR(C7 \ V3,1, C) 6= 0, (32)

a statement that is the De Rham analogue to (4) for s = 3, t = 1. For the sake
of simplicity, we will omit the coefficient group C in the rest of the proof. Let
W ⊂ K7 be the variety defined as in the proof of Theorem 2, which in our present
case is contained in V3,1 and can be identified with the subvariety V3,0 of K6. By
(7) we also have

V3,1 \W ' C3 × (C \ {0}), (33)
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which is obviously non singular and pure-dimensional. It is well known that

H i(Cr) '
{

C if i = 0
0 else,

(34)

and

H i(Cr \ {0}) '
{

C if i = 0, 2r − 1
0 else.

(35)

Now, by (33) and the Künneth formula for singular cohomology (see [26], Theorem
3.6.1),

H i(V3,1 \W ) '
⊕

h+k=i

Hh(C3)⊗Hk(C \ {0}),

so that, by (34) and (35), H i(V3,1 \W ) 6= 0 if and only if i = 0, 1. In particular

H4(V3,1 \W ) = H5(V3,1 \W ) = 0. (36)

Since, by (33), the set V3,1 \W is a closed non singular subvariety of C7 \W of
codimension 3, by [16], Theorem 8.3, we have the following long exact sequence,
which is the Gysin sequence for De Rham cohomology:

· · · → H4
DR(V3,1 \W ) → H10

DR(C7 \W ) → H10
DR(C7 \ V3,1) → H5

DR(V3,1 \W ) → · · ·
(37)

Now De Rham cohomology coincides with singular cohomology on non singular
varieties, by virtue of Grothendieck’s Comparison Theorem (see [13], Theorem 1′,
or [16], Theorem, p. 147). Therefore, from (36) it follows that the leftmost and
the rightmost terms in (37) vanish. Consequently,

H10
DR(C7 \W ) ' H10

DR(C7 \ V3,1). (38)

In view of (38), our claim (32) will follow once we have proven that

H10
DR(C7 \W ) 6= 0. (39)

This is what we are going to show next. Recall from (12) and (13) that C7 \W =
(C6 \ V3,0) ∪ Z, where the union is disjoint and

Z = C6 × (C \ {0}) (40)

is a open subset of C7 \ W . We thus have the following Gysin sequence of De
Rham cohomology:

· · · → H9
DR(Z) → H8

DR(C6 \ V3,0) → H10
DR(C7 \W ) → H10

DR(Z) → · · · , (41)

where by the Künneth formula for singular cohomology, (34), (35) and (40),

H9
DR(Z) = H10

DR(Z) = 0.

It follows that (41) gives rise to an isomorphism:

H8
DR(C6 \ V3,0) ' H10

DR(C7 \W ).
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But from [9], Lemma 2, we know that H8(C6\V3,0) 6= 0, so that H10
DR(C7\W ) 6= 0.

This proves our claim (39), which implies (32) and shows claim (b) for s = 3, t = 1.

Now suppose that s > 3 and t = 1. We have

Js,1 = Is + (x1z1, . . . , xsz1).

Hence

Js,1 + (z1) = Is + (z1), (42)

(Js,1)z1 = (x1, . . . , xs)Rz1 . (43)

We recall from [9], Corollary, that

cd Is = 2s− 3. (44)

Note that the indeterminate z1 does not occur in the minors generating Is. There-
fore, by virtue of Lemma 7 we have cd (Is + (z1)) = cd Is + 1. In view of (42) and
(44) it then follows that

cd (Js,1 + (z1)) = 2s− 2. (45)

Moreover, since x1/1, . . . , xs/1 form a regular sequence in Rz1 , they generate an
ideal of cohomological dimension s in Rz1 . Thus, in view of (43), we have

cd (Js,1)z1 = s, (46)

where this cohomological dimension refers to the ring Rz1 . We have the following
Brodmann sequence:

· · · → H i−1
(Js,1)z1

(Rz1) → H i
Js,1+(z1)(R) → H i

Js,1
(R) → H i

(Js,1)z1
(Rz1) → · · · , (47)

where we have used the fact that, due to the independence of base property (see
[7], Theorem 4.2.1, or [17], Proposition 2.11 (2)), H i

Js,1
(Rz1) ' H i

(Js,1)z1
(Rz1).

Moreover, by (45) and (46),

H i
Js,1+(z1)(R) = H i

(Js,1)z1
(Rz1) = 0 for i ≥ 2s− 1,

because s < 2s− 1. Thus, in view of (47),

H i
Js,1

(R) = 0 for i ≥ 2s− 1.

We conclude that cd Js,1 ≤ 2s− 2. On the other hand, by (46),

H2s−3
(Js,1)z1

(Rz1) = H2s−2
(Js,1)z1

(R) = 0,

because s < 2s− 3. Thus from (45) and (47) we deduce

0 6= H2s−2
Js,1+(z1)(R) ' H2s−2

Js,1
(R),
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which proves that cd Js,1 ≥ 2s− 2, whence we obtain cd Js,1 = 2s− 2, as claimed.

Up to know we have proven claim (b) for all s ≥ 3 and t = 1, which settles
the basis of our induction. Now we perform the induction step by assuming that
s ≥ 3, t ≥ 2 and supposing that

cd Js,t−1 = 2s + t− 4. (48)

We have

Js,t + (zt) = Js,t−1 + (zt), (49)

(Js,t)zt = (x1, . . . , xs, y1, . . . , yt−2)Rzt . (50)

Since the indeterminate zt does not occur in the generators of Js,t−1 and the
elements x1/1, . . . , xs/1, y1/1, . . . , yt−2/1 form a regular sequence in Rzt , in view
of Lemma 7, the relations (48), (49) and (50) allow us to deduce that

cd (Js,t + (zt)) = 2s + t− 3 (51)

cd (Js,t)zt = s + t− 2, (52)

where s + t− 2 ≤ 2s + t− 3. We have the following Brodmann sequence:

· · · → H i−1
(Js,t)zt

(Rzt) → H i
Js,t+(zt)(R) → H i

Js,t
(R) → H i

(Js,t)zt
(Rzt) → · · · . (53)

In view of (51) and (52), in (53) we have

H i
Js,t+(zt)(R) = H i

(Js,t)zt
(Rzt) = 0 for i ≥ 2s + t− 2,

which implies that cd Js,t ≤ 2s + t− 3. Moreover, from (52) we obtain

H2s+t−4
(Js,t)zt

(Rzt) = H2s+t−3
(Js,t)zt

(Rzt) = 0,

since s > 2 implies that 2s + t− 4 > s + t− 2. Therefore, in view of (51), in (53)
we have

0 6= H2s+t−3
Js,t+(zt)

(R) ' H2s+t−3
Js,t

(R).

This yields cd Js,t = 2s + t− 3, as claimed, and completes the proof.

Remark 3. Theorem 2 and Theorem 5 (a) show that the inequality (24) is strict
for Js,t if s ≥ 3 and charK > 0. In fact, in this case we have

cd Js,t = s + t− 1 < s + t + s− 3 = 2s + t− 3 ≤ ara Js,t.

According to Theorem 1, however, equality always holds for s = 2; in turn,
Theorem 5 (b) and Example 1 show that equality also holds for s = 3, 4, 5 and
t = 1 provided that charK = 0. The question in the remaining cases is open.
In any case, Theorem 4 tells us that in characteristic zero the cohomological
dimension and the arithmetical rank are close to each other, since

ara Js,t ≤ cd Js,t + 1.
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