Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 49, No. 1, pp. 265-268 (2008) |
|
Homogeneous spaces and isoparametric hypersurfacesStefan ImmervollMathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany, e-mail: stim@fa.uni-tuebingen.deAbstract: \def\eset \font\callmittel=eufm8 \def\hmittel{{\hbox \hmitel}} \def\hmitel{{\callmittel h}} In this note we establish a relation between isoparametric hypersurfaces with four distinct principal curvatures in spheres and homogeneous spaces. Let $m_1, m_2$ denote the multiplicities of the principal curvatures. Then the orbit $N(m_1, m_2) = \eset{A \in \hmittel(2m_1 +m_2)}{{\rm tr}(A)=0,\, {\rm rank} (A) = 2 m_1,\,\hbox{and}\, A^3 = A}$ of the action of the orthogonal group $Ø(2m_1+m_2)$ on the real symmetric matrices $\scriptstyle\hmittel(2m_1+m_2)$ contains a totally geodesic, $m_2$-dimensional round sphere. Here $N(m_1, m_2)$ is endowed with the metric induced by a scalar product on $\hmittel(2m_1+m_2)$ defined by the trace. Classification (MSC2000): 53C30; 53C40, 17A40 Full text of the article:
Electronic version published on: 26 Feb 2008. This page was last modified: 28 Jan 2013.
© 2008 Heldermann Verlag
|