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Abstract. The aim of this paper is to study the Weierstrass semigroup of ramified
points on non-singular models for curves on a rational normal scroll. We find
properties of this semigroup and determine it in some special cases, finding also a
geometrical interpretation for some of the Weierstrass gaps.
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Introduction

The Weierstrass gap sequences at ramification points of a (non-singular) trigonal curve have
been determined by Coppens in [4] and [5]. These sequences also appeared in a work by Stöhr
and Viana (cf. [12]), where they were both obtained by a method based on the fact that
trigonal curves are canonically immersed on a rational normal scroll (Coppens had already
used this fact in [5]). On the other hand, Weierstrass gap sequences at non-singular points of
a singular plane curve (or, more precisely, at the inverse image of the non-singular point by
the normalization morphism over the curve) have been studied in recent papers (e.g. [6], [7],
[2]), specially when the non-singular point is ramified with respect to some morphism over the
projective line. In the present work, we study the Weierstrass gap sequences at non-singular
ramification points of possibly singular curves on a rational normal scroll, generalizing the
results in [4] and [5] (the ramification being with respect to the morphism over the projective
line defined by a ruling of the scroll). Also, we obtain a geometrical interpretation for some
gaps, when the singularity locus of the curve is contained in the directrix of the scroll, and
contains only simple cusps or simple nodes.
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1. Divisors on curves on a scroll

A rational normal scroll Smn ⊂ Pm+n+1(k) defined over an algebraically closed field k is a
surface which after a suitable choice of projective coordinates is given by

Smn := { (x0 : . . . : xm+n+1) ∈ Pm+n+1(k) |

rank

(
x0 · · · xn−1 xn+1 · · · xn+m
x1 · · · xn xn+2 · · · xn+m+1

)
< 2 }

where the positive integers m and n are such that m ≤ n.
Smn has a ruling given by the union of the disjoint lines

Lb/a := (an : an−1b : . . . : bn : 0 : . . . : 0) , (0 : . . . : 0 : am : am−1b : . . . : bm),

where b/a ∈ P1(k) = k ∪ {∞}, which join points of the non-singular rational curves

D := {(an : an−1b : . . . : bn : 0 : . . . : 0) ∈ Pm+n+1(k) | (a : b) ∈ P1(k)} and

E := {(0 : . . . : 0 : am : am−1b : . . . : bm) ∈ Pm+n+1(k) | (a : b) ∈ P1(k)}.

Following [12] we cover Smn with four affine open sets, all isomorphic to A2(k) and defined
by

U0 := Smn \ (L∞ ∪ E) =
{(a0 : . . . : an : a0b : . . . : amb) ∈ Pm+n+1(k) | (a, b) ∈ A2(k)},

Un := Smn \ (L0 ∪ E) =
{(an : . . . : a0 : amb : . . . : a0b) ∈ Pm+n+1(k) | (a, b) ∈ A2(k)},

Un+1 := Smn \ (L∞ ∪D) =
{(a0b : . . . : anb : a0 : . . . : am) ∈ Pm+n+1(k) | (a, b) ∈ A2(k)},

Un+m+1 := Smn \ (L0 ∪D) =
{(anb : . . . : a0b : am : . . . : a0) ∈ Pm+n+1(k) | (a, b) ∈ A2(k)}.

Associating to each affine curve in A2(k) the Zariski closure of its image in U0 under the
isomorphism (a : b) 7→ (a0 : . . . : an : a0b : . . . : amb) we get a bijection between affine plane
curves and the projective curves on Smn that do not have L∞ or E as a component (we do
not assume that a curve is irreducible, unless explictly stated).
We deal in this paper with (possibly) singular curves and divisors on them, following in

this matter [11] (cf. also [9]). Thus let C be an integral curve defined over k and let k(C) be
its function field, a divisor D on C is a non-zero coherent fractional ideal sheaf of C, which we
denote by the product of its stalks D =

∏
P∈C DP . We denote by O the structure sheaf of C.

The local degree at P ∈ C of D is the integer degP (D) defined by requiring that degP (O) = 0
and that degP (D) − degP (E) = dimk(DP/EP ) whenever DP ⊇ EP . The degree of D is the
integer deg(D) :=

∑
P∈C degP (D). The divisor of a rational function h ∈ k(C)

∗ is defined by
divh :=

∏
P∈C(1/h)OP . If F is a (Cartier) divisor on Smn and C ⊂ Smn is not a component

of F then we define the intersection divisor of C and F as C ·F :=
∏
P∈C(1/fP )OP , where F

is locally defined by fP on a open set containing P . We observe that the local degree at P of
C ·F coincides with the intersection number i(C,F ;P ) of C and F at P as divisors on Smn.
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We also note that the divisors on a singular curve are not necessarily locally principal, i.e. of
the form D =

∏
dPOP , where dP ∈ k(C)∗ for all P ∈ C (cf. [9, Ex. 1.6.1] or [3, Ex. 2.4]) and

they do not form a group under the operation defined by D ∗ E :=
∏
DPEP . Nevertheless,

the locally principal divisors do form a commutative group under this operation and since
the divisors on C appearing on this paper are all (intersection divisors and hence) locally
principal we will denote this operation as a sum, thus

∏
dPOP +

∏
ePOP =

∏
(dP eP )OP

and
∏
dPOP −

∏
ePOP =

∏
(dp/eP )OP . Accordingly, instead of

∏
dPOP ⊇

∏
OP we write∏

dPOP ≥ 0 and say that
∏
dPOP is a non-negative divisor. Two divisors D and E on C are

linearly equivalent if D − E = divh for some h ∈ k(C)∗ and the set |K| of all non-negative
divisors linearly equivalent to a canonical divisor K on C is called the canonical linear series
of C.
Now let C be a curve on Smn that does not have E or L∞ as a component and let

c`(X)Y
` + c`−1Y

`−1 + · · · + c0(X) = 0 be the equation of the affine curve that corresponds
to C ∩ U0 under the isomorphism A2(k) ' U0 described above. Then deg(C · La) = ` for
all a ∈ k ∪ {∞}, deg(C · E) = d` and deg(C ·D) = d` + `(n −m), where d` is the smallest
integer such that deg ci(X) ≤ d`+(`− i)(n−m) for all i ∈ {0, . . . , `} (and hence the equality
holds for some i). The Picard group of Smn is the free group generated by the classes of D
and a line L, and the canonical divisor of Smn is linearly equivalent to −2D+ (n−m− 2)L
(cf. [1, page 121]). From this we may deduce that C ∼ `D + d`L, where ∼ denotes the
linear equivalence of divisors on Smn and, if C is irreducible, from the adjunction formula
2g−2 = C ·(C+(n−m−2)L−2D) (cf. [10, page 75]) we get g = (`−1)(2d`+`(n−m)−2)/2,
where g is the arithmetic genus of C. In what follows L will always denote a line of the ruling
on Smn. We recall that any two lines of the ruling on Smn are linearly equivalent and we
also have E ∼ D − (n−m)L (cf. [12]).

Theorem 1.1. The divisors of the canonical linear series of an irreducible curve C ∈ Smn
are exactly the intersections of C with curves linearly equivalent to (`−2)E+(d`+(`−1)(n−
m)− 2)L.

Proof. Let x and y be the rational functions defined on C ∩ U0 by (a0 : . . . : an : a0b : . . . :
amb) 7→ a and (a0 : . . . : an : a0b : . . . : amb) 7→ b, respectively and let K := (`−2)C ·E+(d`+
(`−1)(n−m)−2)C ·L∞. We have div x = C ·L0−C ·L∞ and div y = C ·D−C ·E−(n−m)C ·L∞,
thus {xiyj | 0 ≤ j ≤ ` − 2, 0 ≤ i ≤ d` + (` − 1 − j)(n − m) − 2} ⊂ H0(K). The degree
of K is (` − 2)d` + (` − 1)`(n − m) + (d` − 2)` = 2g − 2 hence the set of the g linearly
independent elements xiyj form a basis for H0(K) and K is canonical divisor of C. Now let

f :=
∑`−2
j=0

∑d`+(`−1−j)(n−m)−2
i=0 ai jx

iyj be a non-zero element of H0(K), let r be the greatest
integer such that ai r 6= 0 for some i and let er be the least non-negative integer satifying
max{i | ai j 6= 0; i = 0, . . . , d`+(`−1−j)(n−m)−2} ≤ er+(r−j)(n−m) for all j = 0, . . . , r
such that ai j 6= 0 for some i. Then 0 ≤ er ≤ d`+(`−1−r)(n−m)−2, ai j = 0 if j > r or i >
er+(r−j)(n−m) and let F be the curve on Smn whose correspondent curve on A2(k) ' U0 is∑r
j=0

∑er+(r−j)(n−m)
i=0 ai jX

iY j = 0. We claim that div(
∑r
j=0

∑er+(r−j)(n−m)
i=0 ai jx

iyj)+K is the
intersection divisor of C andG := (`−2−r)E+(d`+(`−1−r)(n−m)−2−er)L∞+F . In fact, if

P ∈ C ∩U0 then (C ·G)P = (1/
∑r
j=0

∑er+(r−j)(n−m)
i=0 ai jx

iyj)OP and the claim holds because
KP = OP . Suppose now that P ∈ C∩Un+m+1 and let x̃ and ỹ be the rational functions defined
on C ∩ Un+m+1 by (anb : . . . : a0b : am : . . . : a0) 7→ a and (anb : . . . : a0b : am : . . . : a0) 7→ b
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respectively, we have x = 1/x̃ and y = 1/(x̃(n−m)ỹ) on C ∩U0 ∩Un+m+1. Let (anb : . . . : a0b :
am : . . . : a0) 7→ (a, b) be an isomorphism between Un+m+1 and A2(k) and let X̃ and Ỹ be the
affine coordinates in A2(k), then F ∩Un+m+1, E∩Un+m+1 and L∞∩Un+m+1 correspond to the
plane curves given by

∑r
j=0

∑er+(r−j)(n−m)
i=0 ai jX̃

er+(r−j)(n−m)−iỸ r−j = 0, Ỹ = 0 and X̃ = 0

respectively. Now it is easy to check that (C · G)P = (div(
∑r
j=0

∑er+(r−j)(n−m)
i=0 ai jx

iyj) +

K)P = (1/
∑r
j=0

∑er+(r−j)(n−m)
i=0 ai j x̃

d`+(l−1−j)(n−m)−2−i ỹ`−2−j)OP . The proof of the claim for
P ∈ Un and P ∈ Un+1 is similar. Thus any divisor in |K| is the intersection of C and a curve
linearly equivalent to (`− 2)E + (d` + (`− 1)(n−m)− 2)L.
Conversely, if H is a curve linearly equivalent to (`−2)E+(d`+(`−1)(n−m)−2)L then

we may write H = sE + tL∞ + G, with s and t non-negative integers, G a curve that does
not have E or L∞ as a component, and G ∼ (`− 2− s)E + (d` + (`− 1)(n−m)− 2− t)L ∼
(`−2−s)D+(d`+(s+1)(n−m)−2−t)L. Thus G∩U0 is an affine curve given in A2(k) ' U0
by an equation of the form

∑`−2−s
j=0

∑d`+(s+1)(n−m)−2−t
i=0 ai jX

iY j = 0, and as above one may

check that div (
∑`−2−s
j=0

∑d`+(s+1)(n−m)−2−t
i=0 ai j x

i yj) + K = C · H. This completes the proof
of the theorem. �

2. Weierstrass gaps at ramification points

From now on C will always denote an irreducible curve on Smn. Let η : C̃ → C be the
normalization of C, let P̃ ∈ C̃ and let K̃ be a canonical divisor on C̃. The set of positive
integers WG(P̃ ) := {1 + dimkDP̃/OP̃ | D ∈ |K̃|} is called the Weierstrass gap sequence at
P̃ . The cardinality of this set is equal to the genus of C̃ and its complementary in the set of
the non-negative integers is called the Weierstrass semigroup at P̃ (cf. [13]). Let P ∈ C be
a non-singular point and let P̃ = η−1(P ). In this case we will refer to the set WG(P̃ ) as the
Weierstrass gap sequence at P and write WG(P ). Also, if T is the line of the ruling passing
through P and r := i(C, T ;P ) then we say that P is an r-ramification point of C. We want
to determine WG(P ) at r-ramification points of C ∼ `D+ d`L for r = `, `− 1 (observe that
r ≤ deg(C · L) = `). Let’s begin with the case where C is non-singular.

Theorem 2.1. Let C be a non-singular curve on a scroll Smn such that C ∼ `D+ d`L. Let
P ∈ C be an r-ramification point with r ≥ 2 and let WG(P ) be the Weierstrass gap sequence
at P .

a) If P /∈ E then {ir+ j+1 | j = 0, 1, . . . , `−2 ; i = 0, 1, . . . , d`+(`−1− j)(n−m)−2} ⊆
WG(P ) and equality holds when r ∈ {`, `− 1}.

b) If P ∈ E then {ir+`−1−j | j = 0, 1, . . . , `−2 ; i = 0, 1, . . . , d`+(`−1−j)(n−m)−2} ⊆
WG(P ) and equality holds when r ∈ {`, `− 1}.

Proof. Let T be the line of the ruling through P . After a suitable automorphism of Smn
we may assume that P = T ∩D, if P /∈ E (cf. [12, Prop. 1.2]) and of course P = T ∩ E, if
P ∈ E. Since i(C, T ;P ) ≥ 2 we have i(C,D;P ) = 1, if P /∈ E or i(C,E;P ) = 1, if P ∈ E.
Let L 6= T be another line of the ruling and hence P /∈ L. From Theorem 1.1 we get that

WG(P ) ⊇ {1 + i(C, jD + (`− 2− j)E + (d` + (`− 1− j)(n−m)− 2− i)L+

iT ;P ) | 0 ≤ j ≤ `− 2, 0 ≤ i ≤ d` + (`− 1− j)(n−m)− 2}.
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The right hand side set is equal to {ir+j+1 | 0 ≤ j ≤ `−2, 0 ≤ i ≤ d`+(`−1−j)(n−m)−2} if
P /∈ E, or is equal to {ir+`−1−j | 0 ≤ j ≤ `−2, 0 ≤ i ≤ d`+(`−1−j)(n−m)−2} if P ∈ E.
Moreover, if r ∈ {`, `− 1} these sets have cardinality equal to (`− 1)(2d` + `(n−m)− 2)/2
which is the genus of C and hence equality holds in either case. �

From now on we do not supppose that C is a smooth curve. Let F be the conductor divisor
on C defined by FP = (OP : ÕP ) for all P ∈ C, where ÕP is the integral closure of OP in
k(C). We call a divisor F on Smn an adjoint curve if F ∼ (`−2)E+(d`+(`−1)(n−m)−2)L

and ÕP ⊆ (F · C)PFP for all P ∈ C. If Q is a singular point of C then FQ ⊂ MQ, where
MQ is the maximal ideal of OQ, and if fQ defines an adjoint curve F locally in an open set

of Smn containing Q we get ÕQfQ ⊂ FQ ⊂ MQ, thus F intersects C at Q. Exactly as in
the case of plane curves one may show that the divisors of the canonical series of C̃ are the
scheme theoretic inverse image under η of the divisors

∏
(F · C)PFP , where F is an adjoint

curve. At a non-singular point P ∈ C we have (F · C)PFP = (F · C)P since FP = OP , thus
from the preceeding theorem we obtain the following result.

Lemma 2.2. Let P ∈ C ∼ `D + d`L be an r-ramification point, where r ∈ {`, `− 1}.

a) If P /∈ E then WG(P ) ⊂ {ir + j + 1 | j = 0, 1, . . . , ` − 2 ; i = 0, 1, . . . , d` + (` − 1 −
j)(n−m)− 2}.

b) If P ∈ E then WG(P ) ⊂ {ir + `− 1− j | j = 0, 1, . . . , `− 2 ; i = 0, 1, . . . , d` + (`− 1−
j)(n−m)− 2}.

The next result shows that the so called Namba’s Lemma holds for curves on Smn.

Lemma 2.3. Let C, C1 and C2 be curves on a scroll Smn and let P ∈ Smn be a non-singular
point of C. Then i(C1, C2;P ) ≥ min{i(C,C1;P ), i(C,C2;P )}.

Proof. Let F = 0, G1 = 0 and G2 = 0 be local equations for C, C1 and C2 respectively,
in an open affine subset of Smn isomorphic to A2(k). For i ∈ {1, 2} we get i(C,Ci;P ) =
dimkOA2(k),P/(F,Gi) = dimkOC,P/(gi) = ordP (gi) where gi ∈ k(C) is the rational func-
tion determined by the polynomial Gi. Then i(C1, C2;P ) = dimkOA2(k),P/(G1, G2) ≥
dimkOA2(k),P/(F,G1, G2)=dimkOC,P/(g1, g2)=min{ordP (g1), ordP (g2)} = min{i(C,C1;P ),
i(C,C2;P )}. �

Theorem 2.4. Let P ∈ C ⊂ Smn be a non-singular r-ramification point and let T be the
line of the ruling passing through P . If F ∼ sE + tL is a divisor of Smn such that s < r and
i(C,F ;P ) ≥ r then F = T +G and G ∼ sE + (t− 1)L.

Proof. From the above Lemma i(F, T ;P ) ≥ min{i(C, T ;P ), i(C,F ;P )} ≥ r but deg(F ·T ) =
s deg(E · T ) + t deg(L · T ) = s < r. Then (cf. [8, page 360]) F and T must have a common
irreducible component so F = T +G for some divisor G ⊂ Smn and G ∼ sE + (t− 1)L. �

Corollary 2.5. Let P ∈ C ⊂ Smn be an r-ramification point of C ∼ `D + d`L where
r ∈ {`, ` − 1}. If ir + s is a Weierstrass gap at P , with s and i positive integers, then
{(i− 1)r + s, . . . , r + s, s} are also Weierstrass gaps at P .
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Proof. Since ir + s is a Weierstrass gap at P there exists an adjoint curve F such that
i(C,F ;P ) = ir + s − 1. Let T be the line of the ruling passing through P , from the above
Theorem we get that F = T + G where G ∼ (` − 2)E + (d` + (` − 1)(n − m) − 3)L and
i(C,G;P ) = (i−1)r+s−1. From deg(C ·T ) = ` and r ∈ {`, `−1} we get that T intersects C
at most at another non-singular point so if T ′ is a line of the ruling not containing P then the
curve G + T ′ is an adjoint curve. From i(C,G + T ′;P ) = i(C,G;P ) we get that the integer
(i− 1)r+ s is a Weierstrass gap at P . Thus the corollary follows from repeated applications
of the above theorem. �

In view of the above proof, if ir+ s ∈ WG(P ) one would expect iT to be a component of an
adjoint curve that yields this gap. The result below shows that if m < n then the curve E is
also a component of many adjoint curves.

Theorem 2.6. Let C ∼ `D+d`L be a singular curve on Smn, where m < n and let T be the
line of the ruling passing through the r-ramification point P , with r ∈ {`, ` − 1}. If F is an
adjoint curve such that i(C,F ;P ) = ir+j or i(C,F ;P ) = ir+`−2−j, where j ∈ {0, . . . , `−3}
and i ∈ {d` + (n−m)− 1, . . . , d` + (`− 1− j)(n−m)− 2}, then F = iT + sE +H, where s
is the integer satisfying d`+ s(n−m)− 2 < i ≤ d`+(s+1)(n−m)− 2 and H is an effective
divisor of Smn.

Proof. Let F be an adjoint curve such that i(C,F ;P ) = ir+ j or i(C,F ;P ) = ir+ `− 2− j,
with i and j as in the theorem. After successive applications of Theorem 2.4 we get F =
iT + G, where G ∼ (` − 2)E + (d` + (` − 1)(n − m) − 2 − i)L ∼ (` − 2)D + (d` + (n −
m) − 2 − i)L. As we remarked in Section 1, a curve that does not have E or L∞ as a
component is linearly equivalent to a divisor aD + bL of Smn, with a ≥ 0 and b ≥ 0. Since
d` + (n −m) − 2 − i < 0 the curve G must have E as a component, so G = E + G1 where
G1 ∼ (` − 3)D + (d` + 2(n − m) − 2 − i)L. We repeat this argument s times to obtain
G = sE +Gs with Gs ∼ (`− 2− s)D + (d` + (s+ 1)(n−m)− 2− i)L. �

Taking into account that CSing is contained in every adjoint curve, we may interpret geomet-
rically the greatest possible integers in WG(P ) as follows.

Corollary 2.7. Let C ∼ `D + d`L be a singular curve on Smn and let P be a non-singular
r-ramification point, where r ∈ {`, `− 1}.

a) If m < n and (d`+(`−1)(n−m)−2)r+1 ∈ WG(P ) or (d`+(`−1)(n−m)−2)r+`−1 ∈
WG(P ) then CSing ⊂ E.

b) If m = n and (d` − 2)r + ` − 1 ∈ WG(P ) then CSing is contained in a curve linearly
equivalent to D that also contains P .

Proof. To prove (a) we take i = (d` + (`− 1)(n−m)− 2) and j = 0 in the above theorem
and get s = ` − 2. Thus F = (d` + (` − 1)(n − m) − 2)T + (` − 2)E and we must have
CSing ⊂ E. To prove (b) we use Theorem 2.4 to obtain an adjoint curve F = (d` − 2)T +G
where G ∼ (` − 2)D and CSing ⊂ G. Since n = m the curves linearly equivalent to D are
exactly E and the curves given in A2(k) ' U0 by the equations Y − b = 0, with b ∈ k; it
is easy to check that these curves do not intersect each other. Since i(C,G;P ) = ` − 2 we
must have G = (`− 2)D′, where D′ is a curve linearly equivalent to D that contains P and
CSing. �
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The following result determines WG(P ) for curves satisfying certain restrictions on the sin-
gularities.

Proposition 2.8. Let C ∼ `D + d`L be a curve of singularity degree δ on the scroll Smn.
Let P ∈ C be an r-ramification point, where r ∈ {`, `−1}. Suppose that CSing ⊂ E if m < n,
or that CSing is contained in a curve linearly equivalent to D, if m = n. Suppose also that
the singularities of C are either simple nodes or simple cusps.

a) If m < n and P /∈ E, or if m = n and P and CSing are not contained in a curve linearly
equivalent to D, then WG(P ) = {ir+ j+1 | 0 ≤ j ≤ `− 3; 0 ≤ i ≤ d`+(`− 1− j)(n−
m)− 2} ∪ {ur + `− 1 | 0 ≤ u ≤ d` + (n−m)− 2− δ}.

b) If m < n and P ∈ E, or if m = n and P and CSing are contained in a curve linearly
equivalent to D, then WG(P ) = {ir + `− 1− j | 0 ≤ j ≤ `− 3; 0 ≤ i ≤ d` + (`− 1−
j)(n−m)− 2} ∪ {(d` + (n−m)− 2− δ − u)r + 1 | 0 ≤ u ≤ d` + (n−m)− 2− δ}.

Proof. Let F be the conductor divisor of C. We recall that C is a Gorenstein curve,
for it lies on a surface, and thus the degree of singularity of a point Q ∈ C is equal to
dimk(OQ/FQ). From FQ ⊂MQ, whereMQ is the maximal ideal of OQ, and the hypothesis
on the singularities we get FQ =MQ for all singular points of C (thus MQ, as FQ, is not

only an OQ-module but also an ÕQ-module). If F is a curve intersecting C at a singular
point Q and fQ defines F locally on an open set of Smn containing Q then fQ ∈ MQ and

hence ÕPfQ ⊂ FQ, i.e. ÕP ⊂ (F · C)QFQ. This shows that any curve F ∼ (`− 2)E + (d` +
(`− 1)(n−m)− 2)L passing through all the singular points of C is an adjoint curve.
If m = n then there exists an automorphism of the scroll taking a given curve linearly

equivalent to D onto E (cf. [12]), so we may assume that Csing ⊂ E. Let T be the line of
the ruling that contains P . If P /∈ E, let D′ be a curve linearly equivalent to D containing
P , then P = T ∩ D′; if P ∈ E then P = T ∩ E. Let L1, . . . , Lδ be the lines of the ruling
passing through the points in CSing. Let L be a line of the ruling different from T . To obtain
the Weierstrass gaps listed in the theorem it suffices to calculate the local degree at P of
the intersection divisor of C and the adjoint curves iT + (` − 2 − j)E + jD′ + (d` + (` −
1 − j)(n − m) − 2 − i)L, where 0 ≤ j ≤ ` − 3, 0 ≤ i ≤ d` + (` − 1 − j)(n − m) − 2 and
(`−2)D′+(d`+(n−m)−2−δ−u)T+(u+1)L1+L2+· · ·+Lδ, where 0 ≤ u ≤ d`+(n−m)−2−δ.
Using r ∈ {`, `−1} one may check that we get (`−1)(2d`+`(n−m)−2)/2−δ = g−δ distinct
numbers (where g is the arithmetic genus of C) and this is the cardinality of WG(P ). �

The next result follows from the above proposition and Corollary 2.7.

Corollary 2.9. Let C ∼ `D + d`L be a curve on Smn, whose singularities are only simple
nodes or simple cusps. Let P be a non-singular r-ramification point of C, where r ∈ {`, `−1}.

a) If m < n and P /∈ E then CSing ⊂ E if and only if (d` + (`− 1)(n−m)− 2)r + 1 is a
Weierstrass gap at P .

b) If m < n and P ∈ E then CSing ⊂ E if and only if (d` + (`− 1)(n−m)− 2)r + `− 1
is a Weierstrass gap at P .

c) If m = n then P and CSing are on a curve that is linearly equivalent to D if and only
if (d` − 2)r + `− 1 is a Weierstrass gap at P .
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