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Abstract. The aim of this paper is to study the Weierstrass semigroup of ramified
points on non-singular models for curves on a rational normal scroll. We find
properties of this semigroup and determine it in some special cases, finding also a
geometrical interpretation for some of the Weierstrass gaps.
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Introduction

The Weierstrass gap sequences at ramification points of a (non-singular) trigonal curve have
been determined by Coppens in [4] and [5]. These sequences also appeared in a work by Stéhr
and Viana (cf. [12]), where they were both obtained by a method based on the fact that
trigonal curves are canonically immersed on a rational normal scroll (Coppens had already
used this fact in [5]). On the other hand, Weierstrass gap sequences at non-singular points of
a singular plane curve (or, more precisely, at the inverse image of the non-singular point by
the normalization morphism over the curve) have been studied in recent papers (e.g. [6], [7],
2]), specially when the non-singular point is ramified with respect to some morphism over the
projective line. In the present work, we study the Weierstrass gap sequences at non-singular
ramification points of possibly singular curves on a rational normal scroll, generalizing the
results in [4] and [5] (the ramification being with respect to the morphism over the projective
line defined by a ruling of the scroll). Also, we obtain a geometrical interpretation for some
gaps, when the singularity locus of the curve is contained in the directrix of the scroll, and
contains only simple cusps or simple nodes.
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1. Divisors on curves on a scroll

A rational normal scroll S,,,, C P™*"*1(k) defined over an algebraically closed field k is a
surface which after a suitable choice of projective coordinates is given by

Sin ={ (@01 Tyyns1) € PPT(R) |
rank ( Lo " Tpn-1 Tn+1 " Tntm > <2}
Ty e T $n+2 e xn-}-m—‘,—l

where the positive integers m and n are such that m < n.
Siun has a ruling given by the union of the disjoint lines

Lyjg:=(a":antb:...:0":0:...:0),(0:...:0:a™:am1b:...:b™),
where b/a € P!(k) = k U {oo}, which join points of the non-singular rational curves
D:={(a":a"'b:...:0":0:...:0) € P"" (k)| (a:b) € P'(k)} and
E:={0:...:0:a™:a™:...:0™) € P"" (k)| (a:b) € P(k)}.
Following [12] we cover S,,, with four affine open sets, all isomorphic to A%(k) and defined

by
Up := Smn \ (Lo UE) =

{(@®:...:a":a%:...:a™b) € P (k)| (a,b) € A%(k)},
Up:=8mnn\ (Lo UE) =
{(a™:...:a%:a™b:...:a%) € P (k)| (a,b) € A%(k)},
Un+1 = Smn \ (Loo U D) =
{(@:...:a"b:a:...:a™) € P (k)| (a,b) € A%(k)},
Un+m+1 = Smn \ (LO U D) =
{(@b:...:a°:a™:...:a% € P""" (k)| (a,b) € A%(k)}.
Associating to each affine curve in A%(k) the Zariski closure of its image in U, under the

isomorphism (a : b) — (a®:...:a":a% :...:a™b) we get a bijection between affine plane

curves and the projective curves on S,,, that do not have L., or E as a component (we do
not assume that a curve is irreducible, unless explictly stated).

We deal in this paper with (possibly) singular curves and divisors on them, following in
this matter [11] (cf. also [9]). Thus let C' be an integral curve defined over k£ and let k(C') be
its function field, a divisor D on C'is a non-zero coherent fractional ideal sheaf of C', which we
denote by the product of its stalks D =[], Dp. We denote by O the structure sheaf of C.
The local degree at P € C' of D is the integer degp(D) defined by requiring that deg,(O) =0
and that degp(D) — degp(€) = dimg(Dp/Ep) whenever Dp O Ep. The degree of D is the
integer deg(D) := ) p. degp(D). The divisor of a rational function h € k(C)* is defined by
divh := [[pec(1/h)Op. If F is a (Cartier) divisor on S,,, and C' C S, is not a component
of F' then we define the intersection divisor of C and F as C- F := [[pc(1/ fp)Op, where F
is locally defined by fp on a open set containing P. We observe that the local degree at P of
C - F coincides with the intersection number i(C, F'; P) of C' and F' at P as divisors on S, .
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We also note that the divisors on a singular curve are not necessarily locally principal, i.e. of
the form D = [[dpOp, where dp € k(C)* for all P € C (cf. [9, Ex. 1.6.1] or [3, Ex. 2.4]) and
they do not form a group under the operation defined by D % £ := [[ Dp€p. Nevertheless,
the locally principal divisors do form a commutative group under this operation and since
the divisors on C' appearing on this paper are all (intersection divisors and hence) locally
principal we will denote this operation as a sum, thus [[dpOp + [[epOp = [[(dpep)Op
and [[dpOp — [[erOp = [](dp/ep)Op. Accordingly, instead of [[dpOp D [[ Op we write
[[dpOp > 0 and say that [[ dpOp is a non-negative divisor. Two divisors D and € on C' are
linearly equivalent if D — & = div h for some h € k(C)* and the set |K| of all non-negative
divisors linearly equivalent to a canonical divisor IC on C' is called the canonical linear series
of C.

Now let C be a curve on S,,, that does not have F or L., as a component and let
co(X)Y 4o Y + -+ + ¢o(X) = 0 be the equation of the affine curve that corresponds
to C' N Uy under the isomorphism A%(k) ~ U, described above. Then deg(C - L,) = ¢ for
all a € kU {0}, deg(C - E) = dy and deg(C - D) = dy + £(n — m), where d, is the smallest
integer such that degc;(X) < dy+ (¢ —i)(n—m) for all i € {0, ..., ¢} (and hence the equality
holds for some i). The Picard group of S,,, is the free group generated by the classes of D
and a line L, and the canonical divisor of S,,,, is linearly equivalent to —2D + (n —m — 2)L
(cf. [1, page 121]). From this we may deduce that C' ~ ¢D + d,L, where ~ denotes the
linear equivalence of divisors on S,,, and, if C is irreducible, from the adjunction formula
2g—2=C-(C+(n—m—2)L—2D) (cf. [10, page 75]) we get g = ({—1)(2d,+{(n—m)—2)/2,
where g is the arithmetic genus of C'. In what follows L will always denote a line of the ruling

on S,,,. We recall that any two lines of the ruling on §,,, are linearly equivalent and we
also have £~ D — (n —m)L (cf. [12]).

Theorem 1.1. The divisors of the canonical linear series of an irreducible curve C € S,,,
are exactly the intersections of C with curves linearly equivalent to ({ —2)E+ (d;+({—1)(n—
m) —2)L.

Proof. Let z and y be the rational functions defined on C' N Uy by (a° cia”:a%:: :
a™b) —aand (a®:...:a" :a%:...:a™b) — b, respectively and let K := (6 2)C- E—i-(dg—i-
(Z—l)(n—m)—2)C’~Lco. We have dive = C-Ly—C"-Lo and divy = C-D—C-E—(n—m)C" L,
thus {z'y/ |0 < j <(—-2,0<i<dy+({—-1-j)(n—m)—2} C H'(K). The degree
of Lis (0 —2)dy+ (£ — 1)(n — m) + (dy — 2)¢ = 2g — 2 hence the set of the ¢ linearly
independent elements x'yj form a basis for H°(K) and K is canonical divisor of C. Now let
Z Zdﬁ(f 1=9)n=m)=2 . aiyd be a non-zero element of HO(K), let 7 be the greatest
1nteger such that a;, # 0 for some i and let e, be the least non-negative integer satifying
max{i|a;; #0;i=0,....,di+({—1—7)(n—m)—2} < e, +(r—j)(n—m)forall j=0,...,r
such that a;; # 0 for some ¢. Then 0 <e, < dy+({l—1—7r)(n—m)—2,a,; =0if j >rori>
e, +(r—7)(n—m) and let F be the curve on S,,,, whose correspondent curve on A%(k) ~ U is
> = OZETHT Nm=m) g, ;X'Y7 = 0. We claim that div(}>} Oze”Jr(T 7)n=m) a; jz'y’)+ K is the
intersection divisor ofCandG (0—2— T)E+(dg+(€ 1—r)(n—m)—2—e,)Loo+F. In fact, if
P € CNUp then (C-G)p = (1/377_, S et r=)mm) g 2i47)Op and the claim holds because
Kp = Op. Suppose now that P € CNU,,;n41 and let £ and 3 be the rational functions defined
on CNUpyme1 by (@b:...:a%:a™:...:a") —aand (a"b:...:a% :a™:...:a") — ]
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respectively, we have z = 1/Z and y = 1/(2""™) on C N Uy N Upym1. Let (a”b: ab :
a™:...:a% — (a,b) be an isomorphism between U,, ;1 and A%(k) and let X and Y be the
affine coordinates in A%(k), then FNUp, i1, ENUpimy1 and Lo NUpymy1 correspond to the
plane curves given by > "_ o et tr=nmm) g Kot r=)nm)—iyr—i — 0 Y = 0 and X = 0
respectively. Now it is easy to check that (C’ -G)p = (div(}]_, S s mDmmm) g swiyd) +

Kp=1/> ZETJF remem) g, s et =1=) (nmm) =21 G=2=3Y ), The proof of the claim for
P €U, and P € U, is similar. Thus any divisor in |K| is the intersection of C' and a curve
linearly equivalent to (¢ —2)E + (d;+ ({ — 1)(n —m) — 2)L.

Conversely, if H is a curve linearly equivalent to (¢ —2)E + (dy+ (£ —1)(n—m)—2)L then
we may write H = sE + tL,, + GG, with s and ¢ non-negative integers, G a curve that does
not have E or Ly, as a component, and G ~ ({ —2—s)E+ (dy+ ({ —1)(n—m) —2 —t)L ~
(l—2—8)D+(dy+(s+1)(n—m)—2—t)L. Thus GNU is an affine curve given in A%(k) ~ Uy
by an equation of the form ZZ 2 Zd” (sHD)n=m)=271 5 . XiYJ = 0, and as above one may

check that div (Ze 2 Zdﬁ (1)) 2 Ya;j2'y)) + K = C - H. This completes the proof
of the theorem. O

2. Weierstrass gaps at ramification points

From now on C will always denote an irreducible curve on Smn. Let n: C — C be the
normalization of €', let P € C and let K be a canonical divisor on C. The set of positive
integers WG(P) := {1 + dim; Dp/Op | D € |K|} is called the Weierstrass gap sequence at
P. The cardinality of this set is equal to the genus of C' and its complementary in the set of
the non-negative integers is called the Weierstrass semigroup at P (cf. [13]). Let P € C be
a non-singular point and let P = 5~(P). In this case we will refer to the set WG(P) as the
Weierstrass gap sequence at P and write WG(P). Also, if T' is the line of the ruling passing
through P and r := i(C,T; P) then we say that P is an r-ramification point of C. We want
to determine WG(P) at r-ramification points of C' ~ ¢D + d,L for r = £,¢ — 1 (observe that
r < deg(C - L) = {). Let’s begin with the case where C' is non-singular.

Theorem 2.1. Let C be a non-singular curve on a scroll S,,,, such that C' ~ {D +d,L. Let
P € C be an r-ramification point with r > 2 and let WG(P) be the Weierstrass gap sequence
at P.
a) IfP¢ E then{ir+j+1]7=0,1,....4—2;i=0,1,...,d+({—=1—7)(n—m)—2} C
WG(P) and equality holds when r € {£,¢ — 1}.
b) IfP € E then {ir+{—1—35|j=0,1,...,0—2; i =0,1,...,de+({—1—j)(n—m)—2} C
WG(P) and equality holds when r € {£,¢ — 1}.
Proof. Let T be the line of the ruling through P. After a suitable automorphism of S,,,
we may assume that P =T N D, if P ¢ E (cf. [12, Prop. 1.2]) and of course P =T N E, if
P € E. Since i(C,T;P) > 2 we have i(C,D; P) =1,if P¢ E or i(C,E;P) =1,if P € E.
Let L # T be another line of the ruling and hence P ¢ L. From Theorem 1.1 we get that

WGP)2{1+i(C,jD+({l —2—j)E+ (di+({ —1—j)(n—m)—2—14i)L +
iT;P)|0<j<l—-20<i<di+{—1—7)(n—m)—2}
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The right hand side set is equal to {ir+j+1]|0 < j </—-2,0 <i < dy+({—1—7)(n—m)—2} if
P ¢ FE, orisequal to {ir+/—1—35][0<j</¢-2,0<i<dy+({—1—j)(n—m)-2}if P € E.
Moreover, if r € {¢,¢ — 1} these sets have cardinality equal to (¢ — 1)(2d; + ¢(n —m) —2)/2
which is the genus of C' and hence equality holds in either case. O

From now on we do not supppose that C' is a smooth curve. Let F be the conductor divisor
on C defined by Fp = (Op : Op) for all P € C, where Op is the integral closure of Op in
k(C). We call a divisor F on S,,,, an adjoint curveif F' ~ ({—2)E+ (dy+({—1)(n—m)—2)L
and 6;: C (F-C)pFpforall P e C. If Q is a singular point of C' then Fy C Mg, where
M is the maximal ideal of O, and if fy defines an adjoint curve F' locally in an open set
of S,,, containing ) we get (522 fo C Fo C Mg, thus F intersects C' at (). Exactly as in
the case of plane curves one may show that the divisors of the canonical series of C' are the
scheme theoretic inverse image under 7 of the divisors [[(F' - C')pFp, where F' is an adjoint
curve. At a non-singular point P € C' we have (F - C)pFp = (F - C)p since Fp = Op, thus
from the preceeding theorem we obtain the following result.

Lemma 2.2. Let P € C ~ (D + d,L be an r-ramification point, where r € {{,{ — 1}.
a) [P ¢ E then WG(P) C {ir+j+1]j=0,1,...,6—2; i=0,1,....d+(f—1—

j)(n—m)—2}.
b) IfP e E then WG(P) C {ir4+4—1—3|j=0,1,....6—2;i=0,1,....dg+({—1—
j)(n—m)—2}.

The next result shows that the so called Namba’s Lemma holds for curves on S,,,,.

Lemma 2.3. Let C, C; and Cs be curves on a scroll S,,,, and let P € S,,,, be a non-singular
point of C. Then i(Cy,Cy; P) > min{i(C, Cy; P),i(C, Cy; P)}.

Proof. Let F =0, G; = 0 and Gy = 0 be local equations for C', C; and C5 respectively,
in an open affine subset of S,,, isomorphic to A%(k). For i € {1,2} we get i(C,C;; P) =
dimy, Op2y,p/(F, G;) = dimy, Oc,p/(g;) = ordp(g;) where g; € k(C) is the rational func-
tion determined by the polynomial G;. Then i(Cy,Cy; P) = dimg Oge)p/(G1,G2) >
dimy, Op2),p/(F, G1, G2) =dimy, O¢,p/(g1, 92) =min{ordp(g;), ordp(g2)} = min{i(C, Cy; P),
i(C,Cq; P)}. O

Theorem 2.4. Let P € C C S,,, be a non-singular r-ramification point and let T be the
line of the ruling passing through P. If F ~ sE +tL is a divisor of S,,, such that s < r and
i(C,F;P)>r then F=T+G and G ~ sE+ (t —1)L.

Proof. From the above Lemma i(F,T; P) > min{i(C,T; P),i(C, F; P)} > r but deg(F-T) =
sdeg(E -T)+tdeg(L-T) =s <r. Then (cf. [8, page 360]) F and T must have a common
irreducible component so F' = T + G for some divisor G C S, and G ~ sE + (t —1)L. O

Corollary 2.5. Let P € C C S, be an r-ramification point of C' ~ €D + d,L where
r e {{,0—1}. Ifir + s is a Weierstrass gap at P, with s and i positive integers, then
{6 —=Dr+s,...,7+s,s} are also Weierstrass gaps at P.
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Proof. Since ir 4+ s is a Weierstrass gap at P there exists an adjoint curve F' such that
i(C,F;P) =1ir+s—1. Let T be the line of the ruling passing through P, from the above
Theorem we get that /' = T + G where G ~ ({ —2)E + (dy + (¢{ — 1)(n — m) — 3)L and
i(C,G; P) = (i—1)r+s—1. From deg(C-T) = ¢ and r € {¢,{—1} we get that T intersects C
at most at another non-singular point so if 7" is a line of the ruling not containing P then the
curve G + 71" is an adjoint curve. From i(C,G + T"; P) = i(C, G; P) we get that the integer
(1 —1)r + s is a Weierstrass gap at P. Thus the corollary follows from repeated applications
of the above theorem. O

In view of the above proof, if ir + s € WG(P) one would expect ¢T" to be a component of an
adjoint curve that yields this gap. The result below shows that if m < n then the curve F is
also a component of many adjoint curves.

Theorem 2.6. Let C' ~ {D+d,L be a singular curve on S,,,, where m < n and let T be the
line of the ruling passing through the r-ramification point P, with r € {¢,¢ — 1}. If F' is an
adjoint curve such thati(C, F; P) = ir+j ori(C, F; P) = ir+{—2—j, where j € {0,...,{—3}
andi € {dy+(n—m)—1,....dg+({ —1—j)(n—m)—2}, then FF =il + sE+ H, where s
is the integer satisfying dy+s(n—m) —2 <i < dy+ (s+1)(n—m)—2 and H is an effective
divisor of Spn.

Proof. Let F be an adjoint curve such that ¢(C, F'; P) =ir+j or i(C,F; P) = ir+{—2—j,
with ¢ and j as in the theorem. After successive applications of Theorem 2.4 we get F' =
iT + G, where G ~ (0L —2)E+ (dy+ ({ —1)(n—m) =2 —4)L ~ ({ —2)D + (d; + (n —
m) —2 —4)L. As we remarked in Section 1, a curve that does not have E or L., as a
component is linearly equivalent to a divisor aD + bL of S,,,,, with a > 0 and b > 0. Since
de+ (n —m) — 2 — i < 0 the curve G must have E as a component, so G = E + G; where
Gy ~ (£ —=3)D + (d¢ +2(n — m) — 2 —i)L. We repeat this argument s times to obtain
G=sE+Gswith Gy~ —2—8)D+ (d;+ (s+1)(n—m)—2—1)L. O

Taking into account that Cyg;,4 is contained in every adjoint curve, we may interpret geomet-
rically the greatest possible integers in WG(P) as follows.

Corollary 2.7. Let C ~ {D + d,L be a singular curve on S,,,, and let P be a non-singular
r-ramification point, where r € {£,{ — 1}.
a) If m <n and (dj+({—1)(n—m)—2)r+1 € WG(P) or (dy+({—1)(n—m)—2)r+£—1 €
WG(P) then Cging C E.
b) If m =n and (dy — 2)r + € —1 € WG(P) then Csing is contained in a curve linearly
equivalent to D that also contains P.

Proof. To prove (a) we take i = (d; + (¢ — 1)(n —m) — 2) and j = 0 in the above theorem
and get s = £ —2. Thus F = (d;+ ({ — 1)(n — m) — 2)T + ({ — 2)E and we must have
Csing C E. To prove (b) we use Theorem 2.4 to obtain an adjoint curve F' = (dy — 2)T' 4+ G
where G ~ (¢ — 2)D and Cg;ny C G. Since n = m the curves linearly equivalent to D are
exactly F and the curves given in A%(k) ~ Uy by the equations Y — b = 0, with b € k; it
is easy to check that these curves do not intersect each other. Since i(C,G; P) = { — 2 we
must have G = (¢ — 2)D’, where D' is a curve linearly equivalent to D that contains P and

Csing- O
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The following result determines WG(P) for curves satisfying certain restrictions on the sin-
gularities.

Proposition 2.8. Let C' ~ (D + dyL be a curve of singularity degree & on the scroll S, .
Let P € C be an r-ramification point, where r € {{,{—1}. Suppose that Csiny C E if m < n,
or that Cging ts contained in a curve linearly equivalent to D, if m = n. Suppose also that
the singularities of C are either simple nodes or simple cusps.

a) Ifm<nand P ¢ E, orifm=mn and P and Cg;,g are not contained in a curve linearly
equivalent to D, then WG(P) = {ir+j+1|0<j<{-3; 0<i<dy+(l—1—j)(n—
m) =2} U{ur+/0—-1|0<u<d,+(n—m)—2—0}.

b) If m <n and P € E, or if m =n and P and Cgi,g are contained in a curve linearly
equivalent to D, then WG(P) ={ir+¢—-1—-j|0<j<{l-3,0<i<d+({—1-
J)n—m) =2} U{(di+(n—m)—-2—-0—uyr+1[0<u<di+ (n—m)—2—4}.

Proof. Let F be the conductor divisor of C'. We recall that C' is a Gorenstein curve,
for it lies on a surface, and thus the degree of singularity of a point () € C' is equal to
dim(Og/Fg). From Fo C Mg, where M, is the maximal ideal of O, and the hypothesis
on the singularities we get Fo = M for all singular points of C' (thus Mg, as Fq, is not
only an Og-module but also an (523 module). If F' is a curve intersecting C' at a singular
point Q and fg defines F' locally on an open set of S,,, containing () then f; € Mg and
hence Opr C Fg, ie. Op C (F - C)oFq. This shows that any curve F' ~ (¢ —2)E + (d; +
(¢ —1)(n —m) — 2)L passing through all the singular points of C' is an adjoint curve.

If m = n then there exists an automorphism of the scroll taking a given curve linearly
equivalent to D onto E (cf. [12]), so we may assume that Cy;,, C E. Let T be the line of
the ruling that contains P. If P ¢ E. let D’ be a curve linearly equivalent to D containing
P,then P=TnND";if P€ E then P=TNE. Let Ly,...,Ls be the lines of the ruling
passing through the points in Cg;y4. Let L be a line of the ruling different from 7". To obtain
the Weierstrass gaps listed in the theorem it suffices to calculate the local degree at P of
the intersection divisor of C' and the adjoint curves T + (¢ — 2 — j)E + jD’' + (d; + (¢ —
1—j5)(n—m)—2—1i)L, where 0 < j < /(-3 0<i:<dy+{—1—-7)(n—m)—2and
(0—=2)D'+(dg+(n—m)—2—0—u)T+(u+1) L1+ Lo+- - -+ Lgs, where 0 < u < dyp+(n—m)—2—90.
Using r € {¢,¢—1} one may check that we get ({—1)(2d,+{¢(n—m)—2)/2—§ = g—§ distinct
numbers (where g is the arithmetic genus of C) and this is the cardinality of WG(P). O

The next result follows from the above proposition and Corollary 2.7.

Corollary 2.9. Let C ~ {D + dyL be a curve on S,,,, whose singularities are only simple
nodes or simple cusps. Let P be a non-singular r-ramification point of C, wherer € {{,{—1}.

a) If m <n and P ¢ E then Csing C E if and only if (dj+ ({ —1)(n—m) —2)r+1is a
Weierstrass gap at P.

b) If m <n and P € E then Cs;ny C E if and only if (dg+ ({ —1)(n —m) —2)r +4 —1
1s a Weierstrass gap at P.

c) If m = n then P and Cgiyy are on a curve that is linearly equivalent to D if and only
if (dg —2)r + € — 1 is a Weierstrass gap at P.
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