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ON STAR COLORING OF MODULAR PRODUCT OF CERTAIN
GRAPHS

VERNOLD VIVIN J, SIVAKAMI R, KALIRAJ K

ABSTRACT. A star coloring of a graph G is a proper vertex coloring in which
every path on four vertices in G is not bicolored. The star chromatic number x; (G)
of (G is the least number of colors needed to star color G. In this paper, we obtain
the star chromatic number of modular product of two graphs G and H, denoted by
G o H. We consider the graph G ¢ H, where G and H be the path graphs, the cycle
graphs, the star graphs and Petersen graphs.
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1. INTRODUCTION

All graphs in this paper are finite, simple, connected and undirected graph and we
follow [2, 3, 9] for terminology and notation that are not defined here. We denote
the vertex set and the edge set of G by V(G) and E(G), respectively.

The concept of star chromatic number was introduced by Branko Griinbaum in
1973.

Definition 1. A star coloring [1, 5, 8, 11, 12] of a graph G is a proper vertex
coloring in which every path on four vertices uses at least three distinct colors. The
star chromatic number xs (G) of G is the least number of colors needed to star color

G.

Star coloring also arises naturally in combinatorial computing. As one would
imagine, finding an optimal star- coloring of a general graph is NP-hard. Coleman
and Moré showed that star-coloring remains an NP-hard problem even on bipartite
graphs [4]. Coloring variants (like acyclic or star coloring) have been used to com-
pute sparse Hessian and Jacobian matrices with techniques like finite differences
and automatic differentiation. Gebremedhin, Tarafdar, Manne, and Pothen pro-
vided algorithms for finding heuristic solutions to star coloring and acyclic coloring
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problems [7]. Their techniques utilize the structure of subgraphs induced by color
classes and their findings have applications to efficient computation of Hessian ma-
trices. Because the problems of computing these matrices can be recast as graph
coloring problems, employing graph coloring as a model for computation can yield
particularly effective algorithms. See [6] for a detailed survey of using graph coloring
to compute derivatives.

During the years star coloring of graphs has been studied extensively by several
authors, for instance see [1, 4, 5].

2. PRELIMINARIES

Definition 2. The modular product [10] G H of two graphs G and H is the graph
with vertezx set V (G)xV (H), in which a vertez (v, w) is adjacent to a vertex (v, w’)
if and only if either

e v s adjacent to v’ and w is adjacent to w' or
e v is not adjacent to v' and w is not adjacent to w'.

For any graph G, we denote the number of vertices of G by v (G). By the
definition of the modular product G H of G and H, if v (G) = 1 then Go H = H
and if v(H) = 1 then Go H = G, thus A(GoH) = A(H) or A(Go H) = XA(G).
Therefore in the following, we assume vg > 2 and vy > 2.

Kozen studied the complexity of finding cliques in the modular product of two
graphs. By observing that G ¢ H has a clique of size (G) and G ¢ H (both G and H
have n vertices) has a clique of size n if and only if G and H are isomorphic, Kozen
[10] proved that the problem of finding a clique of size n in G ¢ H is equivalent to
the isomorphism problem and that the problem of determining whether G ¢ H has
a clique of size (1 — —e) is NP-complete.

Consider the modular product of two graphs G and H. Graphs G and H are
called the factors of the modular product. An important fact about the modular
product is that the projections into its factors are not weak homomorphisms. The
modular product has some interesting properties, for example the modular product
of two graphs is disconnected if and only if one factor is complete and the other
disconnected or if both factors are complete and the modular product in general
does not have a unique prime factorization. Imrich [10] proved a theorem regarding
a situation in which the prime factorization of the modular product is unique.
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3. MAIN RESULTS

In this section, we find the exact values of the star chromatic number of modular
product of path graph with path graph P,,¢PF,, cycle graph with cycle graph C,,oC,,
star graph with star graph K ,, ¢ K1, and Petersen graphs.

3.1. Star Coloring of Modular Product of Path Graphs and Cycle
Graphs

Now we consider the graph G and H be the path graphs or cycle graphs of order
m < n. Let V(G) = {u; : 1 <i <m}and V(H) = {v; : 1 <j < n}. By the
definition of the modular product, the vertices of G ¢ H is denoted as follows:

V(GoH) = J{(uivj) : 1<j <n}.
=1

Theorem 1. Let G and H be the path graphs of order m > 3 and n > 3, then

n, if m=3,

mn—2(m+n)+6, if m=4,5, n>4
mn—2m—-n+3, if m=6,6<n<8
mn — 2n, otherwise .

Xxs(Go H) =

Proof. Case (i): When m = 3.
Let {c1,ca,...,c, be the set of n distinct colors. For 1 <j<mnand1<:<3
the vertices (u;,v;) can be colored with color j.

Case (ii): When m =4,5 and n > 4.
Subcase (i): When m =4, and n > 4.
e For 1 <i<m,1 < j <3 the vertices (u;,v;) can be colored with color i.

e Fori=1,3,2<j< [gJ the vertices (u;,va;) can be colored with color

4j — 3.

e Fori=2,4,2<j< {gJ the vertices (u;,v25) can be colored with color
45 — 2.

e Fori=1,4,2<j < LgJ the vertices (u;,v2j41) can be colored with
color 45 — 1.

e Fori =23, 2<j< LgJ the vertices (u;,v2j41) can be colored with
color 4j.

69



Vernold Vivin J, Sivakami R, Kaliraj K — Star Coloring of Modular Product

Subcase (ii): When m =5, and n > 4.

e For 1 <i<m,1 < j <3 the vertices (u;,v;) can be colored with color i.

e For i = 1,4, 1 < j < n— 3 the vertices (u;,vj13) can be colored with
color 35 + 3.

e For i = 2,5, 1 < j < n—3 the vertices (u;,v;4+3) can be colored with
color 35 + 4.

e For i =3,1<j <n— 3 the vertices (u;,vj43) can be colored with color
35 + 5.

Suppose xs(G o H) < mn — 2(m +n) + 6, form = 4,5, n > 4. Now we
colored the vertices (u;,vj) where 1 < j <n, 1 < i <5 has to be colored
with one of the colors {1,2,...,mn —2(m+n)+ 5} which results in bicolored
paths on four vertices and so contradicts the definition of star coloring. So
we need one more color, hence xs(G ¢ H) > mn — 2(m + n) + 6. Therefore
Xs(Go H)=mn—2(m+n)+ 6.

Case (iii): When m =6, and 6 <n <8.

e For 1 <i<m,1<j <3 the vertices (u;,v;) can be colored with color i.

e For 1 <i<m—2,1<j <n—3 the vertices (u;,v;y3) can be colored
with color 55 4+ + 1.

e For i =m—1,1 < j <n—3 the vertices (u;,vj4+3) can be colored with
color 55 + 3.

e Fori=m, 1 < j <n— 3 the vertices (u;,vj+3) can be colored with color
5j +m.

Suppose xs(Go H) < mn—2m —n+3, form =6, 6 < n < 8 Now we
colored the vertices (ui,vj) where 1 < j <n, 1<1i<m has to be colored
with one of the colors {1,2,...,mn — 2m — n + 2} which results in bicolored
paths on four vertices and so contradicts the definition of star coloring. So
we need one more color, hence x4(G o H) > mn — 2m — n + 3. Therefore
Xs(Go H)=mn—2m —n+ 3.

Case (iv): When m > 6.

e For1 <i<3,1<j<n,the vertices (u;,v;) can be colored with color j.

e For 4 <i <m, 1< j <n, the vertices (u;,v;) can be colored with color
(i—3)n + 5.

70



Vernold Vivin J, Sivakami R, Kaliraj K — Star Coloring of Modular Product

Suppose xs(G o H) < mn —2n, m > 6. Now we colored the vertices (u;,v;) where
1<j<mn, 1<i<mhastobecolored with one of the colors {1,2,...,mn—2n—1}
which results in bicolored paths on four vertices and so contradicts the definition of
star coloring. So we need one more color, hence xs(G ¢ H) > mn — 2n. Therefore
Xs(Go H) =mn — 2n.

Theorem 2. Let G and H be the cycle graphs of order m > 6 and n > 6, then

[ n(m-=3)+3, if n=0,1,3 mod 4,
XS(GOH)_{n(m—3)+4, if n=2 mod 4.

Proof. Case (i): When n =0,1,3 mod 4.
Let {c1,¢2,...,Cp(m—3)+3 be the set of n(m — 3) + 3 distinct colors. For 1 <
J < n the vertices (u1,v;) can be colored with color 1.

Subcase (i): When n =0 mod 4.
e For j = 1,2 mod 4, 1 < j < n the vertices (ug,v;j) can be colored
with color 2.

e For j = 0,3 mod 4, 1 < j < n the vertices (ug,vj) can be colored
with color 3.

e For1 <i<m-—3and1 <j <nthe vertices (uj;2,v;) can be colored
with color n(i — 1) + j + 3.
e For 1 < j <n the vertices (um,v;) can be colored with color j + 3.
Subcase (ii): When n =1 mod 4.
e For j =1,2 mod 4,1 < j <n—1, the vertices (ug,v;) can be colored
with color 2.
e For j =0,3 mod 4,1 < j < n—1 the vertices (ug, v;) can be colored
with color 3.
e For 1 <i<2and1 < j<n-—1 the vertices (u;42,v;) can be colored
with color n(i — 1) + j + 4.
e For3 <i<m-—3and1 < j <nthe vertices (uij1+2,v;) can be colored
with color n(i — 1) + j + 3.
e For 1 < j <n the vertices (um,v;) can be colored with color j + 4.
e For the vertices (uj,vy), ¢ = 2,4 and (us3,v,) can be colored with
color 4 and n + 4.
Subcase (iii): When n =3 mod 4.

e For j =1,2 mod 4, 1 < j <n—2, the vertices (ug,v;) can be colored
with color 2.
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Case (ii):

e For j =0,3 mod 4, 1 < j < n—2 the vertices (ug, v;) can be colored
with color 3.
e For1 <i<2and1 < j<n—2 the vertices (ujt2,v;) can be colored
with color n(i — 1) + j + 4.
e For3 <i<m-—3and1 < j <nthe vertices (ui;2,v;) can be colored
with color n(i — 1) + j + 3.
e For 1 < j < n the vertices (um,,v;) can be colored with color j + 4.
e For the vertices (u;, vp—1), i = 2,4 can be colored with color 4.
e For the vertices (us, v,—1) and (ug, vy,) can be colored with color n+3
andn+4 .
e For the vertices (ug,v,) and (ug4,v,) can be colored with color 3 and
2n + 3.
Suppose xs(Go H) < n(m—3)+3, for n =0,1,3 mod 4,. Now we
colored the vertices (u;,v;) where j = 0,1,3 (mod 4),1 < i < m has to
be colored with one of the colors {1,2,...,n (m — 3)+2} which results in
bicolored paths on four vertices and so contradicts the definition of star

coloring. So we need one more color, hence xs(G o H) > n(m —3) + 3.
Therefore xs(Go H) =n(m —3) + 3.

When n =2 mod 4.

Let {c1,¢2,. .., Cn(m—3)+4 be the set of n(m — 3) + 4 distinct colors. For 1 <
J < n the vertices (u1,v;) can be colored with color 1.

For j = 1,2 mod 4, 1 < j < n — 2 the vertices (u2,v;) can be colored
with color 2.

For j = 0,3 mod 4, 1 < j < n — 2 the vertices (u2,v;) can be colored
with color 3.

For 1 <i<m—3and 1 < j <n the vertices (u;42,v;) can be colored
with color n(i — 1) 4+ j + 4.

For 1 < j < n the vertices (um,v;) can be colored with color j + 4.

For the vertices (ug,vn,—1) and (ug,v,) can be colored with color 4.

Suppose xs(G o H) < n(m—3) + 4, for n = 2 mod 4,, Now we colored the
vertices (u;,v;) where j = 2 (mod 4),1 < ¢ < m has to be colored with one of
the colors {1,2,...,n (m — 3) + 3} which results in bicolored paths on four vertices
and so contradicts the definition of star coloring. So we need one more color, hence
Xs(Go H) > n(m — 3) + 4. Therefore xs(G o H) =n(m — 3) + 4.
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3.2. Star Coloring of Modular Product of Star Graphs

Now we consider the graph G and H be the star graphs of order m < n. Let
V(G) ={wi}U{u; :2<i<m+1} and V(H) = {n1}U{v; : 2 <j <n+1}. By
the definition of the modular product, the vertices of G ¢ H is denoted as follows:

m+1
V(GoH) = | J{(uvj):1<j<n+1}.
=1

Theorem 3. Let G and H be the star graphs of order m > 3 and n > 3, then
Xs(GoeH)=n(m—1)+1.

Proof. Let {c1,¢c2,...,Cpam—1) + 1} be the set of n(m — 1) + 1 distinct colors.
e For 1 <i < m+ 1, the vertices (u;,v1) can be colored with color 1.

e For 1 <i<3and2<j<n+1 the vertices (u;,v;) can be colored with color
J-

e For4<i<m+1and2<j<n+1 the vertices (u;,v;) can be colored with
color n(i — 3) + j.

Suppose xs(G o H) < n(m — 1) + 1. Now we colored the vertices (u;,v;) where
1<i<m, 1<j<mnhasto be colored with one of the colors {1,2,...,n(m—1)}
which results in bicolored paths on four vertices and so contradicts the definition of
star chromatic number. So we need one more color, hence xs(GoH) > n(m—1)+1.
Therefore xs(Go H) =n(m —1) + 1.

3.3. Star Coloring of Modular Product of Petersen Graphs

Theorem 4. Let G and H be the Petersen graph of order m and n, then the star
chromatic number of modular product of G and H is 67.

Proof. Let V(G) = {u; : 1 < i < m} and V(H) = {v; : 1 < j < n}, where
m = n = 10. By the definition of the modular product, the vertices of G ¢ H is
denoted as follows:
V(GoH) = U{(ui,vj) :1<j<n}.
i=1

Let the colors {1,2,3,...,67} be the set of 67 distinct colors to appear in the vertices
(ui,v;) as in Table 1.

Suppose xs(G o H) < 67. Now we colored the vertices (u;,vj) where 1 < i <
m, 1< j <mn has to be colored with one of the colors {1,2,...,66} which results
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Table 1: Values of the star chromatic number of modular G ¢ H is 67.

(wiv;) | j=1]j=2]j=3j=4]j=5]j=6]j=7j=8];j=9]j=10
i=1] 1 2 8 16 | 16 | 8 | 28 | 38 | 48 | 58
i=2 | 1 2 9 17 | 17 | 9 | 29 | 39 | 49 | 59
i=3 | 1 3 | 10 | 18 | 18 | 10 | 30 | 40 | 50 | 60
i=4 | 1 30 11 | 19 | 19 | 11 | 31 | 4 | 51 61
i=5 | 1 4 4 | 20 | 20 | 26 | 32 | 42 | 52 | 62
i=6 | 1 5 12 | 21 | 21 | 12 | 33 | 43 | 53 | 63
i=7 | 1 5 13 | 22 | 22 | 13 | 34 | 44 | 54 | 64
i=8 | 1 6 | 14 | 23 | 23 | 14 | 35 | 45 | 55 | 65
i=9 | 1 6 | 15 | 24 | 24 | 15 | 36 | 46 | 56 | 66
i=10] 1 7 7 | 25 | 25 | 27 | 37 | 47 | 57 | 67

in bicolored paths on four vertices and so contradicts the definition of star chromatic
number. So we need one more color, hence xs(G ¢ H) > 67. Therefore xs(Go H) =
67.
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