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Abstract. In this paper, we define new subclass of analytic functions, the so-
called q-starlike functions of order α with respect to k-symmetric points. We explore
some inclusion properties and find some sufficient condition for this class. Finally,
we obtain the integral representation for functions belonging to this class.
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1. Introduction

We begin by letting H the class of analytic functions in the open unit disc of the
complex plane U = {z ∈ C, |z| < 1}, and A be the subclass of H containing all
functions of the form

f(z) = z +
∞∑
m=2

amz
m z ∈ U, (1)

which satisfying the condition of normalization; f
′
(0) = f(0)+1 = 1. Let S denotes

the subclass of A containing of all functions that are univalent in U. For any two an-
alytic functions f(z) and g(z) in U, we say that f(z) is subordinate to g(z), denoted
by f(z) ≺ g(z), if there exist a Schwarz function ω(z) with ω(0) = 0, |ω(z)| ≤ 1
such that f(z) = g(ω(z)) for all z ∈ U [14].

The convolution of f(z) as in (1) and β(z) = z +
∑∞

m=2 φmz
m is defined by

(f ∗ β)(z) = (β ∗ f)(z) = z +

∞∑
m=2

amφmz
m.

The geometric properties of analytic functions played an important role in geometric
function theory, such as convexity and starlikeness, these subclasses denoted by C
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and S∗, respectively.

More generally, for 0 ≤ α ≤ 1, let S∗(α) and C(α) be the subclasses of starlike
of order α and convex of order α, respectively, defined analytically by

S∗(α) =

{
f : f ∈ A, and Re{zf

′
(z)

f(z)
} > α, z ∈ U

}
,

C(α) =

{
f : f ∈ A, and Re{1 +

zf
′′
(z)

f ′(z)
} > α, z ∈ U

}
.

The application of q-calculus is very important in the theory of analytic func-
tions. Jackson was 1st developed q-calculus in a systematic way (for more details,
see [10, 11]). There are several application of q-calculus on subclasses of analytic
functions, especially subclasses of univalent functions in U like stalike and convex
(for more details, see [1, 2, 3, 4, 7, 5, 16, 17]) that depends on replacing the usual
derivative by q-derivative. Ismail et al. [9] introduced a general q-starlike function
with replacing the right half plane by appropriate domains, Agrawal and Sahoo in
[1] extend this idea to introduce the class of q-starlike functions of order α. Later
on, Aldweby and Darus [4] introduced two subclasses of bounded q-starlike and q-
convex functions. Some other application of q-calculus are studied by Alsoboh and
Darus [6, 7, 8] and Mohammed and Darus [15].

Now, we give some basic concepts and definitions of the applications of q-calculus
assuming that 0 < q < 1, by:

Definition 1. [10] For 0 < q < 1, the q-numbers [m]q is given by:

[m]q =

{
1−qn
1−q , n ∈ C

1 + q + q2 + ...+ qn−1 , n ∈ N
,

and limq→1− [m]q = m.

Definition 2. [10] The Jackson q-derivative of a function f is given by:

∂qf(z) =

{
f(z)−f(qz)

z−qz (z ∈ C\{0})
f
′
(0) (z = 0)

,

where limq→1 ∂qf(z) = f
′
(z).
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Definition 3. [11] The Jackson’s q-integral of a function f is given by:∫ z

0
f(t)dqt = (1− q)z

∞∑
n=0

qnf(qnz).

In case of f(z) = zm,m ∈ N, we have

∂q(z
m) = [m]qz

m−1,∫ z

0
tc−1dqt = (1− q)z

∞∑
n=0

(zqn)c−1qn =
zc

[c]q
.

Ismail and et al. in [9] introduced the class of q-starlike functions and the
definition of class S∗q is given as follows:

Definition 4. A function f ∈ A is said to belong to the class S∗q , if∣∣∣∣z(∂qf)(z)

f(z)
− 1

1− q

∣∣∣∣ < 1

1− q
(z ∈ U). (2)

If q → 1− then S∗q reduced to S∗.

Later, Agrawal and Sahoo in [1] defined and investigated the subclass of gener-
alized q-starlike functions of order α. The definition is as follows:

Definition 5. A function f ∈ A is said to belong to the class S∗q (α), 0 ≤ α < 1, if∣∣∣∣ z(∂qf)(z)f(z) − α
1− α

− 1

1− q

∣∣∣∣ < 1

1− q
, (z ∈ U).

If α = 0, then S∗q (α) := S∗q .

The authors in [6] introduced a q-differential operator Dnq,µ,δ,κ,λf(z) : A → A by

Dnq,µ,δ,κ,λf(z) = z +
∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
amz

m (3)

where

∆[κ,λ,δ,µ;q](m) = (κ−λ)(δ−µ)([m]q− 1) + 1, (δ, κ, λ, µ ≥ 0, κ > λ, δ > µ, n ∈ N0).

Next, we introduce new subclass of q-starlike of order α with respect to k-
symmetric points using the differential operator Dnq,µ,δ,κ,λf given as follows:
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Definition 6. A function f ∈ A is said to in the class S∗(k)q (n, α), if it satisfies the
following inequality∣∣∣∣z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
− 1− αq

1− q

∣∣∣∣ < 1− α
1− q

, (z ∈ U), (4)

where 0 ≤ α < 1, n ∈ N0, k is a fixed positive integer and fk is defined by the
equality

fk(z) =
1

k

k−1∑
v=0

ε−vf(εvz), (εk = 1). (5)

We observe that the class S∗(k)q (n, α) satisfies the following relation:⋂
0<q<1

S∗(k)q (n, α) ⊂
⋂

0<q<1

S∗q (α) ⊂ S∗(α) ⊂ S∗.

Throughout this paper, we will assuming that 0 ≤ α < 1, 0 < q < 1 and θ ∈ [0, 2π).

2. The main results

First, we need the following lemma of Liu [13].

Lemma 1. Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then we have

1 +A1z

1 +B1z
≺ 1 +A2z

1 +B2z
.

Next, we give some meaningful conclusion about the class S∗(k)q (n, α).

Theorem 2. If f ∈ A as in (1). Then f ∈ S∗(k)q (n, α) if and only if it satisfies the
following subordination condition

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
≺ 1 + (1− α(1 + q)) z

1− qz
, (6)

where fk as in (5).

Proof. Suppose that f ∈ S(k)q (n, α), then by Definition 6, we have∣∣∣∣∣z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
− 1− αq

1− q

∣∣∣∣∣ < 1− α
1− q
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Consider I(z) =
z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
, then∣∣∣∣ 1− q1− α

I(z)− 1− αq
1− α

∣∣∣∣ < 1.

We can introduce the function Φ(z) by

Φ(z) =
(1− q)I(z) + αq − 1

1− α
, (z ∈ U, |Φ(z)| < 1).

Now, define the function ω(z), by

ω(z) =
Φ(z)− Φ(0)

1− Φ(z)Φ(0)
=

I(z)− 1

1− α(1 + q) + qI(z)
. (7)

We note that ω(0) = 0, and |ω(z)| < 1 for all z ∈ U.

From the last equation, we have

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1 +
(

1− α(1 + q)
)
ω(z)

1− qω(z)
,

this implies that

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
≺

1 +
(

1− α(1 + q)
)
z

1− qz
.

Conversely, by assuming the equation (6) holds, then there exist a Schwarz function
ω(z), such that

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1 + (1− α(1 + q))ω(z)

1− qω(z)
.

It is equivalent to∣∣∣∣z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
− 1− αq

1− q

∣∣∣∣ =

∣∣∣∣1 + (1− α(1 + q))ω(z)

1− qω(z)
− 1− αq

1− q

∣∣∣∣
=

1− α
1− q

∣∣∣∣ ω(z)− q
1− qω(z)

∣∣∣∣
≤ 1− α

1− q
,

hence f ∈ S∗(k)q (n, α) and the proof is complete.
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Theorem 3. Let 0 ≤ α1 ≤ α2 < 1, then we have S(k)q (n, α2) ⊂ S(k)q (n, α1).

Proof. Suppose that f ∈ S(k)q (n, α2), by Theorem 2, we have

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1 +
(

1− α2(1 + q)
)
ω(z)

1− qω(z)
.

Since α1 ≤ α2, this leads to 1− α2(1 + q) ≤ 1− α2(1 + q) and

1 +
(

1− α2(1 + q)
)
ω(z)

1− qω(z)
<

1 +
(

1− α1(1 + q)
)
ω(z)

1− qω(z)
.

By Lemma 1, we have

1 +
(

1− α2(1 + q)
)
z

1− qω(z)
≺

1 +
(

1− α1(1 + q)
)
ω(z)

1− qω(z)
,

this means that S∗(k)q (n, α2) ⊂ S∗(k)q (n, α1) and hence the proof is complete.

Theorem 4. Let f ∈ S∗(k)q (n, α), then Dnq,µ,δ,κ,λfk ∈ S∗q (α).

Proof. Since f ∈ S∗(k)q (n, α), then by Definition 6, we have∣∣∣z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
− 1− αq

1− q

∣∣∣ < 1− α
1− q

.

Then substituting z by εγz where γ = 0, 1, ..., k − 1, in the last inequality, we have∣∣∣εγz∂q(Dnq,µ,δ,κ,λf)(εγz)

(Dnq,µ,δ,κ,λfk)(ε
γz)

− 1− αq
1− q

∣∣∣ < 1− α
1− q

, (γ = 0, 1, 2, ..., k − 1). (8)

According to the definition of fk and εk = 1, we have fk(ε
γz) = εγfk(z) and summing

the last equation for γ = 0, 1, 2, ..., k − 1, we can get

∣∣∣1
k

k−1∑
γ=0

εγz∂q(D
n
q,µ,δ,κ,λf)(εγz)

εγ(Dnq,µ,δ,κ,λfk)(z)
− 1− αq

1− q

∣∣∣ < 1− α
1− q

.

Note that

1

k

k−1∑
γ=0

εγz∂q(D
n
q,µ,δ,κ,λf)(εγz)

εγ(Dnq,µ,δ,κ,λfk)(z)
=
z∂q(D

n
q,µ,δ,κ,λf)(εγz)

(Dnq,µ,δ,κ,λfk)(z)
,
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therefore, ∣∣∣z∂q(Dnq,µ,δ,κ,λfk)(z)
(Dnq,µ,δ,κ,λfk)(z)

− 1− αq
1− q

∣∣∣ < 1− α
1− q

,

hence f ∈ S∗q (α).

Theorem 5. Let f be defined as in (1). If for 0 ≤ α < 1, and

∞∑
m=2

(∆[κ,λ,δ,µ;q](mk + 1))n([mk + 1]q − α)|amk+1|

+
∞∑
m=2

m 6=lk+1

[m]q(∆[κ,λ,δ,µ;q](m))n|am| ≤ (1− α) (9)

then f ∈ S∗(k)q (n, α).

Proof. Suppose that f and fk(z) is defined by (1) and (5), respectively. For z ∈ U,
we have

M =
∣∣∣(1− q)z∂q(Dnq,µ,δ,κ,λf)(z)− (1− αq)(Dnq,µ,δ,κ,λfk)(z)

∣∣∣−(1− α)
∣∣∣(Dnq,µ,δ,κ,λfk)(z)∣∣∣

M =
∣∣∣(1− q)z∂q(Dnq,µ,δ,κ,λf)(z)− (1− αq)(Dnq,µ,δ,κ,λfk)(z)

∣∣∣− (1− α)
∣∣∣(Dnq,µ,δ,κ,λfk)(z)∣∣∣

≤ q(1− α)r +

∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
am

{
(1− q)[m]q − (1− αq)cm

}
rm

− (1− α)r + (1− α)
∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
amcmr

m

< −(1− q)(1− α)r +

∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
am

{
(1− q)[m]q − (1− αq)cm

}
rm

+ (1− α)
∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
amcmr

m

<
{ ∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
am(1− q)[m]q − α(1− q)cm − (1− q)(1− α)

}
r

therefore,

M < (1− q)

[ ∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n(
[m]q − αcm

)
|am| − (1− α)

]
. (10)
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From definition of cm, we know that

cm =
k−1∑
v=0

ε(m−1)υ =


1 , ifm = lk + 1

(k, l > 1,m > 2).
o , ifm 6= lk + 1

(11)

Substituting (11) into (10), we have

M < (1− q)
[ ∞∑
m=2

(∆[κ,λ,δ,µ;q](mk + 1))n([mk + 1]q − α)|amk+1|

+

∞∑
m=2

m 6=lk+1

[m]q(∆[κ,λ,δ,µ;q](m))n|am| − (1− α)

]
.

From inequality (5), we know that M < 0, then the proof is complete.

Theorem 6. The function f of the form (1) is in the class S∗(k)q (n, α) if and only
if

eiθ(e−iθ − q)
z

[
Dnq,µ,δ,κ,λf(z) ∗

(
z −N(1− z)(1− qz)h(z)

(1− z)(1− qz)

)]
6= 0, (12)

for all N = (e−iθ+[1−α(1+q)])
e−iθ−q , 0 ≤ θ ≤ 2π, z ∈ U .

Proof. Let f ∈ S∗(k)q (n, α) of the form (1), then it satisfies the equality (6), i.e

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
≺ 1 + (1− α(1 + q)) z

1− qz
.

Since
z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
is analytic in U, this means (Dnq,µ,δ,κ,λfk)(z) 6= 0, z ∈ U∗, i.e

1
z (Dnq,µ,δ,κ,λfk)(z) 6= 0, z ∈ U, according to (6), then by definition of subordination,
there exist a Schwarz function ω(z) with |ω(z)| < 1 and ω(0) = 0 such that

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1 +
(

1− α(1 + q)
)
ω(z)

1− qω(z)
, z ∈ U

which is equivalent to

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
6=

1 +
(

1− α(1 + q)
)
eiθ

1− qeiθ
, (z ∈ U; 0 ≤ θ ≤ 2π), (13)
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or

1

z

[(
1− qeiθ

)
z∂q(D

n
q,µ,δ,κ,λf)(z)−

(
1 + [1− α(1 + q)]eiθ

)
(Dnq,µ,δ,κ,λfk)(z)

]
6= 0,

(z ∈ U; 0 ≤ θ ≤ 2π). (14)

And from the definition of fk(z), we know

fk(z) = z +
∞∑
m=2

amcmz
m = (f ∗ h)(z),

Dnq,µ,δ,κ,λfk(z) = z +
∞∑
m=2

(
∆[κ,λ,δ,µ;q](m)

)n
amcmz

m = (Dnq,µ,δ,κ,λf ∗ h)(z) (15)

where h(z) = z +
∑∞

m=2 cmz
m, for

cm =

{
1 if m = lk + 1,
o if m 6= lk + 1.

And also

f(z) = f(z) ∗ z

1− z
and z∂qf(z) = f(z) ∗ z

(1− z)(1− qz)

this implies

Dnq,µ,δ,κ,λf(z) = Dnq,µ,δ,κ,λf(z) ∗ z

1− z
(16)

z∂q(D
n
q,µ,δ,κ,λf(z)) = Dnq,µ,δ,κ,λf(z) ∗ z

(1− z)(1− qz)
. (17)

Now, substitute (16) and (17) into (15), we have

1

z

[
Dnq,µ,δ,κ,λf(z) ∗

(
(1− qeiθ)z

(1− z)(1− qz)
− (1 + [1− α(1 + q)]eiθ)h(z)

)]
6= 0,

eiθ(e−iθ − q)
z

[
Dnq,µ,δ,κ,λf(z) ∗

(
z

(1− z)(1− qz)
− (e−iθ + [1− α(1 + q)])h(z)

e−iθ − q

)]
6= 0

which lead to (12), which proves the ’if’ part.
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Conversely, because the assumption (12) holds for all N , it follows that
1
z .D

n
q,µ,δ,κ,λf(z) 6= 0, hence the function I(z) =

z∂q(Dnq,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
is analytic in U, and

we shown in ’if’ part that the assumption (13) is equivalent to

I(z) 6=
1 +

(
1− α(1 + q)

)
eiθ

1− qeiθ
(z ∈ U; 0 ≤ θ ≤ 2π). (18)

If we denote by

Γ(z) =
1 +

(
1− α(1 + q)

)
z

1− qz
(z ∈ U),

the relation (18) shows that I(U) ∩ Γ(U) = φ. Thus, the simply-connected domain
I(U) is included in C\Γ(∂U). Since Γ(z) is univalent and I(0) = Γ(0), then I(z) ≺
Γ(z) which represent the relation (6), hence f ∈ S∗(k)q (n, α).

3. The q-Integral Representation

In this section, we give the q-integral representation of functions f for the class

S∗(k)q (n, α).

Theorem 7. Let f ∈ S∗(k)q (n, α), then we have

Dnq,µ,δ,κ,λfk = z. exp

{
log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt

}

where fk is defined in (5), ω(z) is analytic with ω(0) = 0, |ω(z)| < 1.

Proof. Let f ∈ S∗(k)q (n, α), then by Theorem 1, we have

z∂q(D
n
q,µ,δ,κ,λf)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1 +
(

1− α(1 + q)
)
ω(z)

1− qω(z)
,

where ω(z) is analytic with ω(0) = 0 and |ω(z)| < 1, substituting z by εγz (γ =
0, 1, ..., k − 1)

εγz∂q(D
n
q,µ,δ,κ,λf)(εγz)

(Dnq,µ,δ,κ,λfk)(ε
γz)

=
1 +

(
1− α(1 + q)

)
ω(εγz)

1− qω(εγz)
,
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we know that fk(ε
γz) = εγfk(z), and summing for γ = 0, 1, ..., k − 1

z∂q(D
n
q,µ,δ,κ,λfk)(z)

(Dnq,µ,δ,κ,λfk)(z)
=

1

k

k−1∑
γ=0

1 +
(

1− α(1 + q)
)
ω(εγz)

1− qω(εγz)
. (19)

From the last equality we have

∂q(D
n
q,µ,δ,κ,λfk)(z)

(Dnq,µ,δ,κ,λfk)(z)
− 1

z
=

1

k

k−1∑
γ=0

1 +
(

1− α(1 + q)
)
ω(εγz)

z(1− qω(εγz))
.

Apply Jackson’s q-integral, we have

q − 1

log q
log
{Dnq,µ,δ,κ,λfk

z

}
=

1

k

k−1∑
γ=0

∫ z

0

1 +
(

1− α(1 + q)
)
ω(εγζ)

ζ(1− qω(εγζ))
dqζ,

log
{Dnq,µ,δ,κ,λfk

z

}
=

log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt,

Dnq,µ,δ,κ,λfk = z.exp

{
log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt

}
.

Theorem 8. Let f ∈ S∗(k)q (n, α), then we have

Dnq,µ,δ,κ,λf(z) =

∫ z

0
exp

{
log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt

}

×
1 +

(
1− α(1 + q)

)
ω(ζ)

1− qω(ζ)
dqζ, (20)

where fk is defined in (5), ω(z) is analytic with ω(0) = 0, |ω(z)| < 1.

Proof. From Theorem 2, we have

z∂q(D
n
q,µ,δ,κ,λf)(z) = (Dnq,µ,δ,κ,λfk)(z).

1 +
(

1− α(1 + q)
)
ω(z)

1− qω(z)
,
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∂q(D
n
q,µ,δ,κ,λf)(z) = exp

{
log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt

}

×
1 +

(
1− α(1 + q)

)
ω(z)

1− qω(z)
.

Apply q-Jackson’s integral of both sides to get

(Dnq,µ,δ,κ,λf)(z) =

∫ z

0
exp

{
log q

(q − 1)k

k−1∑
γ=0

∫ εγz

0

1 +
(

1− α(1 + q)
)
ω(t)

t(1− qω(t))
dqt

}

×
1 +

(
1− α(1 + q)

)
ω(ζ)

1− qω(ζ)
dqζ.
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