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A RESULT BY SILVERMAN TRANSFERRED ON MULTIVALENT
FUNCTIONS
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Abstract. In 1999 Siverman introduced a class of univalent functions defined
over the quotient of the analytical representations of convexity and starlikeness. This
class was widely studied afterwards. In this paper, in a similar manner, we define
a class of multivalent functions and obtain results, dual to the ones for univalent
functions.
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1. Introduction

For n ∈ N and a ∈ C let

H[a, n] =
{
f ∈ H(D) : f(z) = a+ anz

n + an+1z
n+1 + · · ·

}
,

where H(D) is the class of all functions that are analytic in the open unit disk
D = {z ∈ C : |z| < 1}. Also, let for a positive integer p, Ap be the subclass of H(D)
consisting of functions of the form f(z) = zp + ap+1z

p+1 + · · · and A ≡ A1, so that
A is the class of functions f which are analytic in D with normalization f(0) = 0
and f ′(0) = 1. More details in [2, 3, 9].

A function f is said to be multivalent or p-valent in D if it takes no value more
than p times in D and there is some ω0 such that f(z) = ω0 has exactly p solutions
in D, when roots are counted in accordance with their multiplicities.

The classes of p-valently starlike functions of order α and p-valently convex func-
tions of order α (p = 1, 2, . . . and 0 ≤ α < p) are, respectively, defined by

S∗p (α) =

{
f ∈ Ap : Re

[
zf ′(z)

f(z)

]
> α, z ∈ D

}
and

Kp(α) =

{
f ∈ Ap : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ D

}
.
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For p = 1, we have respectively, the usual classes of starlike and convex functions
of order α, S∗(α) and K(α); and for p = 2, 3, . . . , we have the classes of multivalent
starlike and convex functions of order α. In the case α = 0, we will use the notations
S∗p and Kp; and in the case α = 0 and p = 1, the notations S∗ and K.

2. Preliminaries

Silverman in his work [7] investigated the properties of a class of functions defined in
terms of the quotient of the analytical representations of convexity and starlikeness,
1+zf ′′(z)/f ′(z)
zf ′(z)/f(z) . Precisely, he considered the following classes

Gb =

{
f ∈ A :

∣∣∣∣1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

∣∣∣∣ < b, z ∈ D
}
,

0 < b ≤ 1. This class was widely studied ever since (see [8, 6, 10, 11]).
In this paper we study an analogue expression for multivalent functions,

1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)

and find sufficient conditions so that the following implication holds:∣∣∣∣∣1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)
− 1

∣∣∣∣∣ < λ ⇒
∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣ < µ (1)

(both inequalities are on the whole unit disk).

For that purpose we use a method from the theory of differential subordinations
to get our main result. More on this theory can be found in [3] and [1].

First we introduce the concept of subordination. Let f(z), g(z) ∈ A. We say that
f(z) is subordinate to g(z), and write f(z) ≺ g(z), if there exists a function ω(z),
analytic in the unit disc D, such that ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)) for
all z ∈ D. If g(z) is univalent in D then f(z) ≺ g(z) if and only if f(0) = g(0) and
f(D) ⊆ g(D).

The general theory of differential subordinations, as well as the theory of first-
order differential subordinations, was introduced by Miller and Mocanu in [4] and
[5]. In fact, if φ : C2 → C, C complex plane, is analytic in a domain D, if h(z) is
univalent in D, and if p(z) is analytic in D with (p(z), zp′(z)) ∈ D when z ∈ D, then
p(z) is said to satisfy a first-order differential subordination if

φ(p(z), zp′(z)) ≺ h(z). (2)
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A univalent function q(z) is called a dominant of the differential subordination (2)
if p(z) ≺ q(z) for all p(z) satisfying (2). If q̃(z) is a dominant of (2) and q̃(z) ≺ q(z)
for all dominants of (2), then we say that q̃(z) is the best dominant of the differential
subordination (2).

For proving implications in this paper we will use the following lemma from the
theory of differential subordinations. She give efficient tool for obtaining sufficient
conditions when certain differential inequality holds.

Lemma 1 (Theorem 2.3h(i), p.34, [3]). Let Ω ⊂ C and suppose that the function
ψ : C2 × D → C satisfies ψ(Meiθ,Keiθ; z) /∈ Ω for all K ≥ Mn, θ ∈ R and z ∈ D.
If p ∈ H[a, n] and ψ(p(z), zp′(z); z) ∈ Ω for all z ∈ D, then |p(z)| < M , z ∈ D.

3. Main results

In the beginning we will study implication:∣∣∣∣∣1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)
− 1

∣∣∣∣∣ < λ ⇒

∣∣∣∣∣ zf (p)(z)f (p−1)(z)
− 1

∣∣∣∣∣ < λ1 (3)

(both inequalities are on the whole unit disk), that will later lead to the implication
(1).

Theorem 2. Let p be a positive integer, p ≥ 2 and λ1 > 0. Also, let f ∈ Ap. If
λ ≤ λ(λ1) ≡ λ1

(λ1+1)2
, then implication (3) holds.

Proof. In the view of Lemma 1, let put M = λ1 and let define function p(z) =
zf (p)(z)

f (p−1)(z)
− 1. Further, for the function ψ(r, s; z) = s

(r+1)2
, such that p(z) ∈ H[0, 1]

(n = 1 in the Lemma 1) we have

ψ(p(z), zp′(z); z) =

∣∣∣∣ zp′(z)

(p(z) + 1)2

∣∣∣∣ =

∣∣∣∣∣1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)
− 1

∣∣∣∣∣ < λ(λ1)

for all z ∈ D and

ψ(Meiθ,Keiθ; z) =

∣∣∣∣ Keiθ

(Meiθ + 1)2

∣∣∣∣ =
K|eiθ|

|Meiθ + 1|2
=

=
K

|Meiθ + 1|2
≥ M

|Meiθ + 1|2
≥ M

M2 + 2M + 1
=

=
M

(M + 1)2
=

λ1
(λ1 + 1)2

≥ λ

for all z ∈ D. So, |p(z)| < M for all z ∈ D.
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In a similar way we prove the following result.

Theorem 3. Let p and k are integers such that p ≥ 2 and 0 ≤ k ≤ p− 2. Also let
f ∈ Ap, λk+1 > 0 and

λk ≤ λk(λk+1) ≡
λk+1

λk+1 + k + 2
+ λk+1.

If ∣∣∣∣∣ zf (p−k)(z)f (p−k−1)(z)
− (k + 1)

∣∣∣∣∣ < λk(λk+1) (z ∈ D),

then ∣∣∣∣∣zf (p−k−1)(z)f (p−k−2)(z)
− (k + 2)

∣∣∣∣∣ < λk+1 (z ∈ D).

Proof. Let put M = λk+1 and let define functions

p(z) =
zf (p−k−1)(z)

f (p−k−2)(z)
− k − 2

and
ψ(r, s; z) =

s

r + k + 2
+ r,

such that p(z) ∈ H[0, 1] (n = 1 in the Lemma 1) and

ψ(p(z), zp′(z); z) =

∣∣∣∣ zp′(z)

p(z) + k + 2
+ p(z)

∣∣∣∣
=

∣∣∣∣∣ zf (p−k)(z)f (p−k−1)(z)
− k − 1− p(z) + p(z)

∣∣∣∣∣
=

∣∣∣∣∣ zf (p−k)(z)f (p−k−1)(z)
− k − 1

∣∣∣∣∣ < λk(λk+1)

for all z ∈ D. In order to prove the theorem it is enough to show that ψ(Meiθ,Keiθ; z) ≥
λk(λk+1). Indeed, since k + 2 ≥M we have

ψ(Meiθ,Keiθ; z) =

∣∣∣∣ Keiθ

Meiθ + k + 2
+Meiθ

∣∣∣∣ =

∣∣∣∣ K

Meiθ + k + 2
+M

∣∣∣∣
≥ K

M + k + 2
+M ≥ M

M + k + 2
+M

=
λk+1

λk+1 + k + 2
+ λk+1 = λk(λk+1)

for all z ∈ D.

48



E. Karamazova and N. Tuneski – A result by Silver. transf. on multival. func.

Since the functions λ(λ1) = λ1
(λ1+1)2

and λk(λk+1) =
λk+1

λk+1+k+2 +λk+1 are strictly

monotone on the interval (0, 1) and (0,+∞), respectively, we realize that there exist

their inverse λ1(λ) = 1−2λ+
√
1−4λ

2λ and

λk+1(λk) =
1

2

(
λk − k − 3 +

√
(λk + k + 3)2 − 4λk

)
.

So, Theorem 2 and Theorem 3 can be rewritten in the following, equivalent form.

Theorem 4. Let p be a positive integer, p ≥ 2 and 0 < λ ≤ 1/4. Also, let f ∈ Ap.
If ∣∣∣∣∣1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)
− 1

∣∣∣∣∣ < λ (z ∈ D),

then ∣∣∣∣∣ zf (p)(z)f (p−1)(z)
− 1

∣∣∣∣∣ < 1− 2λ+
√

1− 4λ

2λ
(z ∈ D).

Theorem 5. Let p and k are integers such that p ≥ 2 and 0 ≤ k ≤ p− 2. Also let
f ∈ Ap and 0 < λk < 1. If∣∣∣∣∣ zf (p−k)(z)f (p−k−1)(z)

− (k + 1)

∣∣∣∣∣ < λk (z ∈ D),

then∣∣∣∣∣zf (p−k−1)(z)f (p−k−2)(z)
− (k + 2)

∣∣∣∣∣ < λk+1

≡ 1

2

[
λk − k − 3 +

√
(λk + k + 3)2 − 4λk

]
(z ∈ D).

We reach the final goal of this paper by combining the two previous theorems.

Theorem 5 can be applied recursively because 1
2

[
λk − k − 3 +

√
(λk + k + 3)2 − 4λk

]
is in the interval (0, 1) when λk ∈ (0, 1).
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Theorem 6. Let p be a positive integer, p ≥ 2 and 0 < λ ≤ 1/4. Also, let λ1 =
1−2λ+

√
1−4λ

2λ and for k = 1, 2, . . .,

λk+1 =
1

2

[
λk − k − 3 +

√
(λk + k + 3)2 − 4λk

]
.

If f ∈ Ap and ∣∣∣∣∣1 + zf (p+1)(z)/f (p)(z)

zf (p)(z)/f (p−1)(z)
− 1

∣∣∣∣∣ < λ (z ∈ D),

then ∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣ < λp−1 (z ∈ D).

For p = 2 and λ = 1/4 we have λ1 = 1 and receive the following corollary.

Corollary 7. If f ∈ A2 and∣∣∣∣1 + zf ′′′(z)/f ′′(z)

zf ′′(z)/f ′(z)
− 1

∣∣∣∣ < 1

4
(z ∈ D),

then ∣∣∣∣zf ′(z)f(z)
− 2

∣∣∣∣ < 1 (z ∈ D).
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