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1. Introduction

Let A denotes the class of analytic functions of the form

f(z) = z +

∞∑
k=2

akz
k (1)

that map the unit disc conformally onto a domain whose complement with respect
to a convex that satisfies the normalization f(1) = ∞,the opening angle of f(U) at
infinity is less than or equal to απ.

The families of these functions is referred to as a concave univalent function
denoted as Co(α) if it satisfies the condition Pf > 0, where

Pf =
2

α− 1

[
α + 1

2

1 + z

1 − z
− 1 − z

f
′′
(z)

f ′(z)

]

In [11], the concept of meromorphic concave function was introduced, that a
conformal mapping of meromorphic functions on the unit disc is referred to as a
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concave function if its image is the complement of a compact convex function.
We define the class of meromorphic functions to be of the form

f(z) =
1

z
+

∞∑
k=1

akz
k. (2)

A function of the form (2) is referred to as a concave meromorphic if it satisfied the
condition

1 + Re

[
zf

′′
(z)

f ′(z)

]
< 0. (3)

The concept of harmonic univalent function was first introduced by Clunie and
Sheil-Small in [5]. The class of function is applied in the study of minimal surfaces
and other areas of sciences. We say that a continuous function f = u+ iv is complex
harmonic function in a domain U ⊂ C, if both u and v are real harmonic in U. Let
f = h+ g, where h and g are analytic in U. A necessary and sufficient condition for
f to be locally univalent and preserving in U is that |h′

(z)| > |g′
(z)| in U.

In [6], it was shown that a complex valued, harmonic, sense preserving, univalent
mapping f must admit the representation

f(z) = h(z) + g(z) + Alog|z| (4)

where h(z) and g(z) are defined by

h(z) = αz +
∞∑
k=1

akz
−n, g(z) = βz +

∞∑
k=1

bnz
−n (5)

for 0 ≤ |β| < |α|. In [7], For z ∈ U. SH was define to be the class of functions

f(z) = h(z) + g(z) =
1

z
+

∞∑
k=1

akz
k +

∞∑
k=1

bkzk, (6)

which are harmonic in the unit disc U, h(z) and g(z) are analytic in U, respectively.

A function f ∈ SH is said to be in the subclass S∗
H of meromorphic harmonic

starlike functions in U, if its satisfied the condition

Re

[
−zh

′
(z) − zg′(z)

h(z) + g(z)

]
> 0, (z ∈ U \ 0).
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Also A function f ∈ SH is said to be in the subclass SCH of meromorphic
harmonic convex functions in (U \ 0), if its satisfied the condition

Re

[
−zh

′′
(z) + h

′
(z)−zg′′(z) + g′(z)

h′(z) − g′(z)

]
> 0, (z ∈ U \ 0).

These two classes ware studied in [8, 9, 10].

In [12], the integral operator was introduced as the following:

Lσ,γf(z) =

∫ z

0

(γ + 1)2tσ−1

zγΓ(σ)

(
log

z

t

)σ−1
f(t)dt,

and expressed as

Lσ,γf(z) = z +

∞∑
k=2

(
γ + 1

γ + k

)
akz

k (7)

In [13], the inverse of the integral operator was considered as

Jσ,γf(z) =

∫ z

0

(γ + 1)2tσ−1

zγΓ(σ)

(
log

z

t

)−(σ−1)
f(t)dt (8)

an expressed as

Lσ,γf(z) = z +
∞∑
k=2

(
γ + k

γ + 1

)σ

akz
k (9)

so that
Lσ,γ(Jσ,γf(z)) = f(z). (10)

If γ = 0, n = σ we have Dnf(z), known as the Salagean operator.

In this work , we studied a new class of meromorphic concave functions defined
by inverse of an integral operator denoted SHσ

γC0 and define the class as follows:

Definition 1 Let SHσ
γC0 denote the class of meromorphic harmonic concave func-

tion define by inverse of Integral Operator on the function of the form (2)

Lσ,γf(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

bkzk, (σ > 0, γ > 1) (11)

such that

Re

[
1 +

z(Lσ,γf(z))
′

Lσ,γf(z)

]
< 0.
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2. Main Results

2.1. Coefficient Inequalities for the class SHσ
γC0

Theorem 1. Let Lσ,γf = h + g be of the form (11) , if

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|an| + |bn|) ≤ 1 (12)

then f is harmonic univalent, sense preserving in U

Proof. For 0 < |z1| ≤ |z2| < 1, we have

|Lσ,γf(z1) − Lσ,γf(z2)| = |1
z

+
∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k
1 +

∞∑
k=1

(
γ + k

γ + 1

)σ

bkz
k
1

−1

z
−

∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k
2 −

∞∑
k=1

(
γ + k

γ + 1

)σ

bkz
k
2 |

≥ 1

|z1|
− 1

|z2|
−

∞∑
k=1

(
γ + k

γ + 1

)σ

|ak||zk1 − zk2 | −
∞∑
k=1

(
γ + k

γ + 1

)σ

|bk||zk1 − zk2 |

>
|z1 − z2|
|z1z2|

− |z1 − z2|
∞∑
k=1

k

(
γ + k

γ + 1

)σ

(|ak| + |bk|)

>
|z1 − z2|
|z1z2|

[
1 − |z2|2

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|)

]

>
|z1 − z2|
|z1z2|

[
1 −

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|)

]

The last expression is non negative by
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
(|ak|+ |bk|) < 1, Lσ,γf(z) is

univalent in U.

Now we want to show that f is sense preserving in U , we need to show that
|h′

(z)| ≥ |g′
(z)| in U ,

|h′
(z)| ≥ 1

|z|2
−

∞∑
k=1

k

(
γ + k

γ + 1

)σ

|ak||z|k−1

=
1

r2
−

∞∑
k=1

k

(
γ + k

γ + 1

)σ

|ak|rk−1
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> 1 −
∞∑
k=1

k

(
γ + k

γ + 1

)σ

|ak|

≥ 1 −
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

|ak|

≥
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

|bk|

>

∞∑
k=1

k

(
γ + k

γ + 1

)σ

|bk|rk−1 =

∞∑
k=1

k

(
γ + k

γ + 1

)σ

|bk||z|k−1 ≥ |g′
(z)|.

Thus this completes the proof of the theorem.

Theorem 2. Let Lσ,γf = h + g be of the form (11) , then f ∈ SHσ
γC0 if the

condition holds
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|an| + |bn|) ≤ 1 (13)

Proof. with the condition that Rew < 0 ↔ |w+1
w−1 | < 1, it suffices to show that

|w+1
w−1 | < 1.

Let

w = Re

[
1 +

z(Lσ,γf(z))
′

Lσ,γf(z)

]

such that w = zg
′
(z)

g(z) , where g(z) = z(Lσ,γf(z))
′

we have that

∣∣∣∣w + 1

w − 1

∣∣∣∣ =

∣∣∣∣∣
∑∞

k=1(k
2 + k)(γ + k/γ + 1)akz

k −
∑∞

k=1(k
2 + k)(γ + k/γ + 1)bkz

k

2
z +

∑∞
k=1(k

2 + k)(γ + k/γ + 1)akzk −
∑∞

k=1(k
2 + k)(γ + k/γ + 1)bkzk

∣∣∣∣∣
<

∑∞
k=1(k

2 + k)(γ + k/γ + 1)|ak| −
∑∞

k=1(k
2 + k)(γ + k/γ + 1)|bk|

2 −
∑∞

k=1(k
2 − k)(γ + k/γ + 1)|ak| −

∑∞
k=1(k

2 − k)(γ + k/γ + 1)|bk|
. (14)

The last expression is bounded above by 1 if

∞∑
k=1

(k2 + k)(γ + k/γ + 1)ak +

∞∑
k=1

(k2 + k)(γ + k/γ + 1)bk

≤ 2 −
∞∑
k=1

(k2 − k)(γ + k/γ + 1)ak −
∞∑
k=1

(k2 − k)(γ + k/γ + 1)bk
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which is equivalent to our condition by

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|an| + |bn|) ≤ 1.

Conversely, assume f ∈ SHσ
γC0, then we have∣∣∣∣∣∣∣

1 +
zLσ,γh(z))

′′−zLσ,γg(z))
′′

Lσ,γh(z))
′−Lσ,γg(z))

′ + 1

1 +
zLσ,γh(z))

′′−zLσ,γg(z))
′′

Lσ,γh(z))
′−Lσ,γg(z))

′ − 1

∣∣∣∣∣∣∣ < 1

=

∣∣∣∣∣
∑∞

k=1(k
2 + k)(γ + k/γ + 1)ak −

∑∞
k=1(k

2 + k)(γ + k/γ + 1)bk
2
z2

−
∑∞

k=1(k
2 − k)(γ + k/γ + 1)ak −

∑∞
k=1(k

2 − k)(γ + k/γ + 1)bk

∣∣∣∣∣ < 1.

By letting |z| → 1, we obtain (12).

Theorem 3. Let f = h+g of the form (11), then a necessary and sufficient condition
for Lσ,γf(z) to be in SHσ

γC0 is that

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|) ≤ 1.

Proof. From Theorem 2, we assume that

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|) > 1.

Since Lσ,γf(z) ∈ Lσ,γSHC0, then 1 + Rez(Lσ,γf(z))
′′
/(Lσ,γf(z))

′
is equivalent to

Re
zg

′
(z)

g(z)
= Re

z
(

1
z2

+
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
akz

k−1 +
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
bkzk−1

)
1
z +

∑∞
k=1 k

(
γ+k
γ+1

)σ
akzk +

∑∞
k=1 k

(
γ+k
γ+1

)σ
bkzk

= Re

(
1
z +

∑∞
k=1 k

2
(
γ+k
γ+1

)σ
akz

k +
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
bkzk

)
1
z +

∑∞
k=1 k

(
γ+k
γ+1

)σ
akzk +

∑∞
k=1 k

(
γ+k
γ+1

)σ
bkzk

≤ 0

for |z| = r > 1, the above expression reduce to

Re

1 +
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
(|ak| + |bk|)rk

1 +
∑∞

k=1 k
(
γ+k
γ+1

)σ
(|ak| + |bk|)rk

 =

(
A(r)

B(r)

)
≤ 0
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from our assumption that
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
(|ak|+ |bk|) > 1, then A(r) and B(r) are

positive for r sufficiently close to 1. Thus there exists a z0 = r0 > 1 for which the
quotient is positive. This contradicts the required condition that A(r)

B(r) ≤ 0, so the
proof is complete.

2.2. Distortion and Extreme point

Theorem 4. If Lσ,γfk = hk + gk be of the form (11) and 0 < |z| = r < 1, then

|Lσ,γfk(z)| ≤ 1 + r2

r

and

|Lσ,γfk(z)| ≤ 1 − r2

r
.

Proof. Taking the absolute of fk, we have that

|fk| =

∣∣∣∣∣1z +
∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

bkzk

∣∣∣∣∣
≥ 1

r
−

∞∑
k=1

(
γ + k

γ + 1

)σ

(|ak| + |bk|)rk

≥ 1

r
−

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|)r

by applying
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
(|ak| + |bk|) ≤ 1

|fk| ≥
1

r
− r =

1 − r2

r
.

Also

|fk| =

∣∣∣∣∣1z +
∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

bkzk

∣∣∣∣∣
≤ 1

r
+

∞∑
k=1

(
γ + k

γ + 1

)σ

(|ak| + |bk|)rk

≤ 1

r
+

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak| + |bk|)r
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by applying
∑∞

k=1 k
2
(
γ+k
γ+1

)σ
(|ak| + |bk|) ≤ 1

|fk| ≤
1

r
+ r =

1 + r2

r
.

Theorem 5. Let Lσ,γf = h + g be of the form (11). Set hn,0 = gn,0 = 1
z for

k = 1, 2, 3, · · · set

hn,k(z) =
1

z
+

1

k2
zk, gn,k(z) =

1

z
+

1

k2
zk

then Lσ,γf(z) to be in SHσ
γC0 if and only if fk can be expressed as

fn,k =
∞∑
k=0

(Ψkhn,k(z) + Φkgn,k(z))

where Ψk ≥ 0,Φk ≥ 0 and
∑∞

k=0(Ψk + Φk) = 1.

Proof. For function f = h + g to be of the form (11), we have that

fn,k(z) =

∞∑
k=1

(Ψkhn,k(z) + Φkgn,k(z))

= Ψ0hn,0 + Φ0gn,0 +

∞∑
k=1

(Ψkhn,k(z) + Φkgn,k(z))

= Ψ0hn,0 + Φ0gn,0 +

∞∑
k=1

Ψk

(
1

z
+

1

k2
zk
)

+

∞∑
k=1

Φk

(
1

z
+

1

k2
zk
)

∞∑
k=0

(Ψk + Φk)
1

z
+

∞∑
k=1

1

k2
(Ψkz

k + Φkzk).

Now by Theorem 1,

∞∑
k=1

(Ψk
1

k2
k2 + Φk

1

k2
k2) =

∞∑
k=1

Ψk + Φk = 1 − Ψ0 − Φ0 ≤ 1

we have Lσ,γf(z) to be in SHσ
γC0. The converse is similar to the above proof
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2.3. Convolution Properties

For harmonic functions

Lσ,γfn(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

akz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

bkzk (15)

and

Lσ,γFn(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

Akz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

Bkzk. (16)

The convolution of Lσ,γfn(z) and Lσ,γFn(z) is given by (Lσ,γfn ∗ Lσ,γFn)(z) =
Lσ,γfn(z) ∗ Lσ,γFn(z)

=
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

|ak||Ak|zk +
∞∑
k=1

(
γ + k

γ + 1

)σ

|bk||Bk|zk. (17)

The geometric convolution of fk and Fk is given by

(f(z)∗Fk)(z) = fk(z)•Fk(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ √
|akAk|zk+

∞∑
k=1

(
γ + k

γ + 1

)σ √
|bkBk|zk.

(18)
The integral convolution of fk and Fk is given by

(fk ◦Fk)(z) = fk(z)◦Fk(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ |akAk|
k

zk +

∞∑
k=1

(
γ + k

γ + 1

)σ |bkBk|
k

zk.

(19)

Theorem 6. Let Lσ,γfk(z) ∈ SHσ
γC0 and Lσ,γFk(z) ∈ SHσ

γC0. Then the convolu-
tion Lσ,γfk(z) ∗ Lσ,γFk(z) ∈ SHσ

γC0.

Proof. From (17), (18), then the convolution given by (19). We need to show that
the coefficients of Lσ,γfk(z) ∗ Lσ,γFk(z) satisfy the condition of theorem (2.1). We
obtain that

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|ak||Ak|) +

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|bk||Bk|)

≤
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

|ak| +

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

|bk| ≤ 1.

Therefore Lσ,γfk(z) ∗ Lσ,γFk(z) ∈ Lσ,γSHC0, where |Ak| ≤ 1 , |Bk| ≤ 1. This
completes the proof.
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Theorem 7. Given fk and Fk of the form (17) and (18) belong to the class SHσ
γC0,

then the geometric condition (f(z) • Fk)(z) ∈ SHσ
γC0.

Proof. From (19), and by Cauchy-Schwartz’s inequality, it follows that

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(
√

|Akak| +
√

|Bkbk|) ≤ 1.

Theorem 8. Given fk and Fk of form (17) and (18) belong to the class SHσ
γC0,

then the integral convolution (f(z) ◦ Fk)(z) ∈ SHσ
γC0.

Proof. Let |Ak| ≤ 1 and |Bk| ≤ 1, then

∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(
|Akak|

k
+

|Bkbk|
k

)

≤
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(
|ak|
k

+
|bk|
k

)

≤
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(
|ak|
k

+
|bk|
k

) ≤ 1.

The proof is complete.

2.4. Convex Combinations

Theorem 9. The class SHσ
γC0 is closed under convex combination.

Proof. Let i = 1, 2, · · · , then

Lσ,γfi(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

aikz
k +

∞∑
k=1

(
γ + k

γ + 1

)σ

ibkzk

where aik > 0, bik > 0, by theorem (2)

∞∑
k=1

k2
(
γ + k

γ+

)σ

(|aik| + |bik|) ≤ 1.

For
∑∞

k=1 ti = 1, 0 ≤ t ≤ 1, the convex combinations of Lσ,γf(z) is written as

∞∑
k=1

tiLσ,γfi(z) =
1

z
+

∞∑
k=1

(
γ + k

γ + 1

)σ

(tiaik)zk +
∞∑
k=1

(
γ + k

γ + 1

)σ

tibik)zk.
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Then by
∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|aik| + |bik|) ≤ 1

∞∑
k=1

k2
(
γ + k

γ + 1

)σ
[
|

∞∑
k=1

(tiaik| + |
∞∑
k=1

tibik|)

]

=
∞∑
k=1

ti

[ ∞∑
k=1

k2
(
γ + k

γ + 1

)σ

(|aik| + |bik|)

]
≤

∞∑
k=1

ti = 1

. Then
∑∞

k=1 tiLσ,γfi(z) ∈ SHσ
γC0.
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