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THE NUMBER OF INTEGRAL SOLUTIONS TO AN EQUATION
INVOLVING SUMS OF RADICALS

Dorin Andrica and George Cătălin Ţurcaş

Abstract. In this short note, we present a Galois-theoretic proof for the follow-
ing result. Given an integer k ≥ 2 and fixed positive integers n1, . . . , nk, the number
of solutions (x1, . . . , xk, y) ∈ (Z≥0)

k+1 to the equation (1) is finite. This generalises
a problem proposed by the authors and selected for the final round of the Romanian
Mathematical Olympiad in 2019. In Theorem 2, we prove an interesting lower bound
for the number of such solutions in the particular case when n1 = · · · = nk = n.
This lower bound involves the number of divisors function. In the same case, we
formulate two conjectures regarding the sequence generated by the number of such
solutions. In the first conjecture, we speculate that when k = 2, the sequence takes
every positive integer value. The second conjecture concerns an asymptotic of that
should hold for general values of k ≥ 2. These are supported by extensive computer
calculations.
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1. Introduction

The authors proposed the following number theory problem to the final round of
the 70-th National Mathematical Olympiad.

Problem (ONM 2019). For every positive integer n, we define the set

An =
{
(x, y) ∈ Z≥0 × Z≥0

∣∣∣ √x2 + y + n+
√

y2 + x+ n ∈ Z≥0

}
.

Show that for every n ≥ 1, the set An is non-empty and finite.

This left a very good impression on the problem selection committee, which
selected it for the competition. Although it admits an elementary solution, the

83
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problem asks to prove that there are finitely many integral points on the degree 4
algebraic surface

(x2+y+n)2+(y2+x+n)2+z4 = 2(x2+y+n)(y2+x+n)+2(x2+y+n)z2+2(y2+x+n)z2.

In fact, this a a family, depending on n, of Diophantine equations in variables x, y, z.
The study of such problems can be notoriously difficult and represents a central topic
of research for modern number theorists (see [1] and [4]).

Figure 1 constitutes of a plot for the connected component corresponding to
z ≥ 0 of the algebraic surface described above, in the particular case n = 10.
The plot was produced using Mathematica [6] and all points with non-negative
integral coordinates lying on the surface are marked with red dots. The latter are
{(1, 5, 10), (2, 2, 8), (3, 6, 12), (5, 1, 10), (6, 3, 12), (9, 9, 20)}.

The purpose of this short note is twofold. Firstly, we present a Galois-theoretic
approach to a generalisation of the problem above. Secondly, we show that there is
a lower bound on the number of pairs in An that depends on the number of divisors
of 4n− 1.

We will prove the following two theorems.

Theorem 1. Given an integer k ≥ 2 and n1, . . . , nk ∈ Z>0, the number of solutions
in (x1, . . . , xk, y) ∈ (Z≥0)

k+1 to the equation

k∑
i=1

√
x2i + xi+1 + ni = y, (1)

where xk+1 = x1, is finite.

Our result is strongly related to the problem of linear independence (over Q) of
radicals. This is proved in [2] (see pages 419-420) using the fundamental theorem of
symmetric polynomials. A beautiful survey of the problem can be found in [3].

For the particular case when n1 = · · · = nk = n, let us denote by A
(k)
n the set of

solutions (x1, . . . , xk, y) ∈ (Z)k+1 to the equation (1). It is interesting to estimate

the size of the finite set A
(k)
n . We prove the following lower bound, which shows that

lim sup
n→∞

∣∣A(k)
n

∣∣= +∞.

Theorem 2. For every n, k as above, we have

∣∣A(k)
n

∣∣ ≥ τ (4n− 1)

2
,

where τ : Z>0 → Z>0 is the number of divisors function.
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Figure 1: Connected component with z ≥ 0 of the algebraic surface for n = 10.

2. Proof of Theorem 1

We first give an elementary proof of finiteness in the case k = 2. Suppose that
(x1, x2, y) ∈ (Z≥0)

3 is a solution to (1). Squaring, one notices that the product

2 ·
√
(x21 + x2 + n1)(x22 + x1 + n2) ∈ Z>0

and hence√
x21 + x2 + n1 −

√
x22 + x1 + n2 =

x21 − x22 + x2 − x1√
(x21 + x2 + n1)(x22 + x1 + n2)

∈ Q.

One obtains that
√

x21 + x2 + n1 and
√
x22 + x1 + n2 are both rational numbers,

hence integers.
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Now x21+x2+n1 > x21, so we must have that x21+x2+n1 ≥ (x1+1)2. Similarly,
x22 + x1 + n2 ≥ (x2 + 1)2. Summing up the last two inequalities, we obtain that
n1 + n2 − 2 ≥ x1 + x2 thus there are finitely many possibilities for choosing x1, x2.
Each such choice determines y, therefore the equation (1) has finitely many solutions.

Additionally, it is possible to give such elementary proofs for the finiteness of the
number of solutions to (1) when k ∈ {3, 4}. Unfortunately, this approach does not
extend for k ≥ 5.

Although this problem seems to be elementary, it generates complicated other
problems in number theory. To emphasize one such, we stay in the case k = 2 and

we consider n1 = n2 = n. Define the sequence (an)≥1, such that an = |A(2)
n | for

every n ≥ 1. The first few values of (an)≥1 are

1, 1, 3, 2, 1, 1, 2, 3, 2, 6, 3, 1, 2, 2, 3, 5, 5, 1, 3, 1, 5, 2, 2, 6, 3, 5, 1, 2, 2, 2, 8, 5,
3, 4, 3, 6, 3, 3, 4, 4, 3, 3, 7, 3, 3, 4, 2, 5, 4, 1, 8, 9, 1, 6, 6, ...

This sequence is not yet indexed in The On-Line Encyclopedia of Integer Se-
quences (OEIS). We have that a1536 = 29 and every positive integer less than or
equal to 29 appears as some term in (an)≥1. Computer assisted calculations suggest
the following interesting phenomena.

Conjecture 1. Every positive integer appears as one of the terms of the sequence
(an)≥1.

We give a general proof that the number of solutions to (1) is finite. All the
Galois theory concepts we use can be found in any classical Galois theory textbook
(see, for instance Cox [5]).

Let (x1, . . . , xk, y) ∈ (Z≥0)
k+1 be a solution to (1). We therefore have

k∑
i=1

√
x2i + xi+1 + ni ∈ Z>0, (2)

where xk+1 = x1. We claim that each summand in (2) is an integer. Proceeding by
contradiction, assume this is not the case.

Let S ⊆ {1, . . . , k} be defined by the following algorithm.

• Start with S := {1, . . . , k}.

• For each i ∈ S, if
√

x2i + xi+1 + ni ∈ Z then S := S \ {i}.

• For every pair (i, j) ∈ S2 such that i < j, if

√
x2
j+xj+1+nj√
x2
i+xi+1+ni

∈ Q, then S := S\{j}.
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Our assumption implies that |S| ≥ 2 at the end of this sequence of steps.
We can now see that there are positive rational numbers ci such that∑

i∈S
ci ·
√

x2i + xi+1 + ni ∈ Q (3)

and each two of the square roots in the sum (3) are linearly independent over Q.
The desired conclusion follows if we prove that all the square roots in the sum above
are rationals, hence integers.

Let KS be the (finite) extension of Q formed by adjoining
√

x2i + xi+1 + ni for

all i ∈ S. It is the smallest field that contains Q and all the square roots appearing
in (3).

Let T be a subset of S, of minimal cardinality, such that

KS = Q
({√

x2i + xi+1 + ni : i ∈ T

})
.

Our construction of |S| implies that |T | ≥ 2 as well. An important feature of the

square-roots appearing in
{√

x2i + xi+1 + ni : i ∈ T
}

is that they are multiplica-

tively independent, namely no product of any subset of them is rational.
The field extension KS/Q is Galois of order 2|T |. Its Galois group Gal(KS/Q)

consists of all field automorphisms σ : KS → KS that fix Q. Every such automor-
phism σ ∈ Gal(KS/Q) is completely determined by its image on the generators of
KS over Q, i.e. on the set {√

x2i + xi+1 + ni : i ∈ T

}
.

For every i ∈ S, and every σ ∈ Gal(KS/Q) we have that

σ2

(√
x2i + xi+1 + ni

)
= σ(x2i + xi+1 + n) = x2i + xi+1 + ni,

so σ
(√

x2i + xi+1 + ni

)
= ±

√
x2i + xi+1 + ni and each such choice for the elements

i ∈ T ⊆ S, gives a different automorphism of Gal(KS/Q).

We will prove that (3) implies that
√

x2i + xi+1 + ni ∈ Z for every i ∈ S, yielding

our desired contradiction, by induction on |S|.
The conclusion follows trivially if |S| = 2.
When |S| > 2, we fix an i0 ∈ T ⊆ S. An easy consequence of Galois theory for

the extension KS/Q implies that there exists σi ∈ Gal(KS/Q), a Q-automorphism
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of KS , such that σi0

(√
x2i0 + xi0+1 + ni0

)
= −

√
x2i0 + xi0+1 + ni0 and for every

i ∈ T \ {i0}, we have that σi0

(√
x2i + xi+1 + ni

)
=
√

x2i + xi+1 + ni.

By definition, σi0 fixes the sum (3), since the latter is a rational number. Each
summand in the sum (3) is either fixed or sent to its negative by σi0 . It is essential
that at least one summand in the sum is fixed, a consequence of the fact that |T | ≥ 2.
Applying σi0 to (3), we obtain∑

i∈S′

ci ·
√

x2i + xi+1 + ni ∈ Q, where S′ ( S.

The conclusion follows from the induction hypothesis.
We therefore proved that x2i+xi+1+ni are perfect squares for every i ∈ {1, . . . , k}.

For each such index i, the inequality x2i + xi+1 + ni > x2i implies that

x2i + xi+1 + ni ≥ (xi + 1)2.

Summing up the above inequality for all i ∈ {1, . . . , k}, we get

k∑
i=1

x2i + xi+1 + ni ≥
k∑

i=1

(xi + 1)2,

which is equivalent to
k∑

i=1

(ni − 1) ≥
k∑

i=1

xi.

As the numbers xi are non-negative integers, the last inequality implies that the
number of solutions in (x1, . . . , xk) ∈ (Z≥0)

k to the equation (1) is finite. This proof

gives the näive upper bound
B∑

r=0

(
r+k−1
k−1

)
, where B =

k∑
i=1

(ni − 1), for the number of

such solutions.

Corollary 3. Given an integer k ≥ 2 and n1, . . . , nk ∈ Z>0, there exists a minimal
constant ρ(n1, . . . , nk) > 0 such that for every m = (m1, . . . ,mk) ∈ Zk with
||m|| > ρ(n1, . . . , nk), the system of equations

x21 + x2 + n1 = m2
1

x22 + x23 + n2 = m2
2

· · · · · · · · · · · · · · · · · ·
x2k + x21 + nk = m2

k

(4)

has no solutions in the unknowns x1, . . . , xk.
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We remark that a simple computation shows that

ρ(n1, . . . , nk) <

(
k∑

i=1

(ni − 1)

)2

+ 2

k∑
i=1

ni − k.

Finding a sharp upper bound for ρ(n1, . . . , nk) seems to be a difficult, but interesting
problem.

3. Proof of Theorem 2

In the present section we derive an interesting lower bound for the number of solu-
tions to the equation (1), in the particular case in which n = n1 = . . . = nk.

We claim that the number of k-tuples (x, . . . , x) ∈ A
(k)
n is equal to the announced

lower bound.
Let m be a positive integer such that x2 + x+ n = m2. We have that

4m2 = (2x+ 1)2 + 4n− 1

and therefore
(2m− 2x− 1) · (2m+ 2x+ 1) = 4n− 1.

In the equation above, given n we must find values for x ∈ Z≥0 and m ∈ Z>0.
We observe that

2m− 2x− 1 = d and 2m+ 2x+ 1 =
4n− 1

d
, (5)

where d ≤
√
4n− 1 is a divisor of 4n − 1. The system of equations (5) can be

rewritten as

4m = d+
4n− 1

d
and 4x =

4n− 1

d
− d− 2. (6)

We can solve the system of equations (6) and find values for m and x if and only
if {d (mod 4), (4n − 1)/d (mod 4)} = {1 (mod 4), 3 (mod 4)}. This holds, since
4n−1 = 3 (mod 4) and its divisors come in pairs (d, 4n−1

d ) satisfying the above. For
each such divisor pair, the system (6) has a unique solution (m,x). The number of
such pairs is τ(4n− 1)/2, hence our theorem is proved.

Remark 1. For n = 2019 and k = 2, we have
∣∣A(k)

n

∣∣ = 18. The number of divisors of
4·2019−1 is 12 and they determine the 6 pairs (2, 2), (74, 74), (101, 101), (114, 114),
(402, 402) and (2018, 2018). With the aid of a computer, we also found that (1, 96),
(12, 337), (24, 109), (29, 56), (88, 1053), (864, 1441) and their reciprocals belong to

A
(2)
2019.
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Extensive computer computations suggest the following conjecture regarding an

asymptotic formula for the size of A
(k)
n .

Conjecture 2. For fixed k ≥ 2, we have that

∣∣A(k)
n

∣∣ = τ(4n− 1)

2
+ o(n),

where o(n) is the usual small-o notation, which essentially means that

lim
n→∞

1

n

(∣∣A(k)
n

∣∣− τ(4n− 1)

2

)
= 0.

It is very hard to test this conjecture for large values of k, since the complexity

of computer algorithms for determining A
(k)
n grow exponentially in k.
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