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ABSTRACT. Let a > 2 be an integer. In this work we set an integer sequence
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1. PRELIMINARIES

Let p and ¢ be two non-zero integers and let d = p? —4q # 0 (to exclude a degenerate
case). We set the integer sequences U,, and V;, to be

Un = Un(pa q) = pUn—l - qUn—2 (1)
Vi = Va0, q) = Va1 — ¢Vi2

for n > 2 with Uy = 0,U; = 1,Vy = 2 and V7 = p. The characteristic equation of
(1) is
z? — pr+q=20

and hence the roots are

p+Vd p—Vd
5 and 8= 7

o =

So their Binet formulas are
a — ﬂn

and V, =a" + 3"
a—pf

U, =

for n > 1. For the companion matrix M = [ ]1) 4 ] , we have

] (8] w2, 5].
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Furthermore for U, and V,,, we have the following formal power series

2 —px

Un ——  and Vo —_—.
Z v 1—px—|—qx2 an 2} o T 1—pz + qa?

It is easily seen from (1) that

U,(1,—1) = F,, Fibonacci numbers (A000045 in OEIS),
V.(1,—1) = L,, Lucas numbers (A000032 in OEIS),
Un(2,—1) = P, Pell numbers (A000129 in OEIS),
Vn(2,—1) = @, Pell-Lucas numbers (A002203 in OEIS).

2. MAIN RESULTS.

Integer sequences (such as Fibonacci numbers, Lucas numbers, Pell numbers, Pell-
Lucas numbers and balancing numbers) with two or more than two parameters and
their generalizations have been investigated by several authors ([1, 2, 5, 6, 7, 8, 9,
10, 11, 13)).

In [4], we derived some new results on balancing numbers and in [15], we obtained
some new results on oblong and balancing numbers. Later in [14], we defined an
integer sequence with four parameters and derived some algebraic relations on it.

In [12], Ribenboim set an integer sequence for P = a+1 and ) = a for an integer
a > 2, namely, Uy, (a + 1,a). We rewrite

Ut =Up(a+1,a). (2)
Then from (1), we get U = 0,Uf* = 1 and
Uy =(a+ 1)Uy —alU;_, (3)
for n > 2. The characteristic equation of (3) is
2> —(a+ 1Dz +a=0
and hence the roots of it are « = ¢ and 8 = 1. So its Binet formula is

a” —1

a—1

Ue =

n

for n > 1.
For the integer sequence defined in (3), we can give the following theorems.
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Theorem 1. For the integer sequence U, we have

1. The sum of first n—terms is
“ —-n—1
U}) = ——F—
Z —
forn > 1.
2. Also

(i) Uty — a?Ul =a+1for n > 0.

(11) Ugn - (a2 + 1)U5Ln—2 - a2U§n—4 and Ugn—i-l - (a2 + l)Ugn—l - a2U;n—3 for
n > 2.

(iii) "+ 8" = US,  —aUf_  forn > 1or o+ 5" =Up, , — Uy +1 for n > 0.
(iv) U§n+1 =a?U$,_;+a+1and 2U% , — (a+ 1)US =a" + 1 for n > 1.

(v) Uln- ~7— and Ufj’r‘lz are integers, in fact,
U2n 1 2i—1 Ugn—2 = 21—2
| Za and —2=2 = D a
i=1
for n > 1.
(vi) Uf, . + U5 (Z;fi)a” —(5%)B" and U2 — UZ_; = a1 for n > 1.
Proof. (1) Note that Uj = (a + 1)Uj_; —aU;_,. So Uy, o = (a+ 1)Uy — aUy.

Since Uy, o — a’U% = a+ 1, we get U“+2 = a2U + a + 1 and hence
AU +a+1=(a+1)U%  —aUl = (a+1)U%, — (a+a®)US=a+1. (5)

Since a + 1 # 0, we can divide both side of (5) with a + 1. So

o —all = 1. (6)
Applying (6), we deduce that
Ul —aUy =1
Uy —aUf =1
(7)

Ug+1 _QUS =1.
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If we sum of both sides of (7), then we obtain (U{ +U§ +---+US, ) —a(U§ + U +
-+ 4+ U}) =n+1 and hence

I=a)Uf+U3+---4+U3)=-Uy s +n+1
since U§ = 0. Thus

Ur i —n—1

U+ U3+ +Uf = n+a—1

as we wanted.
(2-i) Recall that U = €= = ¢" ' 4 a"2 4 - +a+ 1 and hence

a—1
AU =a*(a" ' +a" 2+ ta+1)=a" +a" + - 4 a2 (8)
Adding a 4 1 both sides of (8), we get
APUSl+a+1=a""+a"+ - +a®+a+1=Ul,

and hence
e, —ad’Ul =a+1.

The other cases can be proved similarly. B

Applying Theorem 1, we can give the following result without giving its proof
since it can be proved by induction on n.

Theorem 2. If a is odd, then U} is even if and only if n is even and U} is odd if
and only if n is odd. If a is even, then U? is always odd.

Now we can give the special case, namely, a = 10. Then we have
Ul =110, — 10U,
Thus we see that U} = 0 and
Ulo.1,11,111,1111,11111, 111111, - - -
for n > 1. Similarly we get

U9 . 1,101,10101, 1010101, 101010101, - - -

Ul%% . 1,1001,1001001, 1001001001, 1001001001001, - - -

U0 . 1,10001, 100010001, 1000100010001, 10001000100010001, - - -

U0 : 1,100001, 10000100001, 1000010000100001, 100001000010000100001, - - -

for n > 1. Thus we can give the following theorem.
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Theorem 3. If a = 10* for some integer k > 1, then the terms of Uﬁbok are

Ut =1, (10" 11
~—

n—1 times
forn > 1 with U&Ok =0.
Proof. 1t can be proved by induction on n. B
Notice that the rank of an integer N is defined to be

(N) = p if p is the smallest prime with p|N
p | oo if N is prime.

For the rank of U?, we can give the following theorem.

Theorem 4. If a is odd, then p(U$,) = 2. Also let a = 10* for an integer k > 1.
If k =1, then p(U3°) = p(ULY) = p(UL)) = oo and p(U3Y) =3, if k = 1 and 31 2n,
then p(U3%) = 11, and p(US,) = 3 for every k and n.

Proof. We see in Theorem 2 that if a is odd, then U} is even if and only if n is even.
So U§, is always even and therefore p(Us,) = 2.

Let k = 1. Then U3% = 11, U] = 1111111111111111111 and U3 = 111111111111
11111111111 are primes. So p(US) = p(Ufy) = p(Uss) = oo. Similarly since

U0 :11---1,

3n times

which is divisible by 3 and so p(U3i0) = 3. Notice that

Us0 = 1111---1,

2n times

Hence clearly U2 is divisible by 11 and therefore p(U3Y) = 11 (when 3|2n, we see
as below that p(U30) = 3).
Finally let k > 1 be any integer. Then
Ug, = (1011
——

3n—1 times

is divisible by 3 and hence p(Us,) =3. B

_ | Uy 1-U3
Theorem 5. Let M = [ U U

Then

-1

U Ug} and A= [ U US .
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Upt1 1 =Unia
1. M™ = forn > 1.
Uug 1-U8

n

2. Ut = AM" 1A forn > 1 and U2 = AM"2W A? forn > 2.
3. If n > 3 is odd, then

n—1 n—1 i
2N )rE S (T ag
i=0 1=0
W =
n—1 n=3
2 -1 n—1—2i >\ (n—2—i n—2—2i
> (") @+1) > (" ) +1)
| i=0 i=0 i

and if n > 2 even, then

— n n—2 T
3 [ D oY (e [
1=0 =0
W" =
}: (n4344)(aA+71)n—1—21 }: (n4?44)(aA+71)n—2—21
| =0 =0 |

Proof. (1) We prove it by induction on n. Let n = 1. Then

) 1
(R %
Za an a+1 —a

0 0o
Yat 1—->a
1=0 1=0

So it is true for n = 1. Let us assume that this relation is satisfied for n — 1. Then
since M™ = M™~ 1. M, we get

n—1 n—1 n—1
(a+1)> a4+ (1— > a") —ay. a
i=0 =0 =0
M" = . 9)
n—2 n—2 n-2
(@+1) X a"+ (1= > a) —a) d
i=0 =0 =0
In (9), we notice that
n—1 ' n—1 .
(a+1)ZaZ+(1—ZaZ) =(a+1)(14+a+a’>+---+a"h
i=0 i=0

+1-QQ+a+--+a"
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=l+a+a*+---+a"
n
-y
—aZa —a—at—- —a"

=1-(1+a+a®+-+a"

n
=1- E a’,
i=0

n—2
(a+1 Za +(1=Y d)=(a+1)(l+a+ - +a"?)
1=0
+1-(1+a+a*+---+a"?
=l4+a+a’+---+a" !
n—1
=0
and
n—2 '
—aZa’:—a—aQ— —a"!
=0
=1-(1+a+a®+--+a"
n—1 '
—1—Za’.
=0
So (9) becomes
n . n .
Yat 1->d
i=0 i=0
M" =

n—1 n—1 |
Yoab 1—- > a
i=0 i=0
Since U = a" ' +a" 2 + -+ + a+ 1, we conclude that
Uppr 1=Ui

M" =
ve  1-U°

n
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(2) We easily get

ug  1-Ug 1
AM™ A =1 0]
¢ 1-U2, 0

L Yn—1

-Ug
=[1 0]

[ Un—
= Ue

and since aUj_; + 1 = Uf, we observe that

[ Us , 1-U% ;] [a+1 1 1
AM" WA '=[1 0]
@, 1-Us, || 1 0 0
n1 1-Uiy | [atl
=[1 0]
[ Une 1-Upn | [ 1
[ (a+ 1)U, +1-Up_,
=[1 0]
| (a+DUR 5 +1-Un_,
:aUg_l‘{'].
=U,.

(3) It can be proved similarly. B

For the simple continued fraction expansion, we can give the following result.

U:I:+1
Ui

Theorem 6. The simple continued fraction expansion of 18

a
n+1

n—1
_ . n—1—1
Ua = |% Za
n =0

forn > 2. Also

forn >2 and
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e n—2

a2n — a2; ZQQn—4—2z
U2n—2 f
forn > 3.

Proof. Recall that U = a1 +a"2+---+a+ 1. So we get

Upyr  a"+a" '+ +a+1 N 1
= =aQa .
Us a4 am 2+ +a+l a" a4 fa+1

n—1 .
Since a" 1 +a" 2+ +a+1= Y a" 17" we conclude that
i=0

a n—1
n+l _ | . n—1—i
Uins _ [a, S ] .
n i=0
Similarly we obtain

Uéln+1 _ a2n+a2n71+n_+a+1
Uéln—l - a2n—2 4 g2n—=3 4 ... 4 q+1
24 a+1
a?n—2+a2n—3+...+a+1
1

a2n72+a2n73+...+a+1
a+1

1
2
:a—|— — — 1
a2n 3+a2n 5+...+a+m

1
:a2+

:a2+

n—2

2n—3—21 1
Z a + a+1
1=0

Thus

The last assertion can be proved similarly. H

For the cross-ratio of four consecutive Uy, Uy, |,U};, 5 and Uy, 3 numbers we can
give the following result.
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Theorem 7. Let Uy, Uj, 1,Uy 5 and Uy, 5 be four consecutive Uy numbers. Then

a’®+2a+1
[Un, Unt13 Unyo, Unisl = Pratl
forn > 1.

Proof. Notice that the cross—ratio of a quadruple of distinct points on the real line
with coordinates z1, 29, 23, 24 is given by

(23 — 21)(24 — 22)
(23 — 22)(24 — 21)

Let U3, US, 1,Up 5 and Uf 3 be four consecutive U, numbers. Then by (10), we

[21722; 23,24] - (10)

get
(Ungo = U)Upis — Unpy)
[U:LL? U:LL 7U7(; ) na ] - a a a : (11)
i 2 3 ( n+2 Un—i—l)(Un—i-S - Ur?)

In (11), we notice that
n+2 Ua—an+1+a U5+3_US+1:an+2+an+17

@, = UL =a" and Uty —US=a""?+a"M +a"

So (11) becomes

Up)(Usys — Upia)
n+1)(Un+3 Urczl)
)@ 0
an+1)(an+2 + antl + a")
a?"t(a® + 2a + 1)
T a2t (@2 fa+1)
a’+2a+1
az+a-+1

a a a a (
[Urw Un—i—l; Un+2’ Un+3] (
_ (a”

(

as we claimed. W

A circulant matrix (see [3]) is a matrix M defined as

mi ma msz - mp—1 mp
mn mip My ce Mp—2 Mp—1
mp—1 My My ce mp—3 Mp—2
M = ,
ms3 myg M5 mi ma
L "2 m3 My mp my
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where m; are constant. The eigenvalues of M are

n—1
)\J(M) = kaw_jk, (12)
k=0
where w = e%, it=+—1land 5 =0,1,--- ,n — 1. The spectral norm for a matrix

M = [mijlnxn is defined to be
|| M||spec = max{+/A; : A\; are the eigenvalues of MUMfor0<j<n-— 1},

where M denotes the conjugate transpose of M. Then we can give the following
theorem.

Theorem 8. Let U2 denote the circulant matriz for U numbers. Then the eigen-
values of U} are A
wi(alUg_, +1) ~ Ug

N (U = : :
i(Un) aw™2 — (a+ w7 +1
for j=0,1,2,--- .n—1 and the spectral norm is
n
U apec = D ka™ ",
k=1
Proof. Applying (12), we get
n—1 '
(U2 = 3 U
k=0
1= oot .
=ap |2 () - Z(ﬁw‘J)k]
Lk=0 k=0
_ b [t B —1
S a—-Blawd -1 pwi-1

_ 1 [@=-Buw’ 1) (8" - )(aw ™ — 1)]

a—031 (w7 = 1)(fw=d —1)

1 _w_j(anﬁ—aﬁn—ﬁ—t—a)—a”—kﬁ"}
a—0| afw= —w i(a+p) +1

1 JwHae™ ! =" +a—p) —(a” —5”)]
a—0| afw=% —wi(a+B)+1

w (U +1) — U2
aw % — (a+ 1w I +1°

63



Arzu Ozko¢ Oztiirk and Ahmet Tekcan — Integer Sequence

Similarly we find that
n
U |spec = Y _ka™*
k=1
as we wanted. W

From above theorem, we can give the following result.

Corollary 9. If n is odd then g is a square and

" 2
Ao = (Z k:a”_k> :
k=1
If n is even, then Ay and A1 are squares and

2

n=2 2
2 n
Ap = Za”_l_% and M\ = (Z k:a"_k) )
k=0

k=1
Example 1. i) Let n = 5. Then the eigenvalues of (U$)HUS are

Ao = a® +4a” + 10a°% + 20a® + 35a* + 444> + 464> + 40a + 25

5
)\12/\3=(a2+;+1+(“2[)(a4+a3+a2+a+1)a2

5
)\2:)\4:(a2+;+1—a\2[)(a4+a3+a2+a+1)a2.

Here
5 2
Mo = (a* +2a® 4 3a® + 4a + 5)* = <Z k:a5_k>
k=1
is mazimum and so the spectral norm of Ug is
US| spee = VAo = a* + 24> + 3a* + 4a + 5.
ii) Let n = 6. Then the eigenvalues of (U$)HUE are

o = a'® + 2a® + 348 + 24* + 2

A = a'® +4a® + 10a® + 20a” 4 35a° + 56a° + 70a* + 766> + 734 + 60a + 36
A2 =\ = a'® 4+ 3a° + 5a® + 64" + 6a° + 6a° + 5a* + 3a® + a®

A3 =X =a'+a +a®+ 24" +2a5 + 2a° + a* + @ + .
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Here
9 2 6 2
Ao = (Z a52k> and A\ = (Z k:a6k> .
k=0 k=1
Since A1 is maximum, the spectral norm of Ug is

1Ug [|spec = \/)‘71: a® + 2a* + 3a® + 4a® + 5a + 6.
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