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1. INTRODUCTION

Let A be the unit disk
{zeC:|z] <1},

and let A be the class of functions analytic in A, satisfying the normalization con-
dition f(0) = f’(0) — 1 = 0. Then each f € A has the Taylor expansion

f(2) :z+2akzk. (1)
n=2

As usual, by S we represent the class of all functions in A which are univalent in A.
A function f € A is said to be starlike of order p if it satisfies

2f'(2)
3‘%{ f(z)}>u 0<pu<l1, zeA),

is said to be convex of order u if it satisfies

%{1+Z£/;iz))}>u 0<u<l1, z€eA).
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These classes represented by S*(u) and K (p), respectively, were first introduced by
Robertson [6]. We note that

K(p) C 5%(p) C A

Let T indicate the subclass of S consisting of functions whose coefficients, from
the second on, are non zero given by (see [7])

f(z) =2— Z arz®  (ap >0). (2)
n=2

We indicate by T*(u) and C(u), respectively, the classes obtained by taking the
intersections of S*(u) and K(u) (0 < p < 1) with T

T*(n) = §*(u) N T (3)

Definition 1. (See [3]) A function f € T is said to be in the class U (A, o, ), if it

satisfies the inequality:
20 (2)
() > @

0<a<A<1,0<u<l, z€A),
where
U(z) = a2 f"(2) + A= a)zf' (2) + (1 = A+ ) f(2).

The function class U (A, «, ) is of notable interest and it comprises many com-
mon classes of univalent functions (see [8]). Further we get [cf. equation (3)]

U(0,0,1) =T"(p), U (1,0, p) = C ().

By choosing p = 0, we assert the results established by [1], [7].

2. PRELIMINARY RESULTS

We employ the tecnique adopted by Porwal [5] to get the Poisson distribution series
for univalent functions.
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Just recently, in [5], Porwal establish a power series by making use of the Poisson
distribution

In [5], Porwal also define the series

e €_£§k_1 X
Q(g’Z)ZQz_(‘O(g’Z):Z_Z(k_l)!z (ZEA)

n=2

To demonstrate our first theorem, we express the following Lemma.

Lemma 1. (See [3]) A function f € T given by (2) is in the class U (A, a, ) if and
only if
S k—wk-1)(kda+A—a)+1]a <1 - p.

n=2

Making use of the techniques and methodology used by Porwal [5] (see also [1],
[2], [4]), in this present paper, we supply necessary and sufficient conditions for the
Poisson distribution series functions belonging to the class U (A, a, ). In addition,
we establish an integral operator for the series.

3. NECESSARY AND SUFFICIENT CONDITIONS

Our main characterization theorem for the class U (A, a, i) is stated as Theorem 2
below.

Theorem 2. If £ > 0, then Q(&, 2) is in U (A, o, ) , if and only if

A3 + (B + X — o — pAa)€2 + (4ha + 2) — 2a — 2puda — pX + pa + 1)€
()
+(u—1)e ¢ <0.

Proof. By using the fact that

i~ e—fgk—l .

Q(g,z):z—zmz (6)
n=2
and applying Lemma 1, it is adequate to show that
0 efﬁgkfl
D (k=) (k= 1)(kAa+ A — o) +1] T <1-p. (7)
n=2 :
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It follows from (7) that

S0 ok — i) [k = (kA + X — ) + 1] 557

=Y {3 a+ B2\ — o — A — pa) + k(pra — ph 4+ pa— A+ a + 1)

(A — o — 1)}
By writing
k= (k—1)(k—2)(k—3)+6(k—1)(k—2)+7(k—1)+1,
B =k-1)k—-2)+30k-1)+1
and
k=(k—1)+1,

we obtain

S0 ok — ) [k = (kA + X — a) + 1] 550

=X >0, [k — 1)(k = 2)(k = 3) + 6(k — 1)(k — 2) + 7(k — 1) + 1] S5

+A—a—da—pra) Y 0, [(k—l)(k—2)+3(k_1)+1]%

. e—Egk—1
H(pAa = pA + po = A+ a+1) 300, [(k = 1) + 1] i

T
+uh—a = 1) 300, o
=e ¢ {[e5¢3 +6e5€2 + TetE + ef — 1] Ao+ [e5€2 +3ef¢ + €5 — 1] (A —a — Aa — pa)
+ et +et —1] (prha—pr+pa—A+a+1)+ (¢ —Hu(A—a—-1)}

=[E@+62+T+1—e | ha+ [2+3+1—c ¢ (A —a—Aa—pa)

+[§+1-e¢] (pAe — pA +pa — A+ a+1) + (1 — e Hu(A—a —1).

But, this last expression is less than or equal to 1 — p if and only if (5) is satisfied.
Hence the proof is completed.
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By taking A = o = 0 in Theorem 2, we state the following Corollary.
Corollary 3. If £ > 0, then Q(&, z) is in T*(u), if and only if
§—(1—pet <.
By taking A =1 and « = 0 in Theorem 2, we state the following Corollary.

Corollary 4. If £ > 0, then Q(&, z) is in C(u), if and only if

E+B-wE—(1—-pet<o.

4. INCLUSION PROPERTIES
We next explore a particular integral operator A(&, z) as follows:

z

A 2) = / UED gy (8)

t
0

Theorem 5. If £ > 0, then A(&, z) defined by (8) is in U (N, a, ), if and only if

M2 4+ (2xa+ XA —a— pra)é +[1 — p(A — )] (1 —e7%)

(9)

_'_%(1 — efg — 5675) S 1— .

Proof. From (8), we find
> e—{gk—l X
A(§,2) =2 — Zg T
By using Lemma 1, it is adequate to show that
o e—ggk—l
Z(kz—u)[(k—l)(k)\a+)\—a)+1]TSl—u. (10)
n=2 ’
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By virtue of the equation (10), we establish

S o (k — ) [(k — D)(kAa+ A — o) + 1] <5

9] e §gk—1
= Zn:2 [(k = 1) (kAa+ A —a) +1] (kfl)!

e{ékl

—H Y (k= D(kAa+ A —a) +1]

] e—§gh—1 oo efgh-l
=2 n—a(kAa+ A — a)ﬁ + 22 ﬁ

o0 e—Sgk—1 e—Egk—1
(k= 1) (kAa+ A — ) S 300, e

e—Egh—1 e—Egk—1

o0 oo e 8¢kl
=X}ty [(k—2)+ 2] g + (A - )anzﬁ+2nzzﬁ

—E¢ek—1 g k—1 —Eek—1
—pAQY T, % —pA =) 30, e(k e+ HA — @) 3oy k' — s If!

€ gck gck —egh
= Mg T, SH + 20a€ ok, S + (A — )8 Tty S + T, i

—E&¢k —Eck A— —€&ck —&¢k
—pAag Y07, © k!5 — A=) 30, k!é + 4 3 @) Donea k!5 - %2212 : k!é :
Hence

= ¢t [)\a§2e§ + (X + X — o — pra)éed + [1 — p(A —a)] (e — 1)

_|_M()\_§a_1)(€§ — 1= §)

= X2+ 2 a+ A —a—pra)é+[1—pA—a)] (1 —e )

pA—a+1)
T

But, this last expression is not greater than 1 — p if and only if (9) is satisfied.

(1—e*—¢e®).

By taking A = @ = 0 in Theorem 5, we state the following Corollary.
Corollary 6. If £ > 0, then A(E, z) is in T*(u), if and only if

1—675—§(1—e*£—§e*£)§1—u
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By taking A =1 and « = 0 in Theorem 5, we state the following Corollary.
Corollary 7. If £ > 0, then A(, z) is in C(u), if and only if

§—(1—pet <.
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