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ON A GENERALIZED SOFT METRIC SPACE

N. Tas aND N. Y. Ozcir

ABSTRACT. In this paper our aim is to obtain new generalized fixed-point results.
To do this, we introduce a new generalized soft metric space called as a soft S-metric
space. We investigate some basic facts, relations and topological properties of this
space. Also we define a soft S-contraction condition and study some fixed-point
theorems on a complete soft S-metric space with necessary examples.
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1. INTRODUCTION AND BACKGROUND

Metric spaces and fixed-point theory have very important role in mathematics and
lead to some applications. Some mathematicians have studied new generalizations
of metric spaces using various ways. Recently, it has been introduced the notion
of an S-metric space as a generalization of a metric space [14]. Then some basic
fixed-point theorems and their generalizations were obtained in some studies (for
more details see [9], [10], [11], [14], [15] and [16]). These fixed-point theorems were
used in other mathematical areas such as complex valued metric spaces, differential
equations etc. (see [12] and [13]).

There are some uncertain concepts in the areas of medical science, engineering,
economics etc. Hence some set theories such as fuzzy set theory, rough set theory,
intuitionistic fuzzy set theory etc. can be dealt with uncertainties. Unfortunately,
they are not sufficient to cope with encountered problems. Therefore, Molodtsov
introduced the soft set theory as a general mathematical tool for dealing with some
complicated problems [8]. Maji et al. made a theoretical study of the soft set theory
[7]. Shabir and Naz studied some soft topological concepts and investigated their
basic properties [17].

Das and Samanta defined the notion of a soft real number and studied their
properties [4]. Therefore they introduced the concept of a soft metric space and
gave some fundamental properties of this space [5]. Then some fixed-point results
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were obtained using various approaches on a soft metric space (see [1], [2] and [3]
for more details). Giiler et al. defined the notion of a soft G-metric and proved a
fixed-point theorem in soft G-metric spaces [6].

Motivated by the above studies, in this paper we introduce the concept of a soft
S-metric space as a generalization of a soft metric space. We expect that our study
will help to generate some new researches and applications. For example, various
generalized soft contractive conditions can be given as generalizations of our results.

In Section 2, we define the notion of a soft S-metric according to a soft point and
determine the relationships between the other soft metrics. In Section 3, we describe
basic topological concepts. In Section 4, we present the notion of a soft fixed point
on a soft S-metric space and prove a fixed point-theorem of Banach contraction
principle type. Also we generalize this theorem with a counter example.

On the other hand, Abbas et al. showed that a soft metric induces a compatible
metric on the collection of all soft points of the absolute soft set when the set of
parameters is a finite set [3]. Therefore a cardinality of a parameter set is to be
significant. The results obtained in Section 4 can be also proved using this approach
on a soft S-metric space.

Before stating our main results, we recall some definitions, a proposition and an
example.

Definition 1. [8] Let U be an initial universe set and E be a set of parameters. A
pair (F, E) is called a soft set over U if and only if F' is a mapping from E into the
set of all subsets of the universe set U. That is, F : E — P(U), where P(U) is the
set of all subsets of the set U.

Definition 2. [7] Let (F, E) be a soft set over a universe set U.

1. (F, E) is said to be a null soft set denoted by 0 it F(e)=0forallee E.

2. (F,E) is said to be an absolute soft set denoted by U if F(e) = U for all e € E.

Definition 3. [}/ Let R be the set of real numbers, B(R) be the collection of all
nonempty bounded subsets of R and E be a set of parameters. Then a mapping
F : E — B(R) is called a soft real set. It is denoted by (F, E). If specifically (F, E)
is a singleton soft set then identifying (F, E) with the corresponding soft element, it
will be called a soft real number and denoted by T, 3, t etc.

0, 1 are the soft real numbers where 0(e) = 0, 1(e) = 1 for all e € E, respectively.

Definition 4. [4] Let (F, E) and (G, E) be two soft real numbers.

1. (F,E)=(G,E) if F(e) = G(e) for each e € E.
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F

_l’_

G)le)={z+y:x € F(e),y € G(e)} for each e € E.
F-G)e)={x—y:x € F(e),y € G(e)} for each e € E.

2. (
3. (
4. (F.G)(e) ={zy:x € F(e),y € G(e)} for each e € E.
5. (

F/G)(e) ={z/y:xz € F(e),y € G(e) —{0}} for each e € E.
Definition 5. [/] For two soft real numbers

1. 7 <5 ifF(e) < 3(e) for alle € E,

3.7 <5ifr(e) <3(e) foralle € E,

)
> 5(e) foralle € E,
)
4.7 >5ifr(e) >3s(e) foralle € E.

Definition 6. [5] A soft set (P, E) over U is said to be a soft point if there is exactly
one e € E such that P(e) = {z} for some x € U and P(e') = for all ¢’ € E — {e}.
It unll be denoted by PZ.

Definition 7. [5] A soft point P¥ is said to be belongs to a soft set (F,E) ife € E

and P(e) = {z} C F(e). It is written by P* € (F, E).
Definition 8. [5] Two soft points P¥, PY are said to be equal if e = €' and P(e) =
P(¢), that is, x = y. Thus,

P+ Pl <=uaz#yore#c.

Proposition 1. [5]/ The union of any collection of soft points can be considered as
a soft set and every soft set can be expressed as union of all soft points belonging to
it, that is,

(FE)= |J P

PzE(F,E)

Let SP(U) be the collection of all soft points of U and R(E)* be the set of all
nonnegative soft real numbers.

Definition 9. [5] A mapping d : SP(U) x SP(U) — R(E)* is said to be a soft
metric on the soft set U if d salisfies the following conditions:

(dl) d( PZ, PY) >0 for all el,Pé”Q e SPU).
(d2) d( PZ, P4,) =0 if and only if P% = P§,.
(d3) d(Pgl,Péé) = d(PY,, P e ) for all P, P € SP(U).
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(d4) d(PZ, PZ) < d(PF,

ey’

PY) +d(PY, PZ) for all P, P, PZ € SP(U).
The soft set U with a soft metric d on U is called a soft metric space and denoted
by (U,d, E)

Example 1. [5]~Let U C R be a nonempty set and E C R be the nonempty set of
parameters. Let U be the absolute soft set and T denotes the soft real number such
that

617

Z(e) = x,

for all e € E. Then the function d : SP(U) x SP(U) — R(E)* defined by

APz, PY) =7~ + e @l

er?

for all

soft metric on U.

P? Pf, € SP(U), where “.|”denotes the modulus of soft real numbers, is a

Definition 10. /5] Let {Pe‘”n}n be a sequence of soft points in a soft metric space
(ﬁ,cZE) The sequence {ngn}n is said to be convergent in (ﬁ,&:E) if there is a
soft point PY € SP(U) such that

d(P?

e,n’

P5) =0 asn — oo.

That is, for every >0, chosen arbitrarily, there exists a natural number N = N (€)
such that 0 < d(P* PB) < g, whenever n > N.

e,n?

Definition 11. /5] A sequence { cf”n} of soft points in (ﬁ d, E) is called a Cauchy

sequence if corresponding to every € > 0, there exists m € N such that d( e Pg )

< € for every i,j > m, that is, d( Pg)—>0asz,j—>oo.

67,7

Definition 12. [5] A soft metric space ((7, CT, E) is called complete if every Cauchy

sequence in U converges to some point of U.

Definition 13. [6/ Let U be a nonempty set and E be the nonempty set of parame-
ters. A mapping G : SP(U) x SP(U)x SP(U) — R(E)* is said to be a soft G-metric
on the soft set U if G satisfies the following conditions:

(Gl) G( BI,PE%,PZ) =0 if PL = PY, = PZ.
(G2) 0< G(P,PE,PY) for all P2, PY € SP(U) with P: # PY,.
, (G3) G (P:,P:,PY) < G (P2, PY,P2) for all P, ng, Pz € SP(U) with
Pe, # P,
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(G4) G( P, P4, P;) = G (P, P, Ph) = G (P4, P, PL) = -+ for all possi-
ble triples PY., Pg,, P2, € SP(U)

(G5) G ( el,ng,PZ) < G (P, P, PY) +G (P2, PY, P%) for all P2, PY,, PZ,
P*e SP(U).

The triplet (ﬁ, CNJ, E) is said to be a soft G-metric space.

2. SOFT S-METRIC SPACES

In this section we define the notion of a soft S-metric space and determine its basic
properties. Also we investigate some relationships between a soft metric and a soft
S-metric (resp. a soft G-metric and a soft S-metric).

Let U be an initial universe set and E be the nonempty set of parameters. Let
SP(U) be a collection of all soft points of U and R(E)* be the set of all nonnegative
soft real numbers.

Definition 14. A mapping § SP(ﬁ) x SP(U) x SP(U) — R(E)* is said to be a
soft S-metric on the soft set U if S satisfies the following conditions for each P
Py, P?, Pse SP(U)

637

617

(S1) S (P%, P4, PZ) > 0.
(52) S( P2, P4, PZ) =0 if and only if PX = PY, = PZ,.
(33) S( el,Pég, ) < S(Peml,Pexl,Pa) —|—S(P32,Pey2,Pa)+S( s eS,P“)

The soft set U with a soft S-metric S on U is called a soft S-metric space and
denoted by (ﬁ, §, E)

Now we give the following examples for a soft S-metric.

Example 2. Let U C R be a nonempty set and E C R be the nonempty set of
parameters. Let U be the absolute soft set, that is, F(e) = U for all e € E, where
(F,E) =U. Let T denote a soft real number such that T(e) = x for all e € E. We
define S : SP(U) x SP(U) x SP(U) — R(E)* by

S(P;”I,Pg/Q,Pz) =|y+7z—27| + [y — 2| + |ex + €3 — 2€1| + |e2 — €3],

for all PX, PY,, P € SP(U), where “.|”denotes the modulus of soft real numbers.
Then S is a soft S-metric on U.

Example 3. Let U be a nonempty set, E be the nonempty set of parameters and d
be a soft metric on U. Then the function S : SP(U) x SP(U) x SP(U) — R(E)*
defined as

S(P2,PY,P) =d(P%,PY) +d(PY, P) +d(P%, P%),

e1r T ey ey’ €2’ e’
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for all P%, Pg,, PZ € SP([?), is a soft S-metric on U.

617

Example 4. Let U be a nonempty set and E be the nonempty set of parameters.
Let us define the function S : SP(U) x SP(U) x SP(U) — R(E)* as follows:

S (P2, PY PZ)—{O it PL=Ph =T

€= e 1 if otherwise

for all PZ., P4, PZ € SP(U). Then the function S is a soft S-metric. We call this

soft S-metric is the soft discrete S-metric on U. The triplet (ﬁ, 5, E) is called soft
discrete S-metric space.

Lemma 1. Let ((7, g, E) be a soft S-metric space. Then we have

S(P,P% PY) =S (PY,PY,P").

er’ er’ €g? €g?

Proof. By the condition (53) we obtain

S(Pgl,Pgl,ng) <25(P§1,P§1,Px) S(ng,ng,Px) 1)
—S(ng,ng,Pz)
and -
S (P4, P4, PL) < 28 (P4, P4, PL) + 8 (PL, P4, PY) -
—S(ngl,Pgl,Py) '

Using the inequalities (1) and (2) we get

S(P:, P2, PY) =5 (P, P’ P).

ey ep? €277 eg?

Proposition 2. Let U be a nonempty set, E' be a nonempty set of the parameters
and d be a soft metric on U. Then

Sa(PZ,PY,P2) = d(P%,P2) +d(PY, P2,

e €7 e €’

for all P, PY,, PZ € SP(U), is a soft S-metric on U.

617

Proof. 1t is obvious from Definitions 9 and 14.

We call the soft metric §d as the soft S-metric generated by d.
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Example 5. Let U and E be nonempty subsets of R. Let us define S SP((j') X
SP(U) x SP(U) = R(E)* as
S(PZ,PY,P:) =T —%|+|7—2 +|e1 —es| +[e2 — ),

el e’

for all P, P4, PZ € SP(ﬁ), where “|.|”denotes the modulus of soft real numbers
and T, €1 are constant real numbers defined by

Z(e) = x and €1(e) = eq,

for all e € E, respectively. Then Sisa soft S-metric on U and the triplet (17, §, E)

is a soft S-metric space. This soft S-metric is generated by soft metric d defined in
Ezample 1.

In the following example, we see that there exists a soft S-metric which is not
generated by any soft metric.

Example 6. Let U C R be a nonempty set and

E={e:1<i<n}CR,
be the nonempty set of parameters. Let us define a function S SP(ﬁ) X SP(ﬁ) X
SP(U) — R(E)*

S(Pfﬂ PY P.)=|T—z|+|x+%—2y| +|e1 —es| + [e1 + €3 — €3],

€1 " ey
for all P, PZ,, P € SP([}). Then S is a soft S-metric on U and the triplet
(U, S, E) is a soft S-metric space.

Now we show that there does not exist any soft metric d such that S = gd.
Conversely, assume that there exists a soft metric d such that

S(Pgl,Pé/Q,PZ ) = d(Pexl,Pz ) —i—d(PeyZ,Pz)
for all P, P§,, PZ € SP(U). Therefore we find
S(Pfl,Pfl,Pz )= 2d(Pe“’1,Pz) =2(]z —z| + |e1 —e3])
and
S(PY,, Py, PZ,) = 2d(P, PZ,) = 2(|y — 2| + [ — &)) .

Hence we obtain

d(P* P) =7 —Zz|+[e1 —es| and d(

[

PY,P;) =y —Z| + e —e3].
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Therefore we have a contradiction since
|T — Z|+|T + Z — 2y|+|e1 — es|+|e1 + ez — 2e2| = [T — Z|+[er — e3|+|y — Z|+|e2 — &3] .
Consequently we get S #* Sq.

Notice that the class of all soft G-metrics and the class of all soft S-metrics are
distinct as seen in the following examples.

Example 7. Let <(7, §, E) be the soft S-metric space defined in Example 5. For

e=0,x=2,y=1, 2= 3, we obtain
S(P3,PLP)(e)=12—-3|+]1-3=1+2=3
and B
S(P}, P, PE(e)=[1—2|+|3-2/=1+1=2.
Then we get §(P02,P01,Pg) # §(P01,P§,P02). Consequently, the condition (GA4) is
not satisfied and S is not a soft G-metric.

Example 8. Let U = {z,y}, E = {0} and the function G : SP(U) x SP(U) x

SP(U) — R(E)* be defined by

G(Pervpew’Pem):G(Peyapey’Pey):67

G(PE P PY) =G(P! PY PY) =GP, PLPY) =2

and

G(Pew’Pevaey):G(Peyapezvpey):G(PE’PE7P§):§’
for all P*, PY € SP(U). Then G is a soft G-metric on U and the triplet ((7, G, E)

is_a soft G-metric space. But it is not soft S-metric space. Indeed, the condition
(S3) is not satisfied since

S(P2PLPY) = 3(e) =3 < [S(P2, P2, PY)+ S(P. P2 P2) + S(PL, P2 P (€)
= 2(e)+0(e) +0(e) =2+04+0=2.

3. SOME TOPOLOGICAL PROPERTIES OF SOFT S-METRIC SPACES

In this section we define some topological concepts on soft S-metric spaces and
investigate some properties related to these notions.
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Definition 15. Let (ﬁ, S, E) be a soft S-metric space and (F, E) be a non-null soft
subset of U. Then the diameter of (F,E) is denoted by §(F, E) and

5(F, E)(a) = sup{S(P%, P, PY)(a) : P, PYE(F, E)},

ey ey ey’

foralla € E.

Definition 16. Let ((7, g, E) be a soft S-metric space, PZ be a fized soft point of

U and (F,E) be a non-null soft subset of U. Then the distance of the soft point P,
from the soft set (F, E) is denoted by 6(PZ | (F,E)) and

€1

(P, (F,E))(a) = inf{S(P*, P" PY)(a): PLE(F,E)},

e e1?

foralla € E.

Definition 17. Let (ﬁ,g, E) be a soft S-metric space and (F,E), (G, E) be two

non-null soft subsets of U. The distance between the soft sets (F,E), (G,E) is
denoted by 6((F, E), (G, E)) and

§((F,E),(G,E))(a) = inf{S(P*, P* PY)(a): PLE(F,E),PYe(G,E)},

ep) ey

foralla € E.

Definition 18. Let ([7, §, E) be a soft S-metric space. If there exists a positive

soft real number k such that

S(Pz, P2, PY) <k,

ey) - ey

for all P* , P4, EU then (U S E) 1s called a bounded soft S-metric space. Otherwise
it 15 called unbounded.

617

In the following definition we define the notion of soft open S-ball and soft closed
S-ball, respectively.

Definition 19. Let (ﬁ, §, E) be a soft S-metric space and 7 be a nonnegative soft
real number.

1. The soft open S-ball is defined by

Bs(P* 7

L T) = {PééU:S(Pm PZ,PY) < T},

e’ e’

with center Pea”1 and radius 7.
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2. The soft closed S-ball is defined by
Bg[P: 7] = {PYLEU : S(P%,P%,PY) < 7},

with center PY and radius T.

Proposition 3. Let (ﬁ, S, E) be a soft S-metric space, P¥ € SP(U) and 7>0. If
PY € Bg(P*,7) then there exists a p>0 such that

BS(PeyﬂN) QBS(P;C’?)'

Proof. Let PY € Bs(P*,7). Then we get

S(PY, PY, P*)<T.

We show that
Bs(PY,5) C Bs(PZ,7).

Let us choose

_ F—S8(P*, P, PY)
p= 5 :

If P? € Bg(P?,p), then we have
S(P?,P?, PY)<p.
Using the condition (S3) we find
S(P?, P?, P*)<28(P?, P? PY) + S(P®, P* PY)<2j + S(P*, P*, PY) = F

and so
Bs(PY,p) € Bs(Py, 7).

Definition 20. Let ([7, g, E) be a soft S-metric space having at least two soft

points. Then ((7, g, E) is said to poses soft S-Hausdorff property if for any two

soft elements PZ, P, such that g(Pexl,Pexl,P.%) > 0, there are two soft open S-balls

Bs(PZ,7) and Bg(PY,,7) with radius 7 and centers PZ, PY,, respectively, such that
Bs(PZ,#) N Bs(P,,7) = 0.

Theorem 2. FEvery soft S-metric space is Hausdorff.
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Proof. Let (ﬁ g E) be a soft S-metric space having at least two soft elements. Let

PZ . PY be two soft elements in U such that S (PF PY) > 0. Let us consider

e’ ey’ 61?
any nonnegative soft real number 7 such that
n - ~ 1z X X Yy
0<r7r gS(PepPel?P ),

and the soft open S-balls Bg(PZ,7
PY,, respectively. B
Assume that there exists P;, € SP(U) such that

Pezg EBS( 617N)mBS( 627~)

7) and Bg(PZ,,7) with radius 7 and centers PZ,

Then we get

P, € Bg( BI,U:S(P;,PQ,PZ)E? (3)
and

P§3€Bs( ez,”):>S(Pey2,P§’2,Pz) T, (4)

Using the conditions (53), (3) and (4) we have

S(P,P%,PY) < 28(P%, P%, P2) + S(PY, PY, P%) = 37,

er? er’ e’ el €9’ e’

which is a contradiction since 0 < 7 < %S (PZ,PZ,Pg,). Hence it should be

( elvN)mBS( 627~) _(Z)

Consequently, soft S-metric spaces satisfy the soft S-Hausdorff property.

Definition 21. Let (ﬁ, S, E) be a soft S-metric space and PY € SP(ﬁ). A collec-
tion Ng(P) of soft points containing the soft point P® is called soft S-neighbourhood

of the soft point PY if there exists a positive soft real number 7 such that

Pex € BS(PEI,?A“) C NS(P:).

Theorem 3. Fvery soft open S-ball is a soft S-neighbourhood of each of its soft
points.

Proof. Let (ﬁ S, E) be a soft S-metric space and Bs(F;,,7) be a soft open S-ball
with center P and radius 7. By Definition 21, Bg(P?,7) is a soft S-neighbourhood

of the soft point P in (U, S, E)

e
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Let us consider any soft point PY, € Bg(PZ,7) such that P? # Pg,. Then we
have N
0+#S(PY,PY,PE) < T.

€277 ey

If we choose p such that
(j ;E Z; 25 r— é;(}2§%£ ljég, 1321),

then p is a positive soft real number. For PZ, € Bg(P§,,p), we have

S(Pz,PZ, PY) < p.

€377 €377 ez

Using the condition (S3) and Lemma 1, we get

S(PZ, P, P%) < 2S(P2, P2, PY) + S(PE, PE,PY) X 7,
that is
fii S lgg(fﬁé,Zﬂ C:lgs(})x ?ﬁ.

[

Consequently, Bs(P,,7) is a soft S-neighbourhood of its soft points.

Definition 22. Let (ﬁ,g, E) be a soft S-metric space and {ngn}n be a sequence

of soft points in U. The sequence {ngn}n is called soft S-convergent in U if there
is a soft point PY € SP(U) such that

S(P%,, P, P%) =0,

e,n’ " emns

as n — oo. That is, for every & > 0, there exists a natural number N = N(€) such
that N
0< 8P, P, Pl <E,

whenever n > N. Then we get
l%§71 € 13:§(fz§a g)'

We denote this by
lim P?, = P}

n—o0 o
or
fc 8
P, — Py asn — oo.

Lemma 4. Let ((7, §, E) be a soft S-metric space. If the sequence {ngn}n con-

verges to Pg then Pg 1S UNIQUE.
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Proof. Let {Pe’”n}n converges to P? and P/;\. There exist two natural numbers ny,
ng for every € > 0 such that

S(P* P PP Z

emnt+emn

W~ o

and

S(PEn, P2ny P < 5,

bl )

where n > ni, na. If we choose ny = max{ni,ns}, then for each n > ng, using the
condition (S3) and Lemma 1, we obtain

S(PS,PY Py <28(PF P2 PE,) + S(Py, P PE,) < E

Therefore we get
S(P, PSP =0
and using the condition (52),
P} =p).
Consequently, the limit of {ngn}n is unique.

Lemma 5. Let ((7, §, E) be a soft S-metric space. If there exist sequences {Pgn}n

and {PY,}, such that
lim PY, = P?

n—oo
and
- _ pA
i Fen = P
then we get B _
lim S(PZ,, PY,,PY,) = S(P?. PP, P,j).

n—oo

Proof. Using the hypothesis, for each & > 0, there exist two natural numbers ny, no
such that

S(P®, P®, PP <

e,n’+ emn

=~ o

and

S(PY,,PY,.Py) <

enrtens )

FNUROY

where n > ni, ng. If we choose ng = max{ni,nz2}, then for each n > ng, using the
condition (S3) we have

g(ngv,n>Pex,n?P€y,n) g 2§(fex,napex,napg)+§(fgnapey7n7pg)
< 28(PE,, P2y, PY) + 28(PY, Pln, PY) + S(PY, Py, P))

e,n’ " emn’

< E+5+5(RLPEPY).
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Therefore we get

S(pz,, Pt PY,) — S(P PSP < E (5)

e,ns " emns

On the other hand, using the condition ($3) and Lemma 1, we find

S(PY, P, PY) < 28(PY, PY PE,) + S(PY, P, PE,)

< 28(PS, PY, P2,) +25(P), P), PLy) + S(P2,. PZ,. Ply)
< 5+5+S8(P,, PE, PY).
Hence we obtain N B
S(P}, P}, PY) — S(PL,, P, PY,) <E. (6)

Using the inequalities (5) and (6) we have

S(Pr,,PL,, PY,)—S(PY. P PY)| <&

e,ns+ emn

and so » ~
lim S(P?,, P%,, PY,) = S(PS, P2, P)).

en’*t en
n—o00 ’ ’

Definition 23. Let (ﬁ,g, E) be a soft S-metric space and {Pgn}n be a sequence
of soft points in U. The sequence {ngn}n 1s called soft S-bounded if there exists a

positive soft real number R >0 such that

S(P,, Pr, P5) < R,

en’ s ens

for each m,n € N.

Definition 24. Let ((7,5, E) be a soft S-metric space and {Pgn}n be a sequence
of soft points in U. The sequence {ngn}n 18 called soft S-Cauchy sequence in U if

S(PZ,, P, PS,) — 0 asm,n — oo,

e,n’ " emn

that is, for every & > 0, there exists a natural number ng such that

S(PE,, Pr,, PP 2 E,

e,ny+ emn

whenever n, m > ny.

Definition 25. A soft S-metric space ((7, g, E) is called complete if every soft

S-Cauchy sequence in U converges to some soft points of U.
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Lemma 6. Let <ﬁ, §, E) be a soft S-metric space and {ngn}n be a sequence of

soft points in U. If the sequence {ngn}n converges to Po’?, then it is a soft S-Cauchy
sequence.

Proof. Using the hypothesis, for each & > 0, there exist two natural numbers ny, ng
such that

S(P%,, P%, PP <

e,ns+ emn

=~ o

and

Spr P plyZ S

e,m>+ e;m> 9

where n > ny, m > ny. If we choose ng = max{ni,nz2}, then for each n,m > ny,
using the condition (S3) we find

S(P%,, P, Pr ) < 28(P%, PT, P9+ S(PE,,, P, PY) <&
Therefore {Pg‘n}n is a soft S-Cauchy sequence.

Corollary 7. Fvery soft S-Cauchy sequence is soft S-bounded.

Corollary 8. Let (ﬁ, 67, E) be a soft metric space and ((7, /S\l; E) be a soft S-metric
space which is generated by soft metric d. Then we have

1. {Pz,} = P in (ﬁ,éi,E) if and only if {PZ,} — P in ((7,’571, E)

2. {ngn}n is Cauchy in (ﬁ,g,E) if and only if {Pén}n s soft S-Cauchy in
(0.54.E).

3. (ﬁ,d, E) is complete if and only if (ﬁ,:g\;,E) is complete.

4. SOME FI1XED-POINT RESULTS

In this section we study some fixed-point results.

Definition 26. Let (ﬁ, g, E) be a soft S-metric space and T : U—Ubea soft
mapping. If there exists a soft point P SP(CNf) such that

T(P) = Fy,

then Paﬁ 1s called a soft fized point of T.
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Definition 27. Let (ﬁ, g, E) be a soft S-metric space and T : U—Ubea soft
mapping. Then T is called a soft S-contraction if

S(T(P3),T(PL),T(PY)) < hS(P, P, PY),

e1’r-e1’ " e

for all PX PY, € SP(U), where 0 < h < 1 which is called a soft S-contraction
constant.

Theorem 9. Let (ﬁ, 5, E) be a complete soft S-metric space where E is nonempty
finite set and T be a soft S-contraction with soft S-contraction constant h. Then T

has a unique soft fixed point L.

Proof. Let P be a soft point and P, = P. We define the sequence {Pgn}n by
PZ, =T"(P7). Using the soft S-contraction hypothesis, we have

S(Pel:n—&-lv Pex,n-&-lv ch,n) = S(T(Pg,n)7 T(Pgin% T(Pez,n—l))

~ ~ =9~

%BS(‘P@C%R?Pe%nngn—l) < h S(Pez,n—l’P;n—l’Pex,n—2) (7)
< ..
~ —n N

For n > m, using the conditions (53), (7) and Lemma 1, we get

S(Pe:fn? Pér,n? Pér,m) < 2S(Pex737 Pex,n? Pg,n—l) + 2S(Pér,n—17 Pem,n—h Pem,n—2)
_|_..._|_S(Péx7m+1,P$ pz )

. em~+1r+ em
< 2S(Pegfn> Pex,n> Pex,n—l) + Q‘S;(Pex,n—h Pex,n—h Pex,n—Q)
oo+ 28(PE s Py P

+ R R)S(PE, PR PE)

et e

-n—1

2(h
21" o pa x T
25 (pz,, Pry, PE).

e, 1" elr"e

<
<

Now we show that the sequence {ngn}n is a soft S-Cauchy sequence. Let us choose

g 2 0. We can construct the parameter set
E={e:1<i<k},

since E is a nonempty finite set. Therefore for each i € {1,...,k}, there exists a
natural number n; such that

2h"
—S $, ex,Pg e;) < &(e;).
25 P P | (e0) < Ee)
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If we take ng = max{n; : 1 < i < k}, then for any n > m > ng and i € {1,...,k},
we obtain

S(PEas Py Pr)(ei) < |25 S(P2, P2y PE)| (@)
P2, PE)| (@)

e,lr* e

7’71,0 ~
S [2{:7 S(Pex,la

h
< £(e;)

and so

S(Pen, Pemy Pem) < E.
Hence the sequence {ngn}n is a soft S-Cauchy sequence. Using the completeness

hypothesis, there exists a soft point Ples P(ff) such that

S(P%,, P, P2) =0,

ens+ emn

as n — oo.
Suppose that T(Pg ) # Pg . Using the soft S-contraction hypothesis, we have

g(T(Pg)aT<PaIB)7Pex,n+l) % S(Pc??ngPex,n)'
If we take limit for n — oo, we get
S(T(P)). T(PJ), PY) < hS(F], P, FY),

which is a contradiction. So T(P5) = Py
Finally we show that the soft fixed point Pg is unique. Assume that Pﬁ is
another soft fixed point of T'. Using the hypothesis, we have

S(PJ. PJ,PY) = S(T(PY), T(P)). T(Py)) < hS(PY, P, )

and so
pl=r},

since 0 < h < 1. Consequently, Pf is a unique soft fixed point of T.

In the following example, we see that the parameter set E must be finite in
Theorem 9.

Example 9. Let us consider the universe set U and the parameter set E defined as
in [[1],Ezample 4.2.22, page 64]:

U:E:{lzneN}.
n
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Let S be the soft S-metric on U defined as Example 5. Then ((7, §, E) s a complete
soft S-metric space. Let us define a soft mapping T : U—U as

T(P?) =P,
forallz € U, e € E. Now we show that T satisfies the soft S-contraction condition.

If we take x,y € U and e1,eo € E, then for every e € E we get

S(T(PE), T(PE), T(PL)e) = S(PFL PP =25 4

< hS(PE, PE PE)(e) = |z —yl +[er —eaf,

er) - err ez

where h is a soft S-contraction constant with h(e) = % for all e € E. Consequently,
the soft S-contraction condition is satisfied, but T has no soft fized point.

Example 10. Let U = [0,1], E = {0,1} and S be the soft S-metric on U defined
as Example 5. Then (ﬁ,g, E) is a complete soft S-metric space. Let us define a
soft mapping T : U—U as

T(P§)=F; and T(P})=Fy,

for all x € U. Now we show that T satisfies the soft S-contraction condition under
the following four cases:
Case 1: Let x,y € U and e; = e = 0. Then we have

S(T(P2), T(PE), T(FY)) = S(PE Py Pi)=2

RS
|
NN

where h is a soft S-contraction constant with h(0) = h(1) = 1.
Case 2: Let x,y € U and e; = eg = 1. Then we have

S(T(P), T(P)), T(PY)) = S(F., Py, F§) =0 < hS(P{, P{, P{),

where h is a soft S-contraction constant.
Case 3: Let z,y € U and e; =0, e = 1. Then we have

S(T(Pg), T(P), T(PY)) = S(Pi, Py, PY) =2

RS

and

RS(PE, Y, PY) = 2R (j7 — 91 + [0 - T)).
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Fore e E, we get

() =5 <2k (T—7l+[0-1]) () = [z =yl + 1,

where h is a soft S-contraction constant with h(0) = h(1) = 1.
Case 4: Let x,y € U and e; = 1, ea = 0. Then by similar arguments used in
Case 3 we can see that the soft S-contraction condition is satisfied.
Consequently, the soft S-contraction condition is satisfied for h = % in all cases

and P(()) is the unique soft fized point of T'.

Now we give a generalization of Theorem 9.

Theorem 10. Let ((7, g, E) be a complete soft S-metric space where E is nonempty

finite set and T be a soft mapping satisfying the following condition:
There exist soft real numbers @, b satisfying @+ 3b < 1 with @, b > 0 such that

S(T(P;), T(PE), T(PY)) < aS(PE, PL PY) + bmax{S(T(PL), T(PL), PA(8)
S(T(FE), T(FE), PY), S(T(PY), T(PY,), F4,), S(T(PY,), T(P4,), PX)},

el el

for all P* PY, € SP(U). Then T has a unique soft fized point Py

617

Proof. Let P be a soft point and P, = P7. We define the sequence {Pé‘n}n by
P?, = T"(P?). Suppose that { en} #{ en+1} for all n. Using the condition
(8), we have

S(Pexnﬁpexn? eajn—i-l) - S(T(Pexn 1) T( exn—l)vT(Px )) <GS( e,n— 17Pexn 17Pig)
+bmaX{S( en’Pez'm ;n—l) S(PeznaP;naPez,n)’

S<Pen+17 en+17Pm ) S( éanrl? en+17Pen71)}
= CLS( e,n— 17Pe$n 1? )—l—bmax{S( envpemnv eain—l)a
S( en+1» en+17Pm ) S(Pe,n—i-h e,n+17Pe,n—1)}
By the condition (53), we obtain
S( eafn—i—l? cin—i—l? eafn—l) <25( en+17Pen+17 )+S( en—1r exn 1?Px ) (10)
Using the conditions (9) and (10), we get
S(Pgnﬁpexn’ gn—l—l) <aS( e,n—1» ewn lvpx )
+2bS( en+1» en+17 )+b8( en—1» en 17Pw )
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and so s N s
(1 - 2b)S(szn7 ngnv §n+1) < (a+ b)S( g,nflv g:nfl’ Pel:n)v
which implies
~ -~ a+b ~
S(P:I: P:I: g,;n—’—l) S ]-a—i_QBS( T P.I

PZ,). (11)

enrt en en—1>+en—1»

If we take h = f_‘*‘%, then we get h < 1 since @ + 3b < 1. Using the inequality (11),
we have

S(Ply, Pl Plpyr) < R'S(PL PYPL). (12)

en’t ens e
Now we show that the sequence {Pgn}n is a soft S-Cauchy sequence. For n > m,
using the conditions (53) and (12), we obtain

Q( pT T T = 2Em Q( pT T T
S(Pe,n7Pe,n7Pe,m) < ﬁs( e,laPe,l’Pe)'

By the similar arguments used in the proof of Theorem 9, we see that the sequence
{an}n is a soft S-Cauchy sequence. Since (U, S ,E) is complete, there exists a

soft point P2 € SP(U) such that

S(P*  P® PP =0,

enrt ens

as n — oo.
Suppose that T(Pg ) # PS. Using the inequality (8), we get

S(Py, Pl T(PY)) = S(T(PL,_1), T(PL, 1), T(FY)) < aS(F; Fn1, PA)

e,n? en—1 en—1 en—1>+en—1»

+bmax{S(P%, P,  P?

en'tenten—1

S(T(PY), T(PY), PL), S(T(F]), T(PL), P 1)}

s ten—1

), S(PL, PLyy PY),

If we take limit for n — oo, then using Lemma 1, we have
S(PJ, P, T(PY)) < bS(T(PY),T(P), PY),

which is a contradiction. So T(P5) = Py

Finally we show that the soft fixed point Pg is unique. Assume that Pﬁ is
another soft fixed point of T. Using the inequality (8), we obtain

S(PS, PSPy = S(T(PY),T(PP),T(P})) <aS(P;, P} Py
+bmax{S(P?, P}, PP),S(PS, PE. PY),
S/ PA PA PN O/ pr pA pB
S(Py, Py, PY),S(Py, P, PI)Y,

and so Pg = Pﬁ‘ since @ + b < 1. Consequently, Pg is a unique soft fixed point of
T.
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Notice that Theorem 10 is a generalization of Theorem 9 on a complete soft
S-metric space. Indeed, if we choose 0 < @ =h < 1 and b = 0 in Theorem 10, then
we obtain Theorem 9.

Example 11. Let U =R, E = {0,1} and S be the soft S-metric on U defined as
Ezxample 5. Then ((:7, §, E) is a complete soft S-metric space. Let us define a soft

mapping T : U—U as
T(Py) = Pyt if x € {0,2},
T(PY) = PP if v € R —{0,2}

and
T(Py) = Py®,

(Sl

for all z € R. Then T satisfies the condition (8) for @ =0 and b = +. Therefore
P615 is the unique soft fixed point of T'. But the soft S-contraction condition is not
satisfied by T. Indeed, forx =1, y =0, e = eo =0, we find

—_

S(T(P}), T(Py), T(P)))(e) = S(P® Py, P5)(e) =10
< hS(P}, Py, P)(e) = 2h,

for all e € E and h with h(e) = h, which is a contradiction since 0 <h<T.
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