No. 56/2018 pp. 101-110

doi: 10.17114/j.aua.2018.56.09

NEW CLASSES OF HARMONIC UNIVALENT FUNCTIONS

G.S. Sălăgean, L.-I. Cotîrlă

ABSTRACT. We define and investigate new classes of harmonic univalent functions defined by Sălăgean integral operator, denoted by $H(m, n, \alpha, \beta)$ and $H^-(m, n, \alpha, \beta)$. We obtain coefficient inequalities and distortion bounds for the functions in the class $H(m, n, \alpha, \beta)$. We determine the extreme points of closed convex hulls of $H^-(m, n, \alpha, \beta)$, denoted by $\operatorname{clco} H^-(m, n, \alpha, \beta)$. We show that $H^-(m, n, \alpha, \beta)$ is closed under convex combination of its members.

2010 Mathematics Subject Classification: 30C45.

Keywords: Integral operator, harmonic univalent functions, distortion inequalities.

1. Introduction

A continuous complex valued function f = u + iv defined in a complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply connected domain we can write $f = h + \overline{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $|h'(z)| > |g'(z)|, z \in D$. (See Clunie and Sheil-Small[2]).

Denote by \mathcal{H} the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense preserving in the unit disc $U = \{z : |z| < 1\}$ so that $f = h + \overline{g}$ is normalized by $f(0) = h(0) = f'_z(0) - 1 = 0$.

Let $\mathcal{H}(U)$ be the space of holomorphic functions in U. We let:

$$A_n = \{ f \in \mathcal{H}(U), f(z) = z + a_{n+1}z^{n+1} + ..., z \in U \}, with A_1 = A.$$

We let $\mathcal{H}[a,n]$ denote the class of analytic functions in U of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + ..., z \in U.$$

The integral operator I^n is defined in [4] by:

$$(i)I^0f(z) = f(z);$$

$$(ii)I^{1}f(z) = If(z) = \int_{0}^{z} f(t)t^{-1}dt;$$
$$(iii)I^{n}f(z) = I(I^{n-1}f(z)), n \in \mathbb{N} - \{0\}, f \in A.$$

Ahuja and Jahangiri [1] defined the class $H(n), n \in \mathbb{N}$, consisting of all univalent harmonic functions $f = h + \overline{g}$ that are sense preserving in U and h and g are of the form:

$$h(z) = z + \left[\int \sum_{k=2}^{\infty} a_k z^k, g(z) \right] = \left[\int \sum_{k=1}^{\infty} b_k z^k, |b_1| < 1.$$
 (1)

For $f = h + \overline{g}$ given by (1) the integral operator I^n is defined as:

$$I^{n}f(z) = I^{n}h(z) + (-1)^{n}\overline{I^{n}g(z)}, z \in U,$$
 (2)

where

$$I^{n}h(z) = z + \left\lceil \int \sum_{k=2}^{\infty} k^{-n} a_{k} z^{k} \right\rceil$$

and

$$I^n g(z) = \prod_{k=1}^{\infty} k^{-n} b_k z^k.$$

For fixed positive integers n and for $0 \le \alpha < 1, \beta \ge 0, m \in \mathbb{N}, m \ge 1$, we let $H(m, n, \alpha, \beta)$ denote the class of univalent harmonic functions of the form (1) that satisfy the condition:

$$Re\left\{\frac{I^n f(z)}{I^{n+m} f(z)}\right\} > \beta \left|\frac{I^n f(z)}{I^{n+m} f(z)} - 1\right| + \alpha. \tag{3}$$

The subclass $H^-(m, n, \alpha, \beta)$ consists of functions $f_n = h + \overline{g_n}$ in $H(m, n, \alpha, \beta)$ so that h and g_n are of the form

$$h(z) = z - \left[\int \sum_{k=2}^{\infty} a_k z^k, g_n(z) = (-1)^{n-1} \left[\int \sum_{k=1}^{\infty} b_k z^k, |b_1| < 1. \right] \right]$$
 (4)

2. The main results

In the first theorem, we introduce a sufficient coefficient bound for harmonic functions in $H(m, n, \alpha, \beta)$.

Theorem 1. Let $f = h + \overline{g}$ be given by (1). If

$$\lceil \int \sum_{k=1}^{\infty} \{ \psi(m, n, \alpha, \beta) |a_k| + \theta(m, n, \alpha, \beta) |b_k| \} \le 2, \tag{5}$$

where

$$\psi(m, n, \alpha, \beta) = \frac{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}}{1-\alpha},$$

and

$$\theta(m, n, \alpha, \beta) = \frac{k^{-n}(1+\beta) - (-1)^m(\beta + \alpha)k^{-(n+m)}}{1 - \alpha},$$

 $a_1 = 1, 0 \le \alpha < 1, \beta \ge 0, n \in \mathbb{N}, m \in \mathbb{N}, m \ge 1, \text{ then } f \in H(m, n, \alpha, \beta).$

Proof. According to (2) and (3) we only need to show that

$$Re\left(\frac{I^n f(z) - \alpha I^{n+m} f(z) - \beta e^{i\theta} |I^n f(z) - I^{n+m} f(z)|}{I^{n+m} f(z)}\right) \ge 0.$$

The case r = 0 is obvious. For 0 < r < 1 it follows that

$$Re\left(\frac{I^{n}f(z)-\alpha I^{n+m}f(z)-\beta e^{i\theta}|I^{n}f(z)-I^{n+m}f(z)|}{I^{n+m}f(z)}\right)=$$

$$=Re\left\{\frac{(1-\alpha)z+\lceil\int\sum_{k=2}^{\infty}a_{k}z^{k}[\gamma^{n}-\alpha\gamma^{n+m}]}{z+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}}+\right.$$

$$+\frac{(-1)^{n}\lceil\int\sum_{k=1}^{\infty}\overline{b_{k}}\overline{z^{k}}[\gamma^{n}+\alpha\gamma^{n+m}]}{z+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}}-$$

$$-\frac{\beta e^{i\theta}|\lceil\int\sum_{k=2}^{\infty}a_{k}z^{k}[\gamma^{n}-\gamma^{n+m}]+(-1)^{n}\lceil\int\sum_{k=1}^{\infty}\overline{b_{k}}\overline{z^{k}}[\gamma^{n}+\gamma^{n+m}]|}{z+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}}\right\}=$$

$$=Re\left\{\frac{1-\alpha+\lceil\int\sum_{k=2}^{\infty}a_{k}z^{k-1}[\gamma^{n}-\alpha\gamma^{n+m}]}{1+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k-1}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}z^{-1}}+\right.$$

$$\frac{(-1)^{n}\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k-1}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}z^{-1}}{1+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k-1}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}z^{-1}}\right\}=$$

$$\frac{\beta e^{i\theta}z^{-1}|\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k-1}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}z^{-1}}{1+\lceil\int\sum_{k=2}^{\infty}\gamma^{n+m}a_{k}z^{k-1}+(-1)^{n+m}\lceil\int\sum_{k=1}^{\infty}\gamma^{n+m}\overline{b_{k}}\overline{z^{k}}z^{-1}}\right\}=$$

$$=Re\frac{(1-\alpha)+A(z)}{1+B(z)}, where\gamma=\frac{1}{k},$$

$$A(z) = \left\lceil \int \sum_{k=2}^{\infty} a_k z^{k-1} [\gamma^n - \alpha \gamma^{n+m}] + (-1)^n \right\rceil \int \sum_{k=1}^{\infty} \overline{b_k z^k} z^{-1} [\gamma^n - (-1)^m \alpha \gamma^{n+m}] - \beta e^{i\theta} z^{-1} | \left\lceil \int \sum_{k=2}^{\infty} [\gamma^n - \gamma^{n+m}] a_k z^k + (-1)^n \right\rceil \int \sum_{k=1}^{\infty} (\gamma^n - (-1)^m \gamma^{n+m}) \overline{b_k z^k} |,$$

$$B(z) = \left\lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_k z^{k-1} + (-1)^{n+m} \right\rceil \int \sum_{k=1}^{\infty} \gamma^{n+m} \overline{b_k} z^k z^{-1}.$$

For $z = re^{i\theta}$ we have

$$A(re^{i\theta}) = \int \int_{k=2}^{\infty} (\gamma^n - \alpha \gamma^{n+m}) a_k r^{k-1} e^{(k-1)\theta i} +$$

$$+(-1)^{n} \lceil \int \sum_{k=1}^{\infty} (\gamma^{n} - (-1)^{m} \gamma^{n+m} \alpha) \overline{b_{k}} r^{k-1} e^{-(k+1)\theta i} - \beta \mathcal{D}(n+m,n,\alpha),$$

where

$$\mathcal{D}(n+m,n,\alpha) =$$

$$=|\lceil\int\sum_{k=2}^{\infty}(\gamma^n-\gamma^{n+m})a_kr^{k-1}e^{-ki\theta}+(-1)^n\lceil\int\sum_{k=1}^{\infty}(\gamma^n-(-1)^m\gamma^{n+m})\overline{b_k}r^{k-1}e^{-ki\theta}|,$$

and

$$B(re^{i\theta}) = \left[\int \sum_{k=2}^{\infty} \gamma^{n+m} a_k r^{k-1} e^{(k-1)\theta i} + (-1)^{n+m} \right] \int \sum_{k=1}^{\infty} \gamma^{n+m} \overline{b_k} r^{k-1} e^{-(k+1)\theta i}.$$

Setting
$$\frac{1-\alpha+A(z)}{1+B(z)} = (1-\alpha)\frac{1+w(z)}{1-w(z)}$$
.

The proof will be complete if we can show that $|w(z)| \le r < 1$. This is the case since, by the condition (5), we can write:

$$|w(z)| = \left| \frac{A(z) - (1 - \alpha)B(z)}{A(z) + (1 - \alpha)B(z) + 2(1 - \alpha)} \right| \le \frac{\left[\int \sum_{k=1}^{\infty} [(1 + \beta)(\gamma^n - \gamma^{n+m})|a_k| + (1 + \beta)(\gamma^n - (-1)^m \gamma^{n+m})|b_k|\right] r^{k-1}}{4(1 - \alpha) - \left[\int \sum_{k=1}^{\infty} \{ [\gamma^n (1 + \beta) - \delta \gamma^{n+m}]|a_k| + [\gamma^n (1 + \beta) - (-1)^m \delta \gamma^{n+m}]|b_k| \} r^{k-1}} \right] \le \frac{\left[\int \sum_{k=1}^{\infty} (1 + \beta)(\gamma^n - \gamma^{n+m})|a_k| + (\gamma^n - (-1)^m \gamma^{n+m})(1 + \beta)|b_k|}{4(1 - \alpha) - \left[\int \sum_{k=1}^{\infty} \{ [\gamma^n (1 + \beta) - \delta \gamma^{n+m}]|a_k| + [\gamma^n (1 + \beta) - (-1)^m \delta \gamma^{n+m}]|b_k| \}} \right] \le 1,$$

where $\delta = \beta + 2\alpha - 1$.

The harmonic univalent functions

$$f(z) = z + \left[\int \sum_{k=2}^{\infty} \frac{1}{\psi(m, n, \alpha, \beta)} x_k z^k + \left[\int \sum_{k=1}^{\infty} \frac{1}{\theta(m, n, \alpha, \beta)} \overline{y_k z^k}, \right] \right]$$

where $n \in \mathbb{N}, 0 \le \alpha < 1, \beta \ge 0, m \in \mathbb{N}, m \ge 1$ and $\lceil \int \sum_{k=2}^{\infty} |x_k| + \lceil \int \sum_{k=1}^{\infty} |y_k| = 1$, show that the coefficient bound given by (5) is sharp.

In the following theorem it is show that the condition (5) is also necessary for the function $f_n = h + \overline{g_n}$, where h and g_n are of the form (4).

Theorem 2. Let $f_n = h + \overline{g_n}$ be given by (4). Then $f_n \in H^-(m, n, \alpha, \beta)$ if and only if

$$\lceil \int \sum_{k=1}^{\infty} [\psi(m, n, \alpha, \beta) a_k + \theta(m, n, \alpha, \beta) b_k] \le 2,$$

$$a_1 = 1, 0 < \alpha < 1, n \in \mathbb{N}, m \in \mathbb{N}, m > 1.$$
(6)

Proof. Since $H^-(m, n, \alpha, \beta) \subset H(m, n, \alpha, \beta)$, we only need to prove the "only if" part of the theorem. For functions f_n of the form (4), we note that the condition

$$Re\left\{\frac{I^n f(z)}{I^{n+m} f(z)}\right\} > \beta \left|\frac{I^n f(z)}{I^{n+m} f(z)} - 1\right| + \alpha$$

is equivalent to

$$Re\left\{\frac{(1-\alpha)z - \lceil \int \sum_{k=2}^{\infty} (\gamma^{n} - \alpha \gamma^{n+m}) a_{k} z^{k}}{z - \lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_{k} z^{k} + (-1)^{2n+m-1} \lceil \int \sum_{k=1}^{\infty} \gamma^{n+m} b_{k} \overline{z^{k}}} + \frac{(-1)^{2n-1} \lceil \int \sum_{k=1}^{\infty} (\gamma^{n} - (-1)^{m} \gamma^{n+m} \alpha) b_{k} \overline{z^{k}}}{z - \lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_{k} z^{k} + (-1)^{2n+m-1} \lceil \int \sum_{k=1}^{\infty} \gamma^{n+m} b_{k} \overline{z^{k}}} - \frac{\beta e^{i\theta} | - \lceil \int \sum_{k=2}^{\infty} (\gamma^{n} + \gamma^{n+m}) a_{k} z^{k} + (-1)^{2n-1} \lceil \int \sum_{k=1}^{\infty} (\gamma^{n} - (-1)^{2m} \gamma^{n+m}) \overline{b_{k}} \overline{z^{k}}} \right\} \ge 0,}{z - \lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_{k} z^{k} + (-1)^{2n+2m-1} \lceil \int \sum_{k=1}^{\infty} \gamma^{n+m} b_{k} \overline{z^{k}}} \right\}$$
(7)

where $\gamma = \frac{1}{k}$.

The above required condition (7) must hold for all values of $z \in U$. Upon choosing the values of z on the positive real axis where $0 \le z = r < 1$, and using $Re(-e^{i\theta}) \ge -|e^{i\theta}| = -1$, we must have

$$\frac{(1-\alpha) - \lceil \int \sum_{k=2}^{\infty} [\gamma^{n}(1+\beta) - (\alpha+\beta)\gamma^{n+m}] a_{k} r^{k-1}}{1 - \lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_{k} r^{k-1} - (-1)^{m} \lceil \int \sum_{k=1}^{\infty} \gamma^{n+m} b_{k} r^{k-1}} - (8)$$

$$-\frac{\lceil \int \sum_{k=1}^{\infty} [\gamma^{n}(1+\beta) + \gamma^{n+m}(\beta+\alpha)] b_{k} r^{k-1}}{1 - \lceil \int \sum_{k=2}^{\infty} \gamma^{n+m} a_{k} r^{k-1} - (-1)^{m} \lceil \int \sum_{k=1}^{\infty} \gamma^{n+m} b_{k} r^{k-1}} \ge 0.$$

If the condition (7) does not hold, then the expression in (8) is negative for r sufficiently close to 1. Hence there exist $z_0 = r_0$ in (0,1) for which this quotient in (8) is negative. This contradicts the required condition for $f_n \in H^-(m, n, \alpha, \beta)$ and so the proof is complete.

The following theorem gives the distortion bounds for functions in $H^-(m, n, \alpha, \beta)$ which yields a covering results for this class.

Theorem 3. Let $f_n \in H^-(m, n, \alpha, \beta)$. Then for |z| = r < 1 we have

$$|f_n(z)| \le (1+b_1)r + [\theta(m,n,\alpha,\beta) - \omega(m,n,\alpha,\beta)b_1]r^{n+m+1}$$

and

$$|f_n(z)| \ge (1 - b_1)r - \{\phi(m, n, \alpha, \beta) - \omega(m, n, \alpha, \beta)b_1\}r^{n+m+1},$$

where

$$\phi(m, n, \alpha, \beta) = \frac{1 - \alpha}{(1/2)^n (1+\beta) - (1/2)^{n+m} (\alpha+\beta)},$$

$$\omega(m, n, \alpha, \beta) = \frac{(1+\beta) - (-1)^m (\alpha+\beta)}{(1/2)^n (1+\beta) - (1/2)^{n+m} (\alpha+\beta)}.$$

Proof. We prove the right side inequality for $|f_n|$. The proof for the left hand inequality can be done using similar arguments. Let $f_n \in H^-(m, n, \alpha, \beta)$. Taking the absolute value of f_n then by Theorem 2, we can obtain:

$$|f_n(z)| = |z - \lceil \int \sum_{k=2}^{\infty} a_k z^k + (-1)^{n-1} \lceil \int \sum_{k=1}^{\infty} b_k \overline{z^k}| \le$$

$$\le r + \lceil \int \sum_{k=2}^{\infty} a_k r^k + \lceil \int \sum_{k=1}^{\infty} b_k r^k = r + b_1 r + \lceil \int \sum_{k=2}^{\infty} (a_k + b_k) r^k \le$$

$$\le r + b_1 r + \lceil \int \sum_{k=2}^{\infty} (a_k + b_k) r^2 =$$

$$= (1 + b_1) r + \phi(m, n, \alpha, \beta) \lceil \int \sum_{k=2}^{\infty} \frac{1}{\phi(m, n, \alpha, \beta)} (a_k + b_k) r^2 \le$$

$$\le (1 + b_1) r + \phi(m, n, \alpha, \beta) r^{n+m+1} \lceil \int \sum_{k=2}^{\infty} [\psi(m, n, \alpha, \beta) a_k + \overline{\theta}(m, n, \alpha, \beta) b_k] \le$$

$$\leq (1+b_1)r + [\phi(m,n,\alpha,\beta) - \omega(m,n,\alpha,\beta)b_1]r^{n+m+1}$$

The following covering result follows from the left hand inequality in Theorem 3.

Corollary 4. Let $f_n \in H^-(m, n, \alpha, \beta)$. Then for |z| = r < 1 we have $\{w : |w| < 1 - b_1 - [\phi(m, n, \alpha, \beta) - \omega(n, \alpha, \eta)b_1] \subset f_n(U)\}$.

Next we determine the extreme points of closed convex hulls of $H^-(m, n, \alpha, \beta)$, denoted by $\operatorname{clco} H^-(m, n, \alpha, \beta)$.

Theorem 5. Let f_n be given by (4). Then $f_n \in H^-(m, n, \alpha, \beta)$ if and only if

$$f_n(z) = \left[\int \sum_{k=1}^{\infty} [x_k h_k(z) + y_k g_{n_k}(z)], \right]$$

where h(z) = z,

$$h_k(z) = z - \frac{1 - \alpha}{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}} z^k, k = 2, 3, \dots$$

and

$$g_{n_k}(z) = z + (-1)^{n-1} \frac{1 - \alpha}{k^{-n}(1+\beta) - (-1)^m(\beta+\alpha)k^{-(n+m)}} \overline{z}^k, k = 1, 2, 3, \dots$$

$$x_k \ge 0, y_k \ge 0, \lceil \int \sum_{k=1}^{\infty} (x_k + y_k) = 1.$$

In particular, the extreme points of $H^-(m, n, \alpha, \beta)$ are $\{h_k\}$ and $\{g_{n_k}\}$.

Proof. For functions f_n of the form (5) we have:

$$f_n(z) = \left[\int \sum_{k=2}^{\infty} [x_k h_k(z) + y_k g_{n_k}(z)] \right] =$$

$$= \left[\int \sum_{k=1}^{\infty} (x_k + y_k) z - \left[\int \sum_{k=2}^{\infty} \frac{1 - \alpha}{k^{-n} (1 + \beta) - (\beta + \alpha) k^{-(n+m)}} x_k z^k + \right] \right] + (-1)^{n-1} \left[\int \sum_{k=1}^{\infty} \frac{1 - \alpha}{k^{-n} (1 + \beta) - (-1)^m (\beta + \alpha) k^{-(n+m)}} y_k \overline{z}^k \right].$$

Then

$$\lceil \int \sum_{k=2}^{\infty} x_k \frac{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}}{1-\alpha} \cdot \frac{(1-\alpha)}{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}} + \\
+ \lceil \int \sum_{k=1}^{\infty} y_k \frac{k^{-n}(1+\beta) - (-1)^m (\beta+\alpha)k^{-(n+m)}}{1-\alpha} \cdot \\
\cdot \frac{1-\alpha}{k^{-n}(1+\beta) - (-1)^m (\beta+\alpha)k^{-(n+m)}}$$

$$= \lceil \int \sum_{k=2}^{\infty} x_k + \lceil \int \sum_{k=1}^{\infty} y_k = 1 - x_1 \le 1$$

and so $f_n(z) \in H^-(m, n, \alpha, \beta)$.

Conversely, suppose $f_n(z) \in H^-(m, n, \alpha, \beta)$. Letting

$$x_{1} = 1 - \left[\int \sum_{k=2}^{\infty} x_{k} - \left[\int \sum_{k=1}^{\infty} y_{k} \right] \right]$$
$$x_{k} = \frac{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}}{1-\alpha} \cdot a_{k}, k = 2, 3, \dots$$

and

$$y_k = \frac{k^{-n}(1+\beta) - (-1)^m(\beta+\alpha)k^{-(n+m)}}{1-\alpha} \cdot b_k, k = 1, 2, 3, \dots$$

we obtain the required representation, since

$$f_{n}(z) = z - \left[\int \sum_{k=2}^{\infty} a_{k} z^{k} + (-1)^{n-1} \right] \int \sum_{k=1}^{\infty} b_{k} \overline{z}^{k} =$$

$$= z - \left[\int \sum_{k=2}^{\infty} \frac{1 - \alpha}{k^{-n} (1 + \beta) - (\beta + \alpha) k^{-(n+m)}} x_{k} z^{k} + \right]$$

$$+ (-1)^{n-1} \left[\int \sum_{k=1}^{\infty} \frac{1 - \alpha}{k^{-n} (1 + \beta) - (-1)^{m} (\beta + \alpha) k^{-(n+m)}} y_{k} \overline{z}^{k} \right]$$

$$= z - \left[\int \sum_{k=2}^{\infty} [z - h_{k}(z)] x_{k} - \left[\int \sum_{k=1}^{\infty} [z - g_{n_{k}}(z)] y_{k} \right]$$

$$= [1 - \left[\int \sum_{k=2}^{\infty} x_{k} - \left[\int \sum_{k=1}^{\infty} y_{k} \right] z + \left[\int \sum_{k=2}^{\infty} x_{k} h_{k}(z) + \left[\int \sum_{k=1}^{\infty} y_{k} g_{n_{k}}(z) \right] \right]$$

$$= \iint \sum_{k=1}^{\infty} [x_k h_k(z) + y_k g_{n_k}(z)].$$

Now we show that $H^-(m, n, \alpha, \beta)$ is closed under convex combination of its members.

Theorem 6. The family $H^{-}(m, n, \alpha, \beta)$ is closed under convex combination.

Proof. For i = 1, 2, ... suppose that $f_n^i \in H^-(m, n, \alpha, \beta)$, where

$$f_n^i(z) = z + \left\lceil \int \sum_{k=2}^{\infty} a_k^i z^k + (-1)^{n-1} \right\rceil \int \sum_{k=1}^{\infty} b_k^i \overline{z}^k,$$

then by Theorem 2,

$$\lceil \int \sum_{k=1}^{\infty} \frac{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}}{1-\alpha} a_k^i +
+ \lceil \int \sum_{k=1}^{\infty} \frac{k^{-n}(1+\beta) - (-1)^m (\beta+\alpha)k^{-(n+m)}}{1-\alpha} b_k^i \le 2,$$
(9)

for $\lceil \int \sum_{i=1}^{\infty} t_i = 1, 0 \le t_i \le 1$, the convex combination of f_n^i may be written as

$$\left[\int \sum_{i=1}^{\infty} t_i f_n^i(z) = z - \left[\int \sum_{k=2}^{\infty} \left(\left[\int \sum_{i=1}^{\infty} t_i a_k^i\right] z^k + (-1)^{n-1} \right] \int \sum_{k=1}^{\infty} \left(\left[\int \sum_{i=1}^{\infty} t_i b_k^i\right] \overline{z}^k\right) dz^k \right]$$

Then by (8)

$$\lceil \int \sum_{k=1}^{\infty} \frac{k^{-n}(1+\beta) - (\beta+\alpha)k^{-(n+m)}}{1-\alpha} (\lceil \int \sum_{i=1}^{\infty} t_i a_k^i) + \frac{1-\alpha}{1-\alpha} (\lceil \int \sum_{i=1}^{\infty} t_i a_k^i) + \frac{1-\alpha}{1-\alpha} (\lceil \int \sum_{i=1}^{\infty} t_i b_k^i) = \frac{1-\alpha}{1-\alpha} (\lceil \int \sum_{i=1}^{\infty} t_i b_k^i) = \frac{1-\alpha}{1-\alpha} a_k^i + \frac{1-\alpha}{1-\alpha} a_k^i + \frac{1-\alpha}{1-\alpha} a_k^i + \frac{1-\alpha}{1-\alpha} b_k^i$$

$$\leq 2\lceil \int \sum_{i=1}^{\infty} t_i = 2$$

and therefore $\iint \sum_{i=1}^{\infty} t_i f_n^i(z) \in H^-(m, n, \alpha, \beta)$.

Acknowledgements. The beautiful results for harmonic functions, was obtained by P. T. Mocanu in [3].

References

- [1] O.P. Ahuja, J.M. Jahangiri, *Multivalent harmonic starlike functions*, Ann. Univ. Marie Curie-Sklodowska Sect. A, LV 1(2001), 1-13.
- [2] J. Clunie, T. Scheil- Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
- [3] P. T. Mocanu, *Three-cornered hat harmonic functions*, Complex Variables and Elliptic Equation, 12(2009), 1079-1084.
- [4] G.S. Sălăgean, Subclass of univalent functions, Lecture Notes in Math. Springer-Verlag, 1013(1983), 362-372.

Grigore Ştefan Sălăgean Babeş Bolyai University Faculty of Mathematics and Computer Science Cluj Napoca , Romania email: salagean @math.ubbcluj.ro

Luminita-Ioana Cotîrlă
Technical University
Department of Mathematics
Cluj-Napoca, Romania
email: Luminita.Cotirla@math.utcluj.ro