
Acta Universitatis Apulensis
ISSN: 1582-5329
http://www.uab.ro/auajournal/

No. 56/2018
pp. 81-89

doi: 10.17114/j.aua.2018.56.07
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Abstract. In a previous paper of the first author, it was proved that the
only Köthe (scalar) spaces which are also Banach algebras with unit are the L∞(µ)
spaces. Using this result, in the present paper it is shown that the only Köthe-
Bochner (vector) spaces which are also Banach algebras with unit are the L∞(X,µ)
spaces.

2010 Mathematics Subject Classification: 46B25, 46E30, 46G10, 46H25.
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1. Introduction

The classical scalar Köthe spaces Lρ are the natural generalizations of the Lebesgue
spaces, Orlicz spaces and many other function spaces. The ”ancestors” of the Lρ
spaces are the ”gestufte Räume” introduced by G. Köthe and O. Toeplitz in the
seminal paper [10] (G. Köthe continued their study in [9]). The general, natural
setting of their theory within the framework of measurable functions is due to A. C.
Zaanen and W. A. J. Luxemburg and, of course, to their pupils. The doctoral thesis
of W. A. J. Luxemburg [12], under the supervision of A. C. Zaanen, was the first step
into this direction (viewing the Köthe spaces as spaces of (classes of) measurable
functions). Subsequently, A. C. Zaanen and W. A. J. Luxemburg wrote a long series
of papers [13], concerning this subject and giving, practically, all the main results of
the theory. A systematic presentation of the theory is contained in the monograph
[15] of A. C. Zaanen (see also [3]). Notice that the name ”Köthe spaces” was given
by J. Dieudonné in [4] (in [14], some errors in Dieudonné’s paper are corrected).

The theory of Köthe spaces continued to develop, especially in the direction
of various generalizations. For instance, very recently, a non commutative theory
appeared, with multiple Functional Analysis connections, see [6].
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Perhaps the most natural generalization consists in considering vector valued
measurable functions instead of scalar valued ones. The spaces Lρ(X) appearing
in this way (X Banach space) are called Köthe-Bochner spaces, being intensively
studied now. The monograph [11] is entirely dedicated to these spaces, containing
a rich reference list.

The main goal of this paper is to characterize those Lρ(X) spaces which are at
the same time Banach algebras with unit. Our proofs rely heavily on the results in
the paper [2], where it was proved that, practically, the only Köthe spaces Lρ which
are also Banach algebras with unit are the spaces L∞(µ). Generalizing this fact,
we show here that, considering a Banach algebra with unit X instead of the scalar
field, the only spaces Lρ(X) which are Banach algebras with unit are the spaces
L∞(X,µ). A practical example is given too.

2. Preliminary Part

Throughout the paper N = {1, 2, ...}, R+ = [0,∞), R+ = [0,∞] = R+ ∪ {∞} and
K = R or C.

All sequences (xn)n are indexed with N. When writing (xn)n ⊂ A, we mean
xn ∈ A for any n.

For two non empty sets T and X and any element x ∈ X, we can consider the
constant function x : T → X, acting via x(t) = x for any t ∈ T . Assume now that
(X, ‖ ‖) is a normed space (if the norm ‖ ‖ is understood, we write simply X). For
any function f : T → X we can consider the function |f | : T → R+, acting via
|f |(t) = ‖f(t)‖ for any t ∈ T . If x ∈ X and h : T → K, the function hx : T → X
acts via hx(t) = h(t)x for any t ∈ T . If f , g : T → X, α ∈ K, one defines pointwise
f + g : T → X, αf : T → X and, in case X is an algebra, also fg : T → X.

Two norms ‖ ‖1 and ‖ ‖2 on a vector space X are called equivalent if there exist
two numbers 0 < a ≤ b such that a ‖x‖1 ≤ ‖x‖2 ≤ b ‖x‖1 for any x ∈ X (i.e. ‖ ‖1
and ‖ ‖2 generate the same topology on X). Following this line, we say that two
normed spaces (X1, ‖ ‖1) and (X2, ‖ ‖2) are equivalent if X1 = X2 and ‖ ‖1, ‖ ‖2
are equivalent norms.

For further purposes, we shall say that a normed (resp. Banach) space (X, ‖ ‖)
is a normed (resp. Banach) algebra with unit if X is a non null algebra with unit
e (hence e 6= 0) and the multiplication in X, denoted via (x, y)→ xy is continuous
(i.e. there exists a number A > 0 such that ‖xy‖ ≤ A ‖x‖ ‖y‖ for any x, y ∈
X). This slightly more general definition is almost equivalent to the standard one,
because, under the previous conditions, one can define on X a new norm |‖ |‖
having the properties |‖e|‖ = 1 and |‖xy|‖ ≤ |‖x|‖ |‖y|‖ for any x, y in X and such
that ‖ ‖ and |‖ |‖ are equivalent norms. Indeed, L(X) = {V : X → X | V is
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linear and continuous} is a normed (resp. Banach) algebra with unit, with norm
‖V ‖o = sup{‖V (x)‖ | x ∈ X, ‖x‖ ≤ 1}, multiplication (U, V ) → U ◦ V and unit
e : X → X acting via e(x) = x for any x ∈ X. Using the injective algebra morphism
(embedding) Ω : X → L(X) given via Ω(x) = Vx where Vx(y) = xy for any y ∈ X,
define |‖x|‖ = ‖Vx‖o for any x ∈ X.

Assume that X is an algebra and ‖ ‖1, ‖ ‖2 are equivalent norms on X. If
(X, ‖ ‖1) is a normed (resp. Banach) algebra with unit e, then (X, ‖ ‖2) is a normed
(resp. Banach) algebra with the same unit e and the same multiplication (if a ‖x‖1 ≤

‖x‖2 ≤ b ‖x‖1 and ‖xy‖1 ≤ A ‖x‖1 ‖y‖1, then ‖xy‖2 ≤
bA

a2
‖x‖2 ‖y‖2).

A measure space is a triple (T, T , µ), where T is a non empty set, T ⊂ P(T ) = {A
| A ⊂ T} is a σ-algebra and µ : T → R+ is a non null σ-additive measure. We shall
always assume that µ is complete (i.e. if A ∈ T with µ(A) = 0 and B ⊂ A, then
B ∈ T ) and σ-finite (i.e. there exists a sequence (Tn)n ⊂ T such that

⋃
n
Tn = T

and µ(Tn) < ∞ for any n). The last assumption is necessary because we deal with
µ-measurable vector functions. The set of all µ-measurable functions u : T → R+

will be denoted by M+(µ). For any A ∈ T , we have ϕA ∈ M+(µ), where ϕA is the
characteristic (indicator) function of A.

A µ-function norm is a function ρ : M+(µ)→ R+ having the following properties
(for any u, v ∈M+(µ) and α ∈ R+):

i) ρ(u) = 0 if and only if u = 0 µ− a.e. (i.e. µ-almost everywhere).
ii) ρ(u) ≤ ρ(v) whenever u ≤ v.
iii) ρ(u+ v) ≤ ρ(u) + ρ(v).
iv) ρ(αu) = αρ(u), with the convention 0 · ∞ = 0.
Notice that, for u, v ∈M+(µ), we have:
a) if ρ(u) <∞, then u is finite µ− a.e.;
b) if u = v µ− a.e., then ρ(u) = ρ(v).
Let X be a non null Banach space. A function f : T → X is called µ-simple if

it has the form f =
n∑
i=1

ϕAixi, with xi ∈ X and Ai ∈ T mutually disjoint such that

n⋃
i=1

Ai = T . A function f : T → X is called µ-measurable if there exists a sequence

(fn)n of µ-simple functions such that fn −→
n
f µ − a.e. Let MX(µ)

def
= {f : T → X

| f is µ-measurable}. The vector space MX(µ) has the property that, for any
f ∈MX(µ), one has |f | ∈M+(µ).

Considering also a µ-function norm ρ, we define the vector space

Lρ(X) = {f ∈MX(µ) | ρ|f | def= ρ(|f |) <∞}
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which is seminormed with the seminorm given via f → ρ|f |. The null space of this
seminorm is

NX(µ) = {f ∈MX(µ) | ρ|f | = 0} = {f ∈MX(µ) | f(t) = 0 µ− a.e.}.

We define Lρ(X)
def
= Lρ(X)/NX(µ) and we see that Lρ(X) is a normed space

called Köthe-Bochner space with norm given via f̃ → ρ|f | (for any representative
f ∈ f̃). It can be proved that Lρ(X) is a Banach space if and only if ρ has the

Riesz-Fischer property (i.e. ρ has the property that ρ(
∞∑
n=1

un) ≤
∞∑
n=1

ρ(un), for any

(un)n ⊂M+(µ)).
In the particular case X = K, we write Lρ instead of Lρ(K), Lρ instead of Lρ(K)

and we say that Lρ is a Köthe space. The Köthe spaces Lρ generalize the Lebesgue
spaces Lp(µ) (for ρ = ‖ ‖p, 1 ≤ p ≤ ∞).

Recall that the function norm ‖ ‖∞ (essential supremum) is defined as follows,
for any u ∈M+(µ):

‖u‖∞ = inf{A(u,N) | N ∈ T , µ(N) = 0}

where A(u,N) = sup{u(t) | t ∈ T \N}. Then, for ρ = ‖ ‖∞, if X is a Banach space,

we write Lρ(X)
def
= L∞(X,µ). Hence, for X = K: L∞(µ) = L∞(K,µ).

In the spirit of the definition accepted for Banach algebras with unit, we shall
consider a µ-function norm ρ, the corresponding Köthe space Lρ and we shall say
that Lρ is a Köthe Banach algebra with unit if the following conditions are fulfilled:

a) Lρ is a Banach space. b) 1 ∈ Lρ. c) For any f, g ∈ Lρ, one has fg ∈ Lρ.
d) There exists a number A > 0 such that ρ|fg| ≤ Aρ|f |ρ|g| for any f, g ∈ Lρ.
One can immediately see that, under these conditions, Lρ becomes a commutative
Banach algebra with unit 1̃ and multiplication defined on representatives as follows:

f̃ g̃
def
= f̃g for any f̃ , g̃ in Lρ. This justifies the name of Köthe Banach algebra with

unit. Clearly, L∞(µ) is a Köthe Banach algebra with unit.
In [2] (see also [3]) we proved the following result showing that, practically, L∞(µ)

is the only Köthe Banach algebra with unit.
Theorem A. Let ρ be a µ-function norm. The following assertions are equivalent:

1. Lρ is a Köthe Banach algebra with unit.
2. The Banach spaces Lρ and L∞(µ) are equivalent.
Concerning the implication 2.⇒ 1. we feel obliged to notice that, due to equiva-

lence, we have Lρ = L∞(µ) as sets, consequently on Lρ we consider the multiplication
given by L∞(µ).

For the example at the end of the paper, we shall be concerned with the discrete
measure space (N,P(N), card), where card : P(N) → R+ is the counting measure,
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acting via card(A) =the number of elements in A, if A is finite and card(A) = ∞,
if A is infinite. The only negligible set is φ. A function f : N→ H is identified with
a sequence f ≡ (xn)n ⊂ H, where xn = f(n) for any n. If X is a Banach space,
any function f : N→ X is card-measurable. For any card-function norm ρ and any
Banach space X, one has Lρ(X) ≡ Lρ(X) (equivalence classes in Lρ(X) contain
only one element). It is clear that, in this case, if u ≡ (un)n ∈ M+(card), one has
‖u‖∞ = sup

n
un. Hence, introducing the classical Banach space

l∞ = {x = (xn)n | xn ∈ K, sup
n
|xn| <∞}

with norm ‖x‖ = sup
n
|xn| as above, we have L∞(card) = l∞.

Assuming X itself is a Köthe space, X = Lr, for some card-function norm r,
we have for any f ∈ Lρ(Lr): f ≡ (f(m))m, where f(m) ∈ Lr = Lr, hence we can
identify f(m) ≡ (xmn)n ⊂ K. Consequently, any f ∈ Lρ(Lr) can be identified with
an infinite scalar matrix: f ≡ (xmn)m,n.

For general measure theory, see [8]. For vector measurability, see [5]. For Func-
tional Analysis, see [7]. For Banach algebras, see [1].

3. Results

In the sequel we shall consider a fixed measure space (T, T , µ).

Definition 1. Two µ-function norms ρ1 and ρ2 are called equivalent if there exist
two numbers 0 < a ≤ b such that aρ1(u) ≤ ρ2(u) ≤ bρ2(u) for any u ∈M+(µ).

Lemma 1. Let ρ1 and ρ2 be two µ-function norms. The following assertions are
equivalent:

1. ρ1 and ρ2 are equivalent.
2. For any non null Banach space X, the normed spaces Lρ1(X) and Lρ2(X) are

equivalent.
3. There exists a non null Banach space X such that the normed spaces Lρ1(X)

and Lρ2(X) are equivalent.
If 1. (or 2. or 3.) is valid, one has Lρ1(X) = Lρ2(X).

Proof. One must prove only 1.⇒ 2. and 3.⇒ 1.
1.⇒ 2. Let X be an arbitrary non null Banach space. Clearly Lρ1(X) = Lρ2(X),

hence Lρ1(X) = Lρ2(X). Take 0 < a ≤ b such that aρ1(u) ≤ ρ2(u) ≤ bρ1(u) for

any u ∈M+(µ). Then, if f̃ ∈ Lρ1(X) = Lρ2(X), one has a
∥∥∥f̃∥∥∥

1
= aρ1|f | ≤ ρ2|f | =∥∥∥f̃∥∥∥

2
≤ bρ1|f | = b

∥∥∥f̃∥∥∥
1
, ‖ ‖i being the norm of Lρi(X), i = 1, 2.
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3. ⇒ 1. Let X be a non null Banach space such that Lρ1(X) and Lρ2(X) are

equivalent. Let 0 < a ≤ b such that, for any f̃ ∈ Lρ1(X) = Lρ2(X), one has a
∥∥∥f̃∥∥∥

1
=

aρ1|f | ≤
∥∥∥f̃∥∥∥

2
= ρ2|f | ≤ b

∥∥∥f̃∥∥∥
2

= bρ2|f |, ‖ ‖i being the norm of Lρi(X), i = 1, 2.

Let u ∈M+(µ). Either ρ1(u) <∞ or ρ1(u) =∞. In case ρ1(u) <∞, let u′ ∈M+(µ)
be such that u′ is finite and u′ = u µ − a.e. Let x ∈ X with ‖x‖ = 1 (norm in X),
hence u′x ∈ Lρ1(X), because ρ1|u′x| = ‖x‖ ρ1|u′| = ρ1(u

′) = ρ1(u) < ∞. Hence

ũ′x ∈ Lρ1(X) = Lρ2(X) and a
∥∥∥ũ′x∥∥∥

1
≤
∥∥∥ũ′x∥∥∥

2
≤ b

∥∥∥ũ′x∥∥∥
1
, i.e. aρ1(u) = aρ1(u

′) ≤
ρ2(u

′) = ρ2(u) ≤ bρ1(u
′) = bρ1(u). In case ρ1(u) = ∞, one must have ρ2(u) = ∞.

Otherwise, one finds u′ ∈ M+(µ), u′ finite, u′ = u µ − a.e. and ρ2(u
′) < ∞. This

leads to ρ1(u
′) = ρ1(u) <∞ as we have seen, contradiction. Finally, we proved that,

for any u ∈M+(µ), one must have aρ1(u) ≤ ρ2(u) ≤ bρ1(u).

In the sequel, we shall consider a fixed Banach algebra (X, ‖ ‖) with unit e (and
a number A > 0 such that ‖xy‖ ≤ A ‖x‖ ‖y‖ for any x, y in X). The norm of the
space Lρ will be denoted via |‖ |‖ and the norm of the space Lρ(X) will be denoted
via |‖ |‖X .

Definition 2. We shall say that Lρ(X) is a Köthe-Bochner Banach algebra with
unit if the following conditions are fulfilled:

1. (Lρ(X), |‖ |‖X) is a Banach space.
2. One has e ∈ Lρ(X).
3. For any f, g in Lρ(X), one has fg ∈ Lρ(X).
4. There exists a number B > 0 such that ρ|fg| ≤ Bρ|f |ρ|g|, whenever f, g are

in Lρ(X).

Remark. From 3. it follows that, if f̃ , g̃ are in Lρ(X), one can define the mul-

tiplication f̃ g̃ ∈ Lρ(X) via f̃ g̃
def
= f̃g (on representatives) and, in view of 4., this

multiplication is continuous:∣∣∣∥∥∥f̃ g̃∣∣∣∥∥∥
X

= ρ|fg| ≤ Bρ|f |ρ|g| = B
∣∣∣∥∥∥f̃ ∣∣∣∥∥∥

X
|‖g̃|‖X .

Hence, the normed algebra (Lρ(X), |‖ |‖X) has unit e (see 2.) and is Banach
(see 1.). This leads to the conclusion that (Lρ(X), |‖ |‖X) is a Banach algebra with
unit (which is commutative if X is commutative). Hence, the name Köthe-Bochner
Banach algebra with unit is adequate.

Clearly, L∞(X,µ) is a Köthe-Bochner Banach algebra with unit.

Theorem 2. The following assertions are equivalent:
1. (Lρ(X), |‖ |‖X) is a Köthe-Bochner Banach algebra with unit.
2. (Lρ, |‖ |‖) is a Köthe Banach algebra with unit.
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3. The Banach spaces Lρ(X) and L∞(X,µ) are equivalent.
4. The Banach spaces Lρ and L∞(µ) are equivalent.

Proof. The schema of proof is the following: 1.⇒ 2.⇒ 4.⇒ 3.⇒ 1.
1. ⇒ 2. Because Lρ(X) is Banach, it follows that Lρ is Banach. Because e ∈

Lρ(X) and e = 1e, one has ρ|e| = ρ|1e| = ‖e‖ ρ(1) < ∞, hence ρ(1) < ∞ (because
e 6= 0) and this implies 1 ∈ Lρ. Take now f, g in Lρ. Then fe and ge are in
Lρ(X), hence (fe)(ge) = fge ∈ Lρ(X) and there exists a number B > 0 such that
ρ|fge| ≤ Bρ|fe|ρ|ge|, i.e. ‖e‖ ρ|fg| ≤ ‖e‖2Bρ|f |ρ|g|, hence ρ|fg| ≤ B ‖e‖ ρ|f |ρ|g|.
This means that fg ∈ Lρ and ρ|fg| ≤ Hρ|f |ρ|g|, where H = B ‖e‖. We proved that
Lρ is Banach algebra with unit.

2.⇒ 4. follows from Theorem A in the Preliminary Part.
4.⇒ 3. follows from Lemma 1.
3. ⇒ 1. Because L∞(X,µ) is a Köthe-Bochner Banach algebra with unit and

Lρ(X) is equivalent to L∞(X,µ), it follows that Lρ(X) is a Köthe-Bochner Banach
algebra with unit.

Example 1 (Form of Lρ(Lr) spaces which are Köthe-Bochner Banach algebras
with unit). In case of the discrete measure space (N,P(N), card), one can see that
L∞(µ) = L∞(µ) = l∞. Hence, a Köthe Banach algebra with unit Lr in this case
must be equivalent to l∞, i.e. Lr = l∞ with equivalent norms.

According to the preceding theorem, for this Lr = l∞, a space Lρ(Lr) is a Köthe-
Bochner Banach algebra with unit if and only if Lρ and l∞ are equivalent Banach
spaces, i.e. Lρ = l∞ with equivalent norms.

An element f ≡ (xmn)m,n ∈ Lρ(Lr) has the form f(m) = (xmn)n ∈ l∞ for any
m. We have, for any m:

a sup
n
|xmn| ≤ |f |(m) ≤ b sup

n
|xmn|

for some fixed 0 < a ≤ b which do not depend upon m. Then, there exist 0 < A ≤ B
such that

A sup
m
|f(m)| ≤ ρ|f | ≤ B sup

m
|f(m)|

i.e.

Aa sup
m,n
|xmn| ≤ ‖f‖ ≤ Bb sup

m,n
|xmn|

(norm computed in Lρ(Lr)).
Finally, it is seen that

Lρ(Lr) ≡ {(xmn)m,n ⊂ K | sup
m,n
|xmn| <∞}
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equipped with a norm ‖ ‖ having the property that there exist numbers 0 < L ≤M
such that

L sup
m,n
|xmn| ≤ ‖(xmn)m,n‖ ≤M sup

m,n
|xmn|.
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[4] J. Dieudonné, Sur les espaces de Köthe, J. d’Analyse Math. 1 (1951), 81–115.

[5] N. Dinculeanu, Vector Measures, Veb Deutscher Verlag der Wissenschaften,
Berlin, 1966.

[6] P. G. Dodds, B. de Pagter, Normed Köthe spaces: A non-commutative view-
point, Indag. Math. 25 (2014), 206–249.

[7] N. Dunford, J. T. Schwartz, Linear Operators I, Interscience Publishers, Inc.
New York (fourth printing), 1957.

[8] P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc. Princeton
(eleventh printing), 1966.
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Nachr. 4 (1951), 70–80.
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Ion Chiţescu
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