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1 Introduction

Let (s,) denote the n-th partial sum of the series ) a,. We write

1 1
R, = {81 4+ —s9+ ...+ sn} /logn.
2 n

Then the series Y ay, is said to be absolutely summable (R,logn,1) or summable |R,logn,1]| if
the sequence {R,} is of bounded variation, that is, the infinite series

Z ’Rn - Rn—&—l‘

is convergent. Let (p,) be a sequence of positive numbers such that

n
Pn:ZpU%oo as n—oo, (Poj=p_;=0, i>1).
v=0

The sequence-to-sequence transformation

1 &
Wy, = Fn vzzopvsv

defines the sequence (wy,) of the Riesz mean or simply the (NN, p,) mean of the sequence (sy)
generated by the sequence of coefficients (p;,) (see [8]).
The series ) a, is said to be summable ’N,pn w k=1, 1f (see [3])

00 k—1
P,
E <n> | Wy — wp—1 ]k< 00.

n=1 Pn
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summability is the
N,pn

In the special case when p, = 1 for all values of n (resp.k = 1), |N ,pn‘k
same as |C, 1], (resp.‘]\_f,pn‘) summability. Also, if we take k =1 and p, =1/(n + 1),
summability is equivalent to |R,logn, 1| summability.

A lower triangular matrix of nonzero diagonal entries is said to be a normal matrix. Let A =
(any) be a normal matrix, we associate two lower semimatrices A = (@ny) and A = (éip,) with

\k

entries defined by,
n
Apy = Zam, n,v=0,1,...
i=v

and

Gpo = Ao, Opy = Alpy, n=1,2,..

It should be noted that A and A are the well-known matrices of series to series and series to
sequence transformations, respectively. Then, we have

n n
An(s) == 5 AnySy = g Ay Uy
v=0 v=0

AA,(s) = i Ay
v=0

Let (6,,) be any sequence of positive real numbers. The series > a, is said to be summable

|A, 0]k, k> 1, (see [12],[20]) if
D 0 A(s) = Ap_a(s)]F < o0,
n=1

In the special case, if we take an, = %ZL and 0, = 5—”, then we have |V, p,|x summability. Also,

n

if we take 0, = n and an, = %>, then we have |R, py |, summability (see [5]).

2 The Known Results

Let f be a periodic function with period 27 and integrable (L) over (—m, 7). Without any loss
of generality the constant term in the constant term in the Fourier series of f can be taken to
be zero, so that

f(t) ~ Z(ancosnt + bysinnt) = Z Cn(t).
n=1 n=1
where
1 [ 1 [ 1 [ )
ap = / f@o)dt, ap= / f(t)cos(nt)dt, b, = / f(t)sin(nt)dt.
T J)_x g - o —
We write

plt) = 5 (f@ +0) + fw = 1)}.
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It is well known that the convergence of the Fourier series at ¢ = x is a local property of f
(i.e., depends only on the behaviour of f in an arbitrarily small neighbourhood of z), and so
the summability of the Fourier series t = x by any regular linear summability method is also a
local property of f.

It has been pointed out by Bosanquet [1] that for the case \,, = logn, the definition of absolutely
summable (R, logn, 1) or summable |R,logn, 1| is equivalent to the definition of the summability
|R, A\, 1| used by Mohanty [11], A, being a monotonic increasing sequence tending to infinity
with n.

Matsumoto [9] improved this result by replacing the series >~ (logn)~C,,(t) by

Z(loglogn)*an(t), p> 1

Bhatt [2] showed that the factor (loglogn)™P in the above series can be replaced by the more
general factor 7,logn where (7,) is a convex sequence such that >" n~!y, is convergent. Borwein
[7] generalized Bhatt’s result by proving that (\,) is a sequence for which

anp\ | < oo and Z|A)\ | < o0,
n=1

then the summability |R, Py, 1| of the factored Fourier series

i AnC(2)
n=1

at any point is a local property of f. On the other hand, Mishra [10] proved that if () is as
above, and if

P, = O(npn) and P,Ap, = O(pnanrl)a

the summability |V, p,| of the series

Z%n Co(t),

n=1 Pn

at any point is a local property of f. Bor [4] showed that |N,p,| in Mishra’s result can be
replaced by a more general summability method |N, p,|x, and introduced the following theorem
on the local property of the summability |V, p,|i of the factored Fourier series, which generalizes
most of the above results under more appropriate conditions then those given in them.
Theorem 2.1[6] Let k£ > 1 and the sequences (p,,) and (A,) be such that

S a7 Il + P} X5 < o0, (2)
n=1
D (XE+ 1AM < oo, (3)
n=1

where X,, = (np,) ' P,. Then the summability |N,p,|r k > 1 of the series > 00 ; A, X, Cy, () at
a point can be ensured by a local property.
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3 The Main Results

Many studies have been done for matrix generalization of Fourier series (see [13]-[28]). The
aim of this paper is to extend Theorem 2.1 for |A, 0, |; summability method by taking normal
matrices instead of weighted mean matrices.

Theorem 3.1 Let A = (any,) be a positive normal matrix such that

a’nO:]-a ’I’LZO,l,..., (4)
Gn—1,v > anpy, forn>v+1, (5)
n—1
Z avv&n,erl = O(ann) (6)
v=1

Let (0,an,) be a non increasing sequence. If (A,) and (X)) are sequences satisfying the following
conditions:

[e.e]

> Bnann) 0 Al + [} X5 < o, (7)

n=1
[eS)

D (Onann)" ™ (X + 1)|AN,] < o0, (8)

n=1

AX, = O0(1/n), 9)

where X,, = (nan,)~!, and (6,) is any sequence of positive constants, then the summability
|A, 0nlk, k > 1 of the series

> A XuCn(t),

at a point can be ensured by a local property.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2 Let (0,a,,) be a non increasing sequence. Suppose that the matrix A and the
sequences (\,) and (X,,) satisfy all the conditions of Theorem 3.1, and that (s,) is bounded and
(0,,) is any sequence of positive constants. Then the series

i M X an (10)
n=1

is summable |A, 0, |k, k > 1.

4 Proof of Lemma 3.2

Let (T,,) denotes the A-transform of the series (10). Then we have,

n
AT, = Z Anpo Xy, Xo=0.

v=1
Applying Abel’s transformation to this sum we have

n—1
AT, = " Aanu Ao Xo)so + annAn Xnsn.

v=1
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By the formula for the difference of products of sequences (see [8], p.129) we have

A(dm;)\va) — )\vaAdnv + A()\'L)Xv)dn,v+1 — )\vaA&m) + (XUA)\U + AXU/\U+1)&n,v+1>

n—1 n—1 n—1
ATn = Z dn,v+1X1}A)\vsv + Z dn,v+1)\v+1AXvsv + Z AanvAvasv + @y An Xnsn
v=1 v=1 v=1

= Tn(l) + Tn(2) + Tn(g) + Tn(4)'

To complete the proof of Lemma 3.2, by Minkowski inequality, it is sufficient to show that

o0
26’2_1|Tn,rlk < oo, for r=1,2,34. (11)

n=1
The elements a,, > 0 for each v,n. it is easily seen by using conditions (4) and (5) of Theorem
3.1. For detail (see [18]).
Also,

E |Aanv‘ E an—l,v - am)) = an—LO — Qpo + apo — an-1,0 + ann
v=1

= Apo — Ap—1,0 + Ann < ann- (12)

First, by applying Holder’s inequality with indices k¥ and k', where & > 1 and % + % =1, we
have that

m+1 m+1

ng 1|Tn | < Zek 1 (ZaanrlX |A)‘ ||SU|>
m—+1 n—1 k=l

Zek ! (Z anv+1X |A>\ |> <Zdn,v+l|A>\v|> s
v=1

and by taking account of (4) and (5), we have ay 41 < anp, for 1 < v < n — 1 which implies
that

n—1 n—1
Z CALn,v+1|A)\v| < ann Z ‘A)\v| = O(ann)a
v=1 v=1

thus,

m—+1 m+1

S 0 TP =001) > 0k tak, 1Zam+1x |AN,|

n=2 n=2 v=1
m m—+1 m m—+1
Zxk\my D (Onann) anpsr = 0(1) D (Buaw) T XEAN] D dn i

n=v+1 v=1 n=v+1

=0(1)> (Buaw)" ! XFIAN,|

v=1

=0(1) as m — oo,
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in view of condition (8). Note that from (9) follows that AX, = O(awwXy). Also, we have

m+1 m+1 n—1 k
Z ‘97]2_1 |Tn,2‘k < Z 97]1_1 (Z dn,v+1|>‘v+1||AXv||5v|>
n=2 n=2 v=1
m+1 n—1 k
1) Z 05! (Z CALn,v+l|>\v+1aquv>

v=1
m+1

k—1
ZQk 1 (Zanv+1’Av+1 Ay X ) <Zawanv+1>
m+1 . 1 n—1 .
Z On Zavvan v+1‘)\v+1’ X,

v=1
m m+1 m m+1
Z ’)\U—‘rl‘ am}X Z nann B an,v+1 = O(l) Z <9vavv)k_1 ‘)\v—&—l‘kavaq]f Z &n,v—l-l
n=v+1 v=1 n=v+1
=0(1)>  (Ouaw)" ! o1 e XXy = 0(1) > (Byaw)* ! Ay [Fo XF!
v=1 v=1

=0(1) as m — oc.

by virtue of the hypotheses of Lemma 3.2. On the other hand,we have

m—+1 m—+1 n—1 k

SURIERIEETD SRl PRI

n=2 n=2 v=1
m-+1 n—1 k—1
Z 0! (Z | Adpo|[ Ao \’fx’f) (Z \Aamy>

v=1
m+1 n—1
1) Z '952_1@13;1 Z |Aanv”)‘v|sz]f
n=2 v=1
m m+1 m m—+1
=0(1) Y N XE DT (0nann)* T Aan] = 0(1) Y (Bpau)*H NFXE YT |Ady,|

v=1 n=v+1 v=1 n=v+l

=0(1) Z (Qvavv)k_l ‘)‘v’qulfavv

IS
I
—

NE

=0 (ua)" M N X0 = 0(1) as m — oo

S
Il
—_

by virtue of the hypotheses of Lemma 3.2. Finally, we have that

o0

S0,

n=1 n=1

F=0) )0 Al Xa

nnn

nann k ! |)\ |kaann

||M8 ||M8

nannk 1|)\ |ka 1 71<OO,

by virtue of the hypotheses of Lemma 3.2, This completes the proof of Lemma 3.2.
Proof of Theorem 3.1. Since the convergence of the Fourier series at a point is a local property

of its generating function f, the theorem follows by formula (7.1) from Chapter II of the book
(see [29]) and from Lemma 3.2.
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5 APPLICATIONS
We can apply Theorem 3.1 to weighted mean A = (ay,) is defined as a,, = ;;—Z when 0 < v <n,
where P, = pg + p1 + ... + pn. We have that,

_Pn_Pv—l and & = PPy
et Pnpnfl'

The following results can be easily verified.

1. If we take 6, = £= in Theorem 3.1, then we have another theorem dealing with absolute
matrix summability (gee [18]).

2. If we take 6, = % and an, = %“T’L in Theorem 3.1, then we have a theorem dealing with
|N, pn| ,, summability (see [6]).

3. If we take 0,, = n and a,, = %Z in Theorem 3.1, then we obtain a new result dealing with
|R, pp |, summability method.

4. If we take 6, = n, ap, = % and p, = 1 for all values of n in Theorem 3.1, then we have a
result for |C, 1|, summability.
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