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LATTICE BASED MORPHOLOGICAL RULE INDUCTION
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ABSTRACT. In this paper we will present a novel inflection learning method
using lattice based algorithms. The inflection grammar system is represented with
a lattice of elementary inflection rules, enabling the description of prefix, infix and
suffix transformations as well. The proposed grammar system is ideal for highly
agglutinative languages like Hungarian. We created a learning algorithm to generate
the rules in an automated way from training word pair sets. Our evaluation shows
that this novel method can learn both suffix and infix transformations unlike our
baseline algorithm called TASR, and has a better correctness ratio than finite state
transducers, too.
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1. INTRODUCTION

In our investigation we use a lattice based approach applying the theory of formal
concept analysis (FCA) to solve the morphological rule induction problem as a
special classification problem. The goal of this paper is to prove that lattices are
good candidates for inflection rule generalization. Our motivation for applying FCA
can be summarized in the following points:

e Lattices are widely-used structures, and they can store relationships and de-
pendencies in an efficient way.

e Lattices are very expressive in visualizing the relationship among different
derived and generalized concepts.

e The lattice structure supports an efficient generalization process.

93


http://www.uab.ro/auajournal/

G. Szab¢, L. Kovacs — Lattice based morphological rule induction

The target language of our research is Hungarian, that is a highly agglutinative
language, with many complex affix types. The complexity of this morphology system
comes from the fact that one word can contain multiple affixes, and each affix can
change the stem part, too, like in case of vowel harmony. Although we are working
with a training set of Hungarian word pairs, the proposed method is based on a more
general model that can handle the morphology rule system of many other languages
as well.

Morphology is a special area of computational linguistics that focuses on the
analysis of internal structure of words. In the theory of morphology, the words of a
natural language are built up from morphemes, that are the smallest units encoding
semantic information [3]. Based on their morphological features, languages can be
categorized into multiple groups [16]. While inflective languages such as English
and isolating languages like Chinese and Vietnamese are morphologically simpler
(the former having a fix set of possible affix types for each part-of-speech tag, while
the latter one having a low affix-stem ratio), others can have challenging inflection
rules, including fusional languages (Russian, Polish, Slovak, Czech) and agglutinative
languages (Japanese, Turkic, Hungarian, Finnish). Fusional languages usually fuse
multiple affixes into one, blurring the affix boundaries. On the other hand, the
complexity of agglutinative languages comes from the fact that each word can have
a potentionally infinite number of affixes.

We distinguish two main morpheme categories: the lemma, which is the root
form of the word, and the affixes, that modify the base meaning [3]. Affixes can
be prepended (prefixes), inserted (infixes) or appended (suffixes) to the root. The
process of adding affixes to a word is called inflection, while the inverse of inflection
is lemmatization.

Stemming is similar to lemmatization but it only operates with simpler rules,
removing the affixes. One of the most popular stemming method is the Porter
stemmer (Snowball) [14]. The Porter stemmer has a dictionary of suffixes and it uses
a set of predefined decomposition rules. It’s very efficient for isolating languages,
but it usually cannot handle the complex inflection rules of synthetic languages. The
other main shortcoming of the Porter stemmer approach is that it cannot provide
the segmentation of the input word, only the stem is determined.

A more detailed model is presented in the two-level morphology model [7], where
the inflected words are represented on two related levels: the surface level contains
the written form of the words, while the lexical level contains the morphological
structure of the word. The model uses a dictionary of valid lemmas and morpheme
categories, as well as finite state transducers (FSTs) [10, 11] as the transformation
engine. This model is a widely accepted approach to manage morphological analysis
including both the generation and the recognition process. One of the main issues
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related to this model is the computation complexity of the implementations. It
was shown that it is inefficient to work with complex morphological constraints
[2], where there are complex dependencies among the different morpheme units like
vowel harmony. The analysis in [7] shows that both recognition and generation
are NP-hard problems. One possible method for automatically build an onward
subsequential transducer is OSTIA [12].

Considering simple inflection models with only suffix transformations, the general
automaton graph can be replaced with a simpler tree structure. The TASR method
[15] uses this kind of approach, where a suffix rule LHS — RHS contains a left-
hand suffix and a right-hand suffix. These rules can be organized into a hierarchy
based on the containment relationship among the LHS components, and then the
most specific matching rule can be applied on the input words. The main benefit of
TASR lies in its simplicity and execution efficiency.

A different approach is presented in the proposal [5] which uses a Hidden Markov
Model to discover the rules of word segmentation. The model consists of three
components: the first one corresponds to the set of morphology categories, the
second one relates to the transition probabilities among the categories and the third
parameter is the emission probability of the different categories. The model uses a
Viterbi-like search algorithm to find the best state sequence for a given input word.

The idea of classification using lattice structure originates from [22], where the
adaption of a formal concept lattice was implemented for solving classification prob-
lems. Formal concept lattices are the main data structures within the FCA domain.
The theory of FCA [6] provides a tool for conceptualization in an object-attribute re-
lational context. The roots of FCA originate in the theory of Galois connections [13]
and in the applied lattice and order theory developed later by Garrett Birkhoff [4].
The terminology and theoretical foundation of FCA was introduced and built up in
the 1980’s by Rudolf Wille and Bernhard Ganter [21]. A formal concept corresponds
to a pair of related closed sets. The first set containing objects is called the extent
part while the second set containing attributes is the intent part of the concept. For-
mal concepts created from the input context can be structured into a concept lattice
based on the set containment relationship. This ordering in the lattice corresponds
to the specialization-generalization relationship among the concepts.

The concept lattice can be used as a tool to generate all closed attribute sets and
to measure the relationships between the class labels and the attribute sets. One of
the first proposals to apply a concept lattice for classification problems is presented
in [22]. In this model, one of the attributes is marked as class label. A classification
rule describes the dependency of the class labels from the logical formulas f defined
on the set of attributes. A consistent classification rule is a classification rule with
a confidence value 1, i.e. |m (fNec)| = |m(f)]. The m (f) symbol denotes the set of
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objects meeting the f predicate. A conjunctive concept (X, f) is called a consistent
concept if it implies a unique class label and the confidence value is equal to 1.

Our contribution focuses on a specific domain in computerized morphology, our
goal is to develop an efficient semi-supervised morphological grammar induction
for highly agglutinative languages. The proposed method uses a list of reduced
word descriptors for training, containing the inflected word, the lemma and the affix
types. The main motivation for this model is to simulate the grammar learning of
an artificial agent where the agent can extract the affix types based on a semantical
analysis. Besides morphological rule induction, this method can be used in any
scientific area that uses string transformation based models, including part-of-speech
tagging, data mining and bioinformatics.

The structure of the paper is the following:

e In section 2 we introduce the rule model that we used for describing inflection
changes.

e The main part of the paper is section 3 where the three lattice builder algo-
rithms are introduced, as well as the method of generating inflection rules from
training word pairs.

e Section 4 shows how we evaluated the three algorithms and the rule model.

e In section 5 we can read about the different metrics we experienced while
analyzing the methods.

e Section 6 summarizes the conclusions.

2. RULE MODEL

Let ¥ = {c1,ca,...,¢ck} be an arbitrary alphabet containing ¢; characters. The
empty character is denoted by (). The set of n-length strings is denoted by X™. For
every s = $189...8, € X", |s| = n denotes the length of string s. The ith character
of the string s is denoted by s;. The set of all possible strings is ¥* = U3 3", From
all the possible strings, there are only a finite number of strings that are meaningful
words in the target language. Let’s denote them with W = {w} C ¥*.

We'll also need some operations on the domain of strings. The concatenation of
strings s; = s1,51,...51,, € X" and sy = S2,592,...52,, € X' is denoted by s1 + 59 :=
81,81y - -51,,82,82,. . .52, € L™, Let’s have two strings, s, s’ € X* where |s/| > |s].
If the string s is a substring of s, we denote it with s C s’ <= 3s”,s" € ¥* : ' =
s + s+ §”. The notation of selecting a substring of the string s = s1... s, from
the ith character to the jth character, 1 < ¢ < j < kis s;; = 8;8;41...5j-15;j.
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Reversing the string s = s1...sy is denoted by s™! = sps4_1...s1. Let’s define

the replacement operation as well. Let s,s’,s”,s” € ¥* be strings, s” C s’. The
notation of finding s’ in s and replacing s” C s’ with s will be s\ s’ [s" — §"]. If
s’ € s then the result will be s.

To identify the start and end of a word, we introduce two new characters: the
word-start character $ and the word-end character #. These characters will be
prepended and appended to the input words, respectively. It is important to note
that $,# ¢ . For convenience, we define an extended alphabet ¥ = X U {$, #}.
Hence, |Z| = || + 2. We define the word extension operation as y(w) = @ =
$ + w + #. Dropping the special characters from the extended word w € W, w =
$-+w-++, w € W is the inverse operation: p~! (w) = w. Every operation previously
defined on the normal alphabet ¥ can be extended to ¥ simply by treating $ and #
as normal characters. This way concatenation, substring check, selecting substrings,
reversing and replacement work just like on normal strings.

After establishing the basic building blocks of the model, let’s define the rule
model that we’re going to use. A transformation rule is a six-tuple

R= (avaawaﬁvﬁvA) (1)
where

e o € ¥* is the prefix of the rule containing the characters before the changing
part,

e 0 € ¥* is the core of the rule that is the changing part,

e w € ¥ is the postfix of the rule containing the characters after the changing
part,

° 7 € N is the front index of the rule’s context occurrence in the source word,

) W € N is the back index of the rule’s context occurrence in the source word
and

A = (§;) is a list of simple transformation steps on the core, §; C ¥ U {0} x
S U {0}.

The length of the prefix and postfix parts are given as an input parameter of the
method. The context of a rule is the concatenation of the following three compo-
nents: v(R) =a+ o0+ w.

As an example, let’s have a word pair of ($zabyrabyz#, $rabyredwyz#). We
can create multiple rules that will cover this word pair, two of them can be seen in
Table 1.
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Table 1: Rule examples

a o w 7 A

Ry r ab y 2 1 a—c b—od +w
Ry byxr ab yz# 1 1 —a +c¢c b—d +Hw

For an input word if we can locate a matching substring, we can apply the
corresponding transformation process. Otherwise, if the rule’s context does not
match the word, the output will be the original input:

x(R,w:{ vty £ |
w\ v (R)[oc — A(o)] otherwise

Here, A (o) means we apply each transformation d; € A step one by one on the
string o.

As we defined x on the extended words (w € W), it is important to note that the
input words will be normal, non-extended words (w € W). In order to transform
the original words, we first extend them, then apply the rule, and finally drop the
special characters to get the output over the original alphabet X:

_ _ —1
Win €W & @i €W 5 o €W L woue €W

3. BUILDING A LATTICE OF GENERATED RULES

After discussing the rule model, the next task is to generate inflection rules from a
training word pair set. The input is T = {(wl, wo) € WQ}, a set of word pairs. The
first step of the rule generation is to transform each word pair to extended words:

E:{(’U_)l,wg) ]wl,wg eW A :u(wl) A U_]QZM(’LUQ)}

This way each word will contain $ as its first character and # as its last character.
The goal is to generate a rule set from these word pairs: R = {R}.

First, let’s discuss how we can generate a rule according to definition 1. For
this, we use the concept of Levenshtein distance [9]. The goal is to generate a list
of transformation steps where the overall cost of these transformations is minimal.
According to the original Levenshtein distance, the cost of an invariant replacement
is 0, while addition, removal and variant replacement have a cost of 1.

After a transformation list is produced, we can generate a rule R from it by
dropping the invariant replacements at the beginning and at the end of the list. The
remaining transformation steps will show what ¢ is in our new rule and how A looks
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like. This resulting transformation list can contain invariant replacements as well,
but they cannot appear at the beginning or at the end of the list.

To build a lattice from the generated rules based on FCA lattice theory, we need
to define two more operators on the domain of rules: intersection and checking if a
rule is the subset of another rule. The parent-child relationship is determined by the
subset operator: if an object o1 is a subset of another object 09, then o will appear
as a parent or ancestor of os. In our case, objects will be rules, so each node in the
lattice will contain either an atomic rule that is directly derived from the training
set, or an intersection.

To define the intersection operator, let’s have two rules:

Rl = (04170'1,(/&)1,71,?1, <5lz>)
Ry = (a2702,w2,72,<727 <52j>)

The intersection of the two rules is a new rule whose components are calculated
by intersecting the components of the original two rules:

RiN Ry = (a1 N @, 01 N 02, w1 Ny wo,
10T 2, 1057 2, (61,) Nes (02,))

As the components have different meaning and structure, they are intersected in
different ways. The intersection of two characters ¢;,c; € X U {0} is:

CiﬂCj:{(b ifCi#Cj

¢; otherwise

Let s € %, s’ € 3! be two strings. The full intersection operation that is used
for the core intersection is defined as follows:

A Difk#lor3i,1<i<k:s;Ns,=0
S s =
v s1N sy +s2Nshy+ ...+ s, N s) otherwise

As we can see, the full intersection provides an output only if the two input
strings have the same length and all the character pairs with the same index have
an intersection. For the suffix, we use a different intersection that starts from the

left side of the words and produces an intersected character until this character level
intersection can be done, then stops:

sﬁ_>s/:51ﬂ8’1+52ﬂ8'2+...3mﬁ5/m
where m < min {k,[}, V1 <i <m:s;Ns; # 0. Also, spy1Nsp, =0 or[s| <m

or |s'] < m.

99



G. Szab¢, L. Kovacs — Lattice based morphological rule induction

The prefix part is intersected in the inverse way: we start from the right side of
the words and produce a character intersection until the aligned characters have an
intersection. We can define this kind of intersection in the following way:

sNe s = (sil N 3'71)_

We reverse the two input strings, produce the intersection using the N_, operator,
then reverse the output again.

The two indices are intersected using the N operator that only produces an
output if the two input rule’s indices are equal, otherwise the output will be empty.
In case of two indices i1 and is:

oo~ i1 if i =19
11 Mg = .
0 otherwise

The transformation lists are intersected similarly to the core strings: if the two
transformation lists are equal, then the output rule will have the same list, otherwise
the intersection cannot be calculated.

Summarizing the different intersection operators, the intersection of two rules
cannot be calculated if any of the following cases apply:

e aNcaz=0and o1 N o2 =0 and wy Ny, we =0

° ﬁlﬁﬁg = and Wlﬁﬁg =0
e (01,) Nes <52j> =0

With these definitions, we created a model that fits the formal lattice theory. It
can be shown that for any rules Ry and Rs and their intersection rule R3 = R1 N R,
the following condition is met:

V(?Dl,ITJQ) el: X(Rhwl) = W2 /\X(Rg,wl) = Wy = X(Rg,ﬂ)l) = W2

Another main operator besides the intersection is the subset operator (R; C Ra),
which plays an important part in building up the parent-child relationships. The
subset operator can be defined similarly to the intersection operator, but instead of
stopping if an intersection doesn’t exist, we return false, meaning that Ry Z Rs.

Table 2 contains a simple example for the intersection operation. It can also be
seen that Ry N Ry C Ry and Ry N Ry C R indeed.

Using these two operators, we can build a lattice from the previously generated
rules. The first implemented method, called the full builder, generates all the rule
intersections and inserts them appropriately into a lattice structure so that the
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Table 2: Intersection example

o o w 7 A

Ry aei abc dfg 3 2 —a b—b c—1

R eir abc di 1 —-a b—=b c—1
0

RiN Ry ei abc d —a b—=b c—1

3
3

subset relations of the rules are mirrored by the parent-child relationship of the
lattice nodes. This is a rather naive algorithm because it calculates every possible
intersection. There are more algorithms proposed in the literature with preferable
cost functions like the In-Close algorithm [1], Close by One [8], AddIntent [20], etc.
However, in our case the naive lattice builder will be sufficient as well because of the
smaller lattice sizes.

We distinguish different node categories: atomic, consistent and inconsistent
nodes. Atomic nodes are special consistent nodes that are generated from the train-
ing word pair set. A node is consistent if it is true that they produce the same output
for any input word as their descendants. If this requirement isn’t met, the node and
its rule are called inconsistent. Typically atomic nodes reside on the bottom of the
lattice, above them we can find some levels of consistent nodes, and the top nodes
are inconsistent.

For an input word, the method tries to find the most specific node from the top
whose rule context matches the word, then the rule is applied on the input. Based on
the consistency requirement, the search algorithm can stop if it reaches a consistent
node from the top. If we reach an inconsistent node and we cannot continue the
traversal, because none of the children matches the input word, we can try to apply
a dominant child’s transformation list. A dominant child is selected based on the
following frequency definition:

freq (R | ﬁ) = [{(w1,w2) €| ~v(R) Cwy A
a+A(o)+wC wal

As the lattice generated from the training set usually contains a large number of
nodes, we perform some lattice reduction to decrease the cost of classification. In the
consistent lattice version, we eliminate all the inconsistent nodes. This reduction
is based on the fact that in most cases, if the training set contains enough word
pairs, the search algorithm can find a consistent node for the input words, and no
inconsistent nodes will be used for transformation.

The lattice optimization algorithm can be extended with additional steps: if
an node becomes inconsistent either at the point of generation or later, we drop it
immediately. Proposition 1 summarizes when the consistency of a node can change,
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confirming that only these two extra steps are required.

Proposition 1. The consistency of a node can only change if it is consistent and
a new consistent descendant is inserted into the lattice. In other cases (if it is
inconsistent or the newly inserted node is inconsistent), consistency cannot change.

Proof. Let’s denote the node with n. We have to check four cases. If n is inconsistent
and we insert a new inconsistent node, consistency cannot change. If the new node
is an ancestor of n, it doesn’t influence its consistency, and if it is a descendant,
it doesn’t influence it either, as n is already inconsistent and it cannot become
consistent. If the new node is consistent, the same things apply.

If n is consistent and we insert a new inconsistent node, it will definitely be a
new ancestor of n, since an inconsistent node is more general than a consistent one,
thus consistency of n cannot change. If the new node is a descendant, there can be
two cases: if its transformation list equals the transformation list of n, consistency
doesn’t change. However, if the lists aren’t equal, it means that there is at least one
word pair in the training data set for which the rule of n and the rule of the new
node will yield different results, therefore n becomes inconsistent.

It can also be seen that consistent nodes that have only consistent parents are
never reached during the search, so they are also good candidates for elimination.
A simple idea is to build a consistent lattice using the consistent builder, then take
the maximal consistent nodes that are on top of the lattice, and use them as input
for the full builder algorithm that produces a lattice containing both consistent and
inconsistent nodes. This way many consistent nodes will be eliminated, but there
will be some inconsistent nodes to speed up the search process.

In the next sections we’ll evaluate these three builder algorithms (the full, the
consistent and the minimal builder), and the lattices they produce.

4. EVALUATION METHODOLOGY

To evaluate the above presented rule model and the lattice builder algorithms, we
first need a training data set and an evaluation data set in the target language.
These training sets contain word pairs demonstrating a specific inflection type in
Hungarian. We chose Hungarian accusative case.

Previously we published in [17] the method of generating these data sets that
produced 13 345 903 word candidates. Hunmorph-Ocamorph [18, 19] was used to
determine the morphological structure of these word candidates, producing 4 423
882 records. This means that we had almost 4.5 million morphological structures,
although some words were destructed in multiple ways.
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We used these records containing (word, morphological structure) pairs to gener-
ate the word pair set. An example output of Hunmorph-Ocamorph for the Hungarian
word almdkat (the plural form of alma (apple) in accusative case) is:

alma/NOUN(PLUR)(CAS(ACC))

The logic of the word pair generation method is the following;:

e If we find a record with only two morphological tokens (a part-of-speech tag
and an affix type), we can generate a word pair from the lemma and the
inflected form.

e Otherwise we can only generate a word pair if we find another record that has
the exact same tokens, except for the last one. In this case the word pair will
be the inflected form of the word containing less affixes and the inflected form
of the other word.

The algorithm groups the records by their lemmas and processes each group in
parallel for maximum performance. After generating the word pairs, for evaluating
the three lattice builder methods, we measured the following metrics:

e Build time: how much time does it take to build a lattice with the algorithms?
e Size: how many nodes are there in the lattice?

e Average search time: how much time does it take in average to find the ap-
propriate node for an arbitrary input word after building the lattice?

e Correctness ratio: how much percent of the input words can the built lattices
inflect correctly?

For each test execution, we used up to 3 000 training word pairs, starting with 100
of them and increasing the input size by 100 word pairs each time. For examining
the correctness ratio, we used 3 000 evaluation word pairs and its first 100, 200,
etc. word pairs as the training word pair set. As the two sets overlap, we expected
100% correctness ratio at the 3 000 training word pair marker. We also compared
these results with two of the most popular inflection learning methods: TASR and
FST. Finally, we transformed our word pairs to include infix transformations and
examined the correctness ratio in that case, too.
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5. ANALYTICAL RESULTS

Let’s examine the build time of the three lattice builder algorithms, that can be
seen in seconds on the left side of Figure 1'. As we can see, building a full and
a consistent lattice have very similar build times. This is because there were very
few inconsistent intersections that could be dropped immediately, and the number
of consistent nodes becoming inconsistent was a bit higher. These nodes required a
slightly slower recursive step at the end of each insertion, so we couldn’t spare much
time. If we look at the build time of the minimal lattice, we can see it’s also very
close to the two previously mentioned algorithm, the maximal build time is slightly
above four seconds at the 3 000 training word pair mark. Considering that the third
algorithm builds two lattices, it’s a quite good result.

The number of nodes can be seen on the right side of Figure 1. Remember that
the minimal lattice builder algorithm had the promise of optimizing the lattice size
so that less memory and disk space is required to store the built structures. As we
can see, the number of nodes increases based on the number of training word pairs.
Let’s first look at the line of the full and the consistent lattice. The difference of
their size is not very significant, which means that in the original full lattice there
were not many inconsistent nodes. The majority of these nodes were consistent,
including the atomic nodes and the intersections as well. The size of the minimal
lattice, on the other hand, is about 42% of the full lattice (541 instead of 1268)
at the 3 000 training word pair mark. This is a great achievement, as we could
eliminate most of the inconsistent nodes — that we now know were not many — and
also many of the consistent nodes that are not required in most cases. The lattice
became much smaller, and according to the trend, the difference between the size
of the full lattice and the minimal lattice would grow if we increased the number of
training word pairs even more.

The average search time of the three lattice builder algorithms can be seen in Fig-
ure 2. The results were calculated by measuring the search time of every evaluation
word pair and then taking the average of the values. The full lattice containing the
most inconsistent nodes has the worst search time according to the results, while the
minimal lattice which is in the middle regarding the number of inconsistent nodes
has the best average search time. This means that our idea of keeping some of
the inconsistent nodes was indeed a good idea. The consistent lattice that has no
inconsistent nodes is in the middle, meaning that when we search the appropriate
matching child of the root node in a list without any indexing, the search time will
be slightly better than using the full lattice, but retaining some but not all of the
inconsistent nodes speeds up the search process. However, the worst search time on

!Note that these figures also display the metrics of the FST and the TASR, we will analyze them
in subsection 5.1.
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the diagram is about 0.001 seconds, which is very fast. This means that the search
time is very good using any of these lattice types.

On the left side of Figure 3 we can see the correctness ratio using word pairs that
contain suffix transformations. At the 3 000 training word pair marker, although
the training and evaluation data sets are the same, the result is slightly lower than
100%, because there are some ambiguous word pairs in the training set that can be
inflected in multiple different ways. One example is 6rémet and 6rémot that are
two possible valid accusative case forms of the Hungarian word for joy.

On the right side of Figure 3 the same test is executed using a generated word
pair set that contains infix transformations. Basically we extended the words of
each word pair with a random prefix and suffix to simulate infix transformations, as
Hungarian accusative case always affects the word-ending. What we can see is that
the correctness ratio reaches the same result as before, but more slowly. The reason
is that we cannot rely on word-start and word-end symbols, as the transformation
occurs in the middle of the word. This is why this case is more complex than the
previous one, resulting in slightly slower convergence.

We also experimented with limiting the context-length of the rules to speed up
the training phase, and possibly reducing the size of the lattice. However, it turned
out that using a limited-length context results in almost identical size and build time,
but worse correctness ratio. Because of the information deficit, the correctness ratio
platoed at about 95%. So we decided not to use this configuration. The only valid
use case for it is when we have a very small training word pair set, as it reaches this
95% quicker than the full-length context version.

5.1. Comparison with other learning methods

We also compared the lattice based model with two of the most popular inflection
learning methods: TASR and FST.

For evaluation, we developed an own TASR implementation and used Lucene’s
FST implementation.

The build time of all the methods can be seen on the left side of Figure 1. As
we can see, building an FST can be done almost in constant time. On the other
hand, building a tree of aligned suffix rules is worse than building a lattice, because
it involves not only generating the rules themselves, but also deciding which node
subsumes another node, and which rule is the winning rule in a node.

Both the size of TASR and the size of FST increases with bigger momentum
than the size of the lattices, as can be seen on the right side of Figure 1. The biggest
structure is the TASR, but an FST is also way bigger than a lattice. This means
that storing a lattice either in memory or on a disk is more optimal than doing the
same with a TASR or an FST.

105



G. Szab¢, L. Kovacs — Lattice based morphological rule induction

. 4 :
’ /s
/ k2
’ A
6 . P
15000 B
4 1
’ ,°
’ K
’ .
% ’ s
4 . - e
E K ,° g 10000 ~
o (7] . -
2 -
S . LT
3] - ‘/_/
R P
, e
2 5000 v PR
. -
’ -
R
Lz
Lot
»’/ ___________
0 0 ————— - - - - -
0 1000 2000 3000 0 1000 2000 3000
Number of Training Word Pairs Number of Training Word Pairs
— Full- - Consistent— Minimal - - TASR - - FST — Full- - Consistent— Minimal - - TASR - - FST
(a) Build time (b) Size

Figure 1: Build time and size
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Figure 2: Average search time

The average search time of an FST is the best, similarly to its build time. This
can be seen in Figure 2. As TASR includes a bottom-up search algorithm to find the
most specific matching node in the tree, increasing the tree size also increases the
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Figure 3: Correctness ratio with limited-length and full-length context

average search time. However, at smaller sizes a TASR can inflect the words quicker
than any of the built lattices, because it uses fewer string comparison operations.
As the tree becomes bigger, more and more nodes need to be checked, therefore the
search time increases above the search time of lattices.

On the left side of Figure 3 we can see that TASR provides better results in
case of smaller training data sets, eventually reaching the maximal value similarly
to the lattice implementation. However, an FST can only inflect words that it was
trained with, resulting in a linear curve. On the right side of Figure 3 we used infix
transformations instead of suffix modifications. Since TASR can only model suffix
transformations, it couldn’t inflect any of the words. FST is position independent,
so we can see the same linear curve.

All in all we can say that the lattice based method proved to be a good solution
for learning inflection rules. Except for build and search time it was better than
the FST model in all cases. For suffix transformations, TASR was better as it was
optimized for that case, but it couldn’t learn infix transformations. In this case the
lattice based method was the only really usable solution, as FST could only inflect
words it saw in the training set, while the lattice could generalize better, providing
a valid result even for previously unknown words.
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6. CONCLUSION

In this paper we presented a novel inflection learning method using lattice based
algorithms based on formal lattice theory. The rule model we used is based on the
Levenshtein distance theory that uses the concept of character additions, removals
and replacements. Besides storing the necessary transformation steps that are re-
quired to get the inflected form from the base form, we also store a prefix, core and
suffix substring that identify the context of the string modification in the original
word. To avoid ambiguity regarding multiple occurrences of this context, we also
introduced two indices that identify the changing substring clearly. After defining
the intersection operator on the rule domain, we presented the first, naive version of
our lattice builder algorithm that builds a full lattice, containing every single rule
intersection. This was the base method that we tried to improve in two steps: first,
we eliminated all the ambiguous or so-called inconsistent nodes, then we created a
minimal lattice builder that optimized the lattice size while keeping its correctness
ratio on a high level. The test affix type was the Hungarian accusative case, and we
used up to 3 000 training and evaluation word pairs. Our evaluation process showed
that we managed to optimize the lattice size by dropping about 60% of the original
nodes, managing to keep the correctness ratio above 90% percent. Moreover the
proposed method can learn not only suffix transformations, but also prefix and infix
ones. Comparing this novel lattice based method with TASR and FST it can be
seen that in case of infix transformations, TASR cannot be used at all, while FSTs
always result in linear learning curve, leaving this method as the only well-usable
method for learning infix transformations.
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