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FEKETE-SZEGO INEQUALITIES FOR Q— STARLIKE AND Q-
CONVEX FUNCTIONS

A. CETINKAYA, Y. KAHRAMANER, Y. POLATOGLU

ABSTRACT. Let S;(¢) and Cy(¢) denote the classes of normalized functions
f(2) = z+as2® +azz® + ..., which are defined in the open unit disk D and satisfying
2Dqf(2)/f(2) < ¢(2) and Dq(2Dqf(2))/Dqf(2) < ¢(z), where ¢ is the function
with real part, respectively. In this paper, we investigate new results of Fekete-
Szegd inequalities for the classes S;(¢) and Cy(9).
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1. INTRODUCTION

Let A be the class of functions f, defined by f(z) = z + a2z + a3z + - - -, that are
analytic in the open unit disc D = {z : |z| < 1} and Q be the family of functions
w, which are analytic in D and satisfying the conditions w(0) = 0, |w(z)| < 1
for all z € D. If f; and fy are analytic functions in D, then we say that f; is
subordinate to fo, written as fi < fy if there exists a Schwarz function w €
such that fi(z) = fa(w(z)),z € D. We also note that if fo univalent in I, then
fi < fa2 if and only if f1(0) = f2(0), f1(D) C f2(D) implies f1(D;) C f2(Dy), where
D, ={z:|2| <r,0<r <1} (see [8]).

Denote by P the family of functions p of the form p(z) = 14c1 2422243234+,
analytic in D such that p is in P if and only if

e = T

p(z) < (1)
for some function w €  and for all z € D. It is well known that a function f in 4
is called starlike (f € S*) and convex (f € C) if there exists a function p in P such
that p may be expressed, respectively, by the following relations:

IO RN 16
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for all z € D. For definitions and properties of these classes, one may refer to [1]
and [8].

Ma and Minda [15] unified various subclasses of starlike and convex functions
for which either one of the quantities zf'(2)/f(z) or 1 + zf"(2)/f'(2) is subor-
dinate to a more general superordinate function. The classes $*(¢) and C(¢) of
Ma-Minda starlike and Ma-Minda convex functions, are respectively characterized
by zf'(2)/f(z) < ¢(2) and 1 + zf"(2)/f'(2) < ¢(z), where function ¢ with positive
real part in D, ¢(0) = 1,¢’(0) > 0. The coefficient |ag — a3| on the normalized ana-
lytic functions f in D plays an important role in functions theory. The problem of
maximizing the absolute value of this coefficient is called Fekete-Szego [4] problem.
Many authors have considered the Fekete-Szeg6 problem for various subclasses of
A , the upper bound for |az — a3| was investigated by many different authors (see
[6, 14]).

We denote by P a class of analytic function in D with p(0) = 1 and Rep(z) > 0.
Here we assume that ¢ € P satisfying ¢(0) = 1,¢'(0) > 0 and ¢(D) is symmetric
with respect to the real axis. Also, ¢ has a series expansion of the form

(Z)(Z) = 1+BIZ+BQZZ+B:;ZS—|—...,(BI > O) (2)
In 1909 and 1910 Jackson [10, 11, 12] initiated a study of ¢— difference operator D,
defined by
f(z) = f(qz)
D,f(z) = ———= for B\{0}, 3

where B is a subset of complex plane C, called g— geometric set if gz € B, whenever
z € B. Note that if a subset B of C is ¢— geometric, then it contains all geometric
sequences {z¢"}§°, zq € B. Obviously, D,f(z) — f'(2) as ¢ — 17. The g—
difference operator (3) is also called Jackson ¢— difference operator. Note that
such an operator plays an important role in the theory of hypergeometric series and
quantum physics (see for instance [3, 5, 7, 13]).

Also, note that Dy f(0) — f'(0) as ¢ — 17 and D7 f(z) = Dy(D,f(z)). In fact,
q— calculus is ordinary classical calculus without the notion of limits. Recent interest
in g— calculus is because of its applications in various branches of mathematics and
physics. For definitions and properties of g— difference operator or ¢g— calculus, one
may refer to [3, 5, 7, 13]. In particular, we recall the following properties:

Since

therefore we have

1—4q" _
1_qa’nzn 17 (4)

Dof(z) =1+

n=2
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where [n], = %. Clearly, as ¢ = 17, [n]y = n.
The class of g— starlike functions was first introduced by Ismail et. al. [9] in
1990 as below:

Definition 1. A function f € A is said to be in the S; such that
2Dy f(2)
f(2)

When q — 17 in the limiting sense, then the class Sy reduces to the traditional class

S*.

S;:{feA:Re< >>O,qe(0,1),zeﬂ)}.

Also, the class of g— convex functions was introduced by Ahuja et. al. [2] as
follows:

Definition 2. A function f € A is said to be in the Cy such that
Dy(2Dyf(2)
Dqf(2)

When ¢ — 17 in the limiting sense, then the class C4 reduces to the traditional class

C.

Cq—{feA:Re( )>O,qe(0,1),zeID>}.

Using above definitions and principle of subordination, we now introduce the
following classes:

50 ={r a2 <o, e 7}, (5)
%(@—{feA:WW(zmep}. (©)

The aim of this paper is to give Fekete-Szegd inequalities for the classes S;(¢) and

Cq(9)-

2. MAIN RESULTS

We first investigate Fekete-Szegd inequalities for the class Sy(¢). For our main
theorems, we need the following result:

Lemma 1. [16] Let p € P with p(z) = 1+ c12 + c22% + ..., then |c,| < 2 forn > 1.
If |e1] = 2, then p(z) = pi(z) = % with y1 = §. Conversely, if p(z) = p1(z) for
some |y1| = 1, then ¢y = 2y1 and |c1| = 2. Furthermore, we have

2
<o lal”
2

ct
Cy) — —
2
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2
Iflei] <2 and |cp — F| <2 — |C§|2, then p(z) = pa(z) where
pa(2) = 1_ gzt
47122

2
2co—cy

andy1 = 5,72 = ek Conversely, if p(z) = pa(2) for some |y1| =1 and |y2| =1,

c 2co—c? c? c1?
then "= ?1"72 = 4—‘01|5 and |62 — 71| <2-— les” 2‘ .

Theorem 2. Let ¢(z) = 1+ Biz+ Baz? + ..., where the coefficients B, are real with
By #0 . If f belongs to the class S;(¢), then

laz] < [25?1—| I g
1B Bi_ B
lag| < 3, 1_ 1ma${1, 2, 1_ 1 + ij }, (8)
(2 - D2gg + B - 1) B4
o Bi([3], — 1) | < [3]q1—1 Y

These results are sharp.

Proof. 1If f € S;(¢), then there is Schwarz function w, analytic in D with w(0) = 0
and |w(z)| < 1 such that

2Dqf(2) — lw(s
el i), (10)
Define the function p by
p(z) = izgz; =1l+eciztez?+... . (11)

We can note that p(0) = 1 and p is a function with positive real part. Therefore

o(w(z)) = ¢<p<z>—1>

p(z) +1

1 2 i
ol oo )

B B 1\ | Beci
e ) B
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Also, computations shows that

z2Dqf(2)

—?@Tf:1+Qﬂm—D@z+«BM—1M3—Qﬂm—D@ﬁ2+“.. (13)
From equations in (12) and (13), we obtain
3101
([2)g = Daz = = (14)
and ) )
Bics  Bic Bse
(Bl — Das — (2, — 1)ag = =2 - =904 24, (15)
Taking into account Lemma 1, we obtain
B161 |Bl|

|ag| =

2([2l; - 1) ‘ ~ 21

Jas| = ’%ijl_l)[@—cj*f([z]?—l +gj>”

and

2([3]g — 1) 2 2 |2q-1 B
|B1| [ jea]? ‘ By By )}
2+ + —=|—-1
T 2(Bg 1) 2 2, -1 B
| B1| { By By }
< mazxs 1, + =,
T Blg—1 2 -1 B

Furthermore, using (14) and (15) we get
(120~ D2 + B - 1)
Bi([3lg = 1)

An examination of the proof shows that equality in (7) is attained, when ¢; = 2.
Equivalently, we have p(z) = p1(2) = (142)/(1—2). Therefore, the extremal function

in Sy (¢) is given by
Dyf(z) <p1(2’) - 1)
2 Y e — 16
IEREVICES 1)
In equality (8), for the first case, equality holds if ¢; = 0,co = 2. Equivalently, we
have p(z) = pa(z) = (1+ 2%)/(1 — 2z?). Therefore, the extremal function in S} (¢) is

given by Dof(2) (-1
z) pa(z) —
zﬁ%)‘(mm+J' )

|Bico | B1|
2([3]g 1) = [3lg— 1

asz — a% =

59



A. Cetinkaya, Y. Kahramaner, Y. Polatoglu — Fekete-Szego inequalities ...

In (8), for the second case, the equality holds if ¢y = 2,c9 = 2. Therefore, the
extremal function in S;(¢) is given by (16). Obtained extremal function for (7) is
also valid for (9).

In fact, Theorem 2 gives a special case of Fekete-Szego problem for real

([2]q - 1) ([2} 1 + )
Bi([3]q — 1) 7

M =
which obtain the naturally and simple estimate. Thus the proof is completed.

We now consider |az — pa2| for complex p.

Theorem 3. Let j1 be a nonzero complex number and let f € S;(¢), then
By By < (3] — 1) > ‘}

+ 1— ——=u . (18)
1B 2] -1 ([2g —1)

Proof. Applying (14) and (15), we have

B 2 (B B B2¢?
_ 2_ P _ 1 2 1 11
@3 13 [Cz 2 (Bﬁuqlﬂ Hal, 1)

- 5,7 o 343 (i o (1- Eﬁiiiiﬂ))}
In view of Lemma 1,
sl < g 2 (3 s (- i) )
- 2<[?fll D {2 + b (‘B o <1 - [?;fq:;“) ‘ - 1)]
< g o (e )

Equality is attained for the first case on choosing ¢; = 0,c2 = 2 in (17) and for the
second case on choosing ¢; = 2,c2 = 2 in (16). Thus the proof is completed.

|B1|
laz — pa3| < 3, - 1ma:r

This result is sharp.

Corollary 4. Taking ¢ — 1~ in Theorem 3, we obtain

laz — pa3| < ‘2|m x{ '+Bl<1—2u>‘}

This result is sharp.
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We now investigate Fekete-Szego inequalities for the class Cy(¢):

Theorem 5. Let ¢(z) = 1+ Bz + Boz? + ..., where the coefficients B,, are real with
By # 0. If f belongs to the class Cy(¢), then

| B1|

= g, -1 1
| B1| B Bo
|a3\ S[?)],;([?)]q—l)max{l"[Z]q—l—l_Bl }7 (20)
PR -t B Y L By (21)
s B1[3]4([3] — 1) 2T BBl -

These results are sharp.

Proof. If f € Cy4(¢), then there is Schwarz function w, analytic in D with w(0) =0
and |w(z)| < 1 such that

Dy(2Dqyf(2))

b = o) (22

Computations shows that

Dy(2Dqf(2))
Dyf(2)

From equations in (12) and (23), we obtain

= 1+[2)¢([2]g — Dazz + ([3]4([3g — Das — [205(12], — 1)a3) 2* + ... (23)

3101
2

[Q]q(mq —Dag =

and

2
[3]61([3](1 —1Dag — [2}2([2]11 - 1)a% = 59 1 + 4 (25)

Taking into account Lemma 1, we obtain

Bicy ‘ < | B1|

la2] = ’2[%([214 | = Ll - D)
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and
o=l 3 3@ o)
< sEBe 3 S |t
e e e R
:2migﬂ—n_”*gPQB§11+gf‘lﬂ
™ e+ 7 )

Also, in view of (24) and (25), we obtain
220020, — D2 (g + B2 - 1)
a =
Bl[?’]q([?’]q —1) 2
Equality in (19) holds if

|Bica| < | Bi|
2(3]4([3lg — 1) = [Blg([8]g = 1)

as —

Dy(2Dyf(2)) (pi(z)—1
Def(z) ¢<p1(z) - 1> (26)
and in (20) holds if DueD ) .
q2Dgf(2)) [ Dp2(2)—
Dyf(z) ¢<p2(2) - 1)’ (27)

where p1,po are given in Lemma 1.
In Theorem 5, a special case of Fekete-Szego problem for real

2212l — V2l + B - 1)
BB, (3l — 1)

occurred very naturally and simple estimate was obtained. Thus the proof is com-
pleted.

/_L:

Now, we consider |ag — pa3| for complex .
Theorem 6. Let pu be a nonzero complex number and let f € Cy(¢), then

e (e ) Y

q

— pa’ Bl mazx
a5 = 1ol < @, — D {L

This result is sharp.
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Proof. Applying (24) and (25), we have

a3_“ag:2[3]q([§]lq_1)[62_62%+62%<g?+[2]fl—1>] _“éﬂ%ﬂ?jﬁ%—w
-l 3 3 (B a0 me )

In view of Lemma 1,

‘a3_“a%§2[3]q(|§]1q|_1)[ —'C§'2+'C§'2(§f+pfl—1(1‘Eégiig“ﬂ)}
:Mﬁﬂ_l)[2+|c;|2<‘gj+pfl_l<l EEEE&—B“)‘%

st 2 2 )

This result is sharp for the functions given in (26) and (27). This completes the
proof.

Corollary 7. Taking ¢ — 17 in Theorem 6, we obtain

B B 3
lag — pa3| < |61|m(m:{1, 'B? + B (1 - 2;@) ‘}

This result is sharp.
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