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Abstract. This paper is concerned with the existence of nontrivial solutions for p(x)-
Laplacian equations with gradient dependence{

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = f(x, u, |∇u|p(x)−2∇u) in Ω,

u = 0 on ∂Ω,
(P)

The techniques are based on an iterative scheme of Mountain Pass ”approximated” solu-
tions.
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1. Introduction

In the present paper we study the existence of solutions of the problem{
−div

(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = f(x, u, |∇u|p(x)−2∇u) in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ RN is a bounded smooth domain, 1 < p (x) < 2 for any x ∈ Ω and f is a contin-
uous function which obeys some specific conditions. Since the nonlinearity f depends on
the gradient of the solution, equation (P) is not variational. Therefore, the well developed
critical point theory cannot be applied directly. For this reason, there have been several
works interested with the semilinear problem{

−4u = f(u,∇u) in Ω,
u = 0 on ∂Ω,

(1.1)

in a bounded domain Ω of RN , using method of sub and supersolutions, topological degree
and priory bounds on the possible solutions; see, for instance, [20, 23]. The case involving
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the p−Laplacian operator ∆pu := div(|∇u|p−2∇u), where p > 1 is a real constant, was
studied in [15, 18, 21], in which the authors also used method of sub and supersolutions,
topological degree and blow-up arguments. Recently, some new and interesting methods
have been developed by different authors for problem (1.1). In [12], D.G. de Figueiredo
et al. developed a quite different method of variational type for the semilinear elliptic
problem {

−4u = f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain. In this paper, the used technique
consisted of associating (1.2) a family of semilinear elliptic problems with no dependence
on the gradient of the solutions, which is variational, and iterative scheme. Under the
assumptions that f has a superlinear subcritical growth at zero and at infinity with respect
to the second variable, they obtained the existence of a positive and a negative solutions
of (1.2) by using the Mountain Pass theorem and iterative technique. Later, in [13] G. M.
Figueiredo applied this method to a quasilinear elliptic problem

−4pu+ |u|p−2 u = f(u, |∇u|p−2∇u) in RN , (1.3)

where 1 < p < N and the nonlinearity f : R×RN → R is a continuous function depending
on the gradient of the solution, and obtained a positive solution for (1.3).

Motivated from the above mentioned papers, especially [12, 13], we consider problem
(P). Further, as far as we know, there is only one paper which deals with an elliptic
equation with variable exponent with dependence on the gradient of the solutions [25], and
the present paper is the second.

Problem (P) involves the term 4p(x)u := div
(
|∇u|p(x)−2∇u

)
which is known as

p(x)-Laplacian operator. The p(x)-Laplacian operator is a natural generalization of the
p−Laplacian operator. The main difference between them is that p-Laplacian operator is
(p− 1)-homogenous, but the p (x)-Laplacian operator, when p (x) is not constant, is not
homogeneous. This causes many problems, some classical theories and methods, such as
the theory of Sobolev spaces, are not applicable. Moreover, the nonlinear problems in-
volving the p (x)-Laplacian operator are extremely attractive because they can be used
to model dynamical phenomena which arise from the study of electrorheological fluids or
elastic mechanics. Problems with variable exponent growth conditions also appear in the
modelling of stationary thermo-rheological viscous flows of non-Newtonian fluids and in the
mathematical description of the processes filtration of an ideal barotropic gas through a
porous medium. The detailed application backgrounds of the p(x)-Laplacian can be found
in [3, 6, 22, 25] and references therein.

Noted that in problem (P) if p(x) ∈ (1, 2), this equation describes processes of fast
diffusion, the case p(x) > 2 corresponds to slow diffusion and the case p(x) = 2 linear
diffusion. In this paper, we will discuss the case of p(x) ∈ (1, 2), x ∈ Ω.
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2. Preliminaries

We state some basic properties of the variable exponent Lebesgue and Sobolev spaces
Lp(x) (Ω) and W 1,p(x) (Ω), where Ω ⊂ RN is a bounded domain (for details, see, e.g.,
[7, 8, 9, 16]).

Set C+

(
Ω
)

=
{
h : h ∈ C

(
Ω
)
, h(x) > 1

}
for all x ∈ Ω.

Define h− = minx∈Ω h (x) and h+ = maxx∈Ω h (x), ∀h ∈ C+

(
Ω
)
. For any p ∈ C+

(
Ω
)
,

we define the variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u | u : Ω→ R is measurable,

∫
Ω
|u (x)|p(x) dx <∞

}
,

then Lp(x) (Ω) endowed with the norm

|u|p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

The modular of Lp(x) (Ω) which is the mapping ρp(x) : Lp(x) (Ω)→ R is defined by

ρp(x) (u) =

∫
Ω
|u|p(x) dx,

for all u ∈ Lp(x) (Ω).

Proposition 2.1. [8, 16] If u, un ∈ Lp(x) (Ω) (n = 1, 2, ...), then the following state-
ments are equivalent:

(i) lim
n→∞

|un − u|p(x) = 0;

(ii) lim
n→∞

ρp(x)(un − u) = 0;

(iii) un → u in measure in Ω and lim
n→∞

ρp(x)(un) = ρp(x) (u) .

Proposition 2.2. [8, 16] If u, un ∈ Lp(x) (Ω) (n = 1, 2, ...), we have
(i) |u|p(x) < 1 (= 1;> 1)⇔ ρp(x) (u) < 1 (= 1;> 1) ;

(ii)|u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρp(x) (u) ≤ |u|p
+

p(x); |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρp(x) (u) ≤

|u|p
−

p(x);

(iii) lim
n→∞

|un|p(x) = 0⇔ lim
n→∞

ρp(x)(un) = 0; lim
n→∞

|un|p(x) =∞⇔ lim
n→∞

ρp(x)(un) =∞.
The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)},

with the norm

‖u‖ = |u|p(x) + |∇u|p(x),
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for all u ∈W 1,p(x) (Ω).

Denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x) (Ω); we know that |∇u|p(x) is an

equivalent norm on W
1,p(x)
0 (Ω). Moreover, it is well known that if 1 < p− ≤ p+ <∞, then

spaces Lp(x) (Ω), W 1,p(x) (Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

If we consider σp(x) (u) =

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx instead ρp(x) (u), then the state-

ments of Proposition 2.1 and Proposition 2.2 also hold for u, un ∈W 1,p(x) (Ω).

Proposition 2.3. [7] Let p (x) > 1 for all x ∈ Ω and 1
p(x) + 1

p′(x) = 1. Then, for all
a, b ≥ 0

ab ≤ ap(x)

p (x)
+
bp
′(x)

p′ (x)
.

Proposition 2.4. [7] If p ∈ C+

(
Ω
)
, the conjugate space of Lp(x) (Ω) is Lp

′(x) (Ω),

where 1
p′(x) + 1

p(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), we have∣∣∣∣∫
Ω
uvdx

∣∣∣∣ ≤ (
1

p−
+

1

(p−)′
) |u|p(x) |v|p′(x) ≤ 2 |u|p(x) |v|p′(x) .

Proposition 2.5 [8, 16] (i). Assume that the boundary ∂Ω of Ω possesses the cone
property, and p ∈ C(Ω). If q ∈ C(Ω) and 1 ≤ q (x) < p∗ (x) for any x ∈ Ω, then
W 1,p(x) (Ω) ↪→↪→ Lq(x) (Ω).

(ii) If p, q ∈ C(Ω) and p (x) ≤ q (x) for any x ∈ Ω, then W 1,p(x) (Ω) ↪→ Lq(x) (Ω), and
also there is a constant c > 0 such that

|u|q(x) ≤ c ‖u‖ , ∀u ∈W
1,p(x)
0 (Ω) .

Proposition 2.6. The operator L satisfies the following propositions:

(i) L : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
is a continuos, bounded and strictly monotone

operator;

(ii) L is a mapping of type (S+), i.e., if un ⇀ u (weakly) in W
1,p(x)
0 (Ω), and

lim
n→∞

(L(un)− L(u), un − u) ≤ 0,

then un → u (strongly) in W
1,p(x)
0 (Ω).

3. Main results

First, we state the assumptions imposed on the nonlinearity f , which appears in problem
(P). Let f : Ω × R × RN → R is a continuous function which satisfies the following
conditions:
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(f1)

f(x, t, |ξ|p(x)−2 ξ) = 0 ∀t ≤ 0, ∀ (x, ξ) ∈ Ω× RN .

(f2)

lim
t→0

f
(
x, t, |ξ|p(x)−2 ξ

)
|t|p(x)−1

= 0 uniformly for x ∈ Ω and ξ ∈ RN .

(f3)

lim
t→∞

f
(
x, t, |ξ|p(x)−2 ξ

)
|t|p(x)−1

= 0 uniformly for x ∈ Ω and ξ ∈ RN ,

where p(x) < p∗(x) ∀x ∈ Ω, and p∗(x) is the Sobolev critical exponent given by

p∗ (x) =

{
Np(x)
N−p(x) if p (x) < N,

+∞ if p (x) ≥ N.

(f4) (Ambrosetti-Rabinowitz’s condition). There exists θ > p+ and t0 > 0 such that

0 < θF (x, t, |ξ|p(x)−2 ξ) =

∫ t

0
f(x, t, |ξ|p(x)−2 ξ)dt ≤ tf(x, t, |ξ|p(x)−2 ξ),

for all |t| ≥ t0, x ∈ Ω and ξ ∈ RN .
(f5) There exists constants a1, a2 > 0 such that

F (x, t, |ξ|p(x)−2 ξ) ≥ a1 |t|θ − a2,∀x ∈ Ω, ξ ∈ RN .

(f6) There exists constants L1 = Lρ1 and M > 0 such that∣∣∣f(x, t1, |ξ|p(x)−2 ξ)− f(x, t2, |ξ|p(x)−2 ξ)
∣∣∣ ≤ L1 |t1 − t2|p(x)−1 − M

|t1 − t2|
, 1 < p(x) < 2,

for all t1, t2 ∈ [0, ρ1] (t1 6= t2) and for all |ξ| ≤ ρ2.
(f7) There exists constant L2 = Lρ2∣∣∣f(x, t, |ξ1|

p(x)−2 ξ1)− f(x, t, |ξ2|
p(x)−2 ξ2)

∣∣∣ ≤ L2 |ξ1 − ξ2|
p(x)−1 ,

for all t ∈ [0, ρ1] and for all |ξ1| , |ξ2| ≤ ρ2, where ρ1 and ρ2 depend on p+ and θ given in
the previous assumptions.

Moreover, in the proof of the main result related to problem (P), we use the well-known
vector inequalities (see [17])
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(
|η|p(x)−2 η − |ψ|p(x)−2 ψ

)
· (η − ψ) ≥ (p− − 1)

|η − ψ|2

(|η|+ |ψ|)2−p(x)
, 1 < p(x) < 2, 3.1

for all x ∈ Ω and η, ψ ∈ RN , where ” · ” is the inner product usual in RN .
The following theorem is crucial to get the regularity of the solutions obtained in the

present paper.

Theorem A. (a) [10,Theorem 4.1] If f satisfies the growth condition∣∣∣f (x, t, |ξ|p(x)−2 ξ
)∣∣∣ ≤ C1 |t|p(x)−1 + C2 |t|q(x)−1 + C3, ∀ (x, t, ξ) ∈ Ω× R× RN ,

where C1, C2, C3 > 0 and q ∈ C+

(
Ω
)

such that q(x) < p∗(x) for all x ∈ Ω, then u ∈ L∞(Ω)
for every weak solution u of (P).

(b) [10,Theorem 4.4] Let u ∈W 1,p(x)
0 (Ω)∩L∞ (Ω) be a solution of (P). If the function

p is log-Hölder continuous on Ω, i.e., there exists a positive constant H such that

|p(x)− p(y)| ≤ H

−log|x− y|
for x, y ∈ Ω with |x− y| ≤ 1

2
, (3.2)

then u ∈ C0,α
(
Ω
)

for some α ∈ (0, 1).

(c) [11,Theorem 1.2] Let u ∈W 1,p(x)
0 (Ω)∩L∞ (Ω) be a solution of (P). If the function

p is Hölder continuous on Ω, i.e., there exists a positive constant H such that

|p(x)− p(y)| ≤ H |x− y|α for x, y ∈ Ω, (3.3)

then u ∈ C1,α
(
Ω
)

for some α ∈ (0, 1).

Theorem 3.1. Assume the conditions (f1) − (f7) hold. If in addition p also satisfies
(3.3) and 1 < p(x) < 2 for all x ∈ Ω, then problem (P) has a positive solution provided

L1L3p
− + L2L4p

+ <
p− (p− − 1)

2
, (3.4)

where 1 < p− ≤ p+ < 2 and L3, L4 ≥ 1 are real numbers.
Moreover the solution obtained is of class C1,α

(
Ω
)

for some α ∈ (0, 1).
A similar result was obtained at [2] in the case of 2 ≤ p(x) < N for all x ∈ Ω.
The proof of Theorem 3.1 is broken into several parts listed as follows. Actually problem

(P ) is not variational, due to the presence of the gradient in f, but ifone “freezes” the

gradient variable, that is one fixes any w in the variable exponent Sobolev space W
1,p(x)
0 (Ω)

and considers the problem

{
−div

(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = f(x, u, |∇w|p(x)−2∇w) in Ω,

u = 0 on ∂Ω .
(Pw)
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The idea is to consider a class of problems such as (Pw) through an iterative scheme
where any “approximated” problem has a positive Mountain Pass solution, say un. Since
problem (Pw) is in a variational setting, the weak solutions of it are the critical points of

the corresponding functional Iw : W
1,p(x)
0 (Ω)→ R defined by

Iw (u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx−

∫
Ω
F (x, u, |∇w|p(x)−2∇w)dx.

In a standard way we can prove that Iw ∈ C1(W
1,p(x)
0 (Ω) ,R). Our first results will be

about the solvability of (Pw) and bound estimates of its solutions.

We deduce that Iw ∈ C0(W
1,p(x)
0 (Ω) ,R) ∩ C1(W

1,p(x)
0 (Ω) \{0},R) with

〈
I ′w (uw) , ϕ

〉
=

∫
Ω
|∇u|p(x)−2∇u∇ϕdx−

∫
Ω
f
(
x, u, |∇w|p(x)−2∇w

)
ϕdx

for all u ∈W 1,p(x)
0 (Ω) \{0}, ϕ ∈W 1,p(x)

0 (Ω).

We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of (Pw) if

∫
Ω
|∇u|p(x)−2∇u∇ϕdx+

∫
Ω
|u|p(x)−2 uϕdx =

∫
Ω
f
(
x, u, |∇w|p(x)−2∇w

)
ϕdx,

where ϕ ∈W 1,p(x)
0 (Ω).

Consider the following functional

J(u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx, ∀u ∈W 1,p(x)

0 (Ω) .

and L = J ′ : W
1,p(x)
0 (Ω)→

(
W

1,p(x)
0 (Ω)

)∗
, namely,

(L(u), v) =

∫
Ω

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2 uv

)
dx, ∀u, v ∈W 1,p(x)

0 (Ω) .

Our proof is based on the famous Mountain Pass Lemma.

Lemma A.[23] Let E be a real Banach space, and I ∈ C1 (E,R) satisfies (PS) condi-
tion. Suppose

(i) there exists constants ρ > 0, α > 0 such that

I |∂Bρ ≥ I(0) + α

with Bρ =
{
u ∈W 1,p(x)

0 (Ω) : ‖u‖ ≤ ρ
}

;

(ii) there is an e ∈ E and ‖e‖ > ρ such that I (e) ≤ I (0).
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Then I(u) has a critical value c which can be characterized as

cw = inf
γ∈Γ

max
u∈γ([0,1])

I (u)

, where
Γ = {γ ∈ C ([0, 1] , E) : γ (0) = 0, γ (1) = e} .

Remark 3.1 A functional I satisfies the Palais-Smale (PS) condition for short, we
mean that if any sequence {un} in E such that {I (un)} bounded and I ′ (un) → 0 as
n→∞,admits a convergent subsequence.

Lemma 3.1. Let w ∈W 1,p(x)
0 (Ω). Then

(1) there exists constants ρ > 0, α > 0 such that Iw |∂Bρ ≥ α with

Bρ =
{
u ∈W 1,p(x)

0 (Ω) : ‖u‖ ≤ ρ
}

;

(2) for σ ∈ C∞0 (Ω) with ‖σ‖ = 1, Iw (tσ)→ −∞ as t→∞.

Proof. (1). Let ‖u‖ < 1. From (f2) and (f3), there exists a positive constant C1,
independent of w, such that

F (x, t, |ξ|p(x)−2 ξ) ≤ 1

2p+
|t|p(x) + C1 |t|q(x) .

Then by Proposition 2.2 and Proposition 2.5, we have

Iw (u) =

∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx−

∫
Ω
F (x, u, |∇w|p(x)−2∇w)dx

≥ 1

p+

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx− 1

2p+

∫
Ω
|u|p(x) dx− C1

∫
Ω
|u|q(x) dx

≥ 1

2p+
‖u‖p

+

− C1 max
{
|u|q

−
, |u|q

+
}

≥ 1

2p+
‖u‖p

+

− C2

(
‖u‖q

−
+ ‖u‖q

+
)
.

Since p+ < q−, there exist two positive real numbers ρ and α such that Iw (u) ≥ α > 0,

u ∈W 1,p(x)
0 (Ω) with ‖u‖ ≤ ρ. First part of Lemma 3.1 holds.

(2). Taking an arbitrary v0 ∈W 1,p(x)
0 (Ω) / {0} and from (f5), we have

Iw (tv0) ≤
∫

Ω

|∇tv0|p(x) + |tv0|p(x)

p(x)
dx−

∫
Ω
F (x, tv0, |∇w|p(x)−2∇w)dx

≤ tp
+

p−

∫
Ω

(
|∇v0|p(x) + |v0|p(x)

)
dx− a1t

θ

∫
Ω
|v0|θ dx+ a2 |Ω| .

Since θ > p+ and |v0|θ 6= 0 then Iw (tv0)→ −∞ as t→∞.
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Therefore, the second part of Lemma 3.1 is proved. �
The Mountain Pass theorem (see, e.g. [19, 24]) implies the existence of a sequence

{un} ⊂W 1,p(x)
0 (Ω) such that

Iw (un)→ cw and I ′w (un)→ 0. (3.4)

Lemma 3.2. Let w ∈ W
1,p(x)
0 (Ω). Then functional Iw satisfies Palais-Smale (PS)

condition.

Proof. First, we show that {un} is bounded in W
1,p(x)
0 (Ω). Assume by contradiction

the contrary. Then, passing eventually to a subsequence, still denoted by {un}, we may
assume that ‖un‖ → 0 as n→∞. By (f4) and (3.4) imply that for n large enough it holds

1 + cw + ‖un‖

≥ Iw (un)− 1

θ
〈I ′w (un) , un〉

≥ 1

p+

∫
Ω

(
|∇un|p(x)

+ |un|p(x)
)
dx−

∫
Ω

F (x, un, |∇w|p(x)−2∇w)dx

−1

θ

∫
Ω

(
|∇un|p(x)

+ |un|p(x)
)
dx−

∫
Ω

1

θ
unf(x, un, |∇w|p(x)−2∇w)dx

≥
(

1

p+
− 1

θ

)∫
Ω

(
|∇un|p(x)

+ |un|p(x)
)
dx

−
∫
{x∈Ω:un(x)≥t0}

[
1

θ
unf(x, un, |∇w|p(x)−2∇w)− F (x, un, |∇w|p(x)−2∇w)

]
dx

−
∫
{x∈Ω:un(x)<t0}

[
1

θ
unf(x, un, |∇w|p(x)−2∇w)− F (x, un, |∇w|p(x)−2∇w)

]
dx

≥
(

1

p+
− 1

θ

)
‖un‖p

−
−
∫
{x∈Ω:un(x)≥t0}

[
1

θ
unf(x, un, |∇w|p(x)−2∇w)− F (x, un, |∇w|p(x)−2∇w)

]
dx

−M |Ω| ,

where M = sup
{

1
θ tf(x, t, |∇w|p(x)−2∇w)− F (x, t, |∇w|p(x)−2∇w), |t| < t0

}
. Taking

into account that condition (f4) holds true, dividing the above inequality by ‖un‖ and
passing to the limit as n→∞ we obtain a contradiction. It follows that {un} is bounded

in W
1,p(x)
0 (Ω).

Let g(u) =

∫
Ω
F (x, u, ·)dx, then g′(un)→ g′(u). Since I ′w (un) = L (un)− g′(un)→ 0,

we have L (un) → g′(un). From Proposition 2.6 it follows that un → u. Therefore, Iw
satisfies Palais-Smale (PS) condition.

Lemma 3.3 Assume the conditions (f1)−(f7) hold. If in addition p also satisfies (3.3),
then problem (Pw) has at least one positive solution uw ∈ C1,α (Ω) with α ∈ (0, 1), for any
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w ∈W 1,p(x)
0 (Ω) ∩ C1,α (Ω). Further, there exist positive constants ρ1 and ρ2, independent

of w, such that |uw|C0,α(Ω) ≤ ρ1 and |∇uw|C0,α(Ω) ≤ ρ2.

Proof. Lemma 3.1 and Lemma 3.2 imply that the functional Iw satisfies the Mountain-

Pass theorem implies the existence of a sequence {un} ⊂W 1,p(x)
0 (Ω) such that

Iw (un)→ cw and I ′w (un)→ 0,

where
cw = inf

γ∈Γ
max
t∈[0,1]

Iw (γ (t)) > 0,

and

Γ =
{
γ ∈ C

(
[0, 1] ,W

1,p(x)
0 (Ω)

)
: γ (0) = 0, γ (1) = Tv0

}
,

for some v0 and T given in Lemma 3.2. Since {un} is bounded in W
1,p(x)
0 (Ω) and from

Proposition 2.5(i) we deduce that there exists a subsequence, again denoted by {un}, and

un ⇀ uw (weakly) in W
1,p(x)
0 (Ω) ,

un → uw (strongly) in Lp(x) (Ω) for p (x) < p∗ (x) ,
un (x)→ uw (x) a.e. in Ω,

and also, arguing as [12, 13, 14], we have ∂un
∂xi

(x) → ∂uw
∂xi

(x) a.e. in Ω. Further, using the
results argued in [4], we have∫

Ω
|∇un|p(x)−2∇un∇ϕdx→

∫
Ω
|∇uw|p(x)−2∇uw∇ϕdx,

and ∫
Ω
|un|p(x)−2 unϕdx→

∫
Ω
|uw|p(x)−2 uwϕdx,

for all ϕ ∈ W 1,p(x)
0 (Ω). Moreover, using again [4] and Lebesgue generalized theorem [5],

we get ∫
Ω
f(x, un, |∇w|p(x)−2∇w)ϕdx→

∫
Ω
f(x, uw, |∇w|p(x)−2∇w)ϕdx,

for all ϕ ∈ W
1,p(x)
0 (Ω). Hence, we obtain that 〈I ′w (uw) , ϕ〉 = 0 for all ϕ ∈ W

1,p(x)
0 (Ω).

From (f2) and (f3), given ε > 0 there exists a positive constant Cε > 0, independent of

w, such that
∣∣∣f(x, t, |ξ|p(x)−2 ξ)

∣∣∣ ≤ ε |t|p(x)−1 + Cε |t|q(x)−1 for all ξ ∈ RN . On the other

hand, since q ∈ C+

(
Ω
)

such that q(x) < p∗(x) ∀x ∈ Ω, by Theorem A (a) we have

uw ∈ L∞ (Ω), and hence uw ∈ W 1,p(x) (Ω) ∩ L∞ (Ω). Moreover, since the function p is
Hölder continuous on Ω then by Theorem A (c) we get uw ∈ C1,α (Ω) with α ∈ (0, 1)

∀w ∈W 1,p(x)
0 (Ω) ∩ C1,α (Ω). �
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Remark 3.2. We want to note that, if the assumption (3.3) is replaced by (3.2) in
Lemma 3.3, then by Theorem A (b) one concludes that uw ∈ C0,α (Ω) with α ∈ (0, 1),

∀w ∈W 1,p(x)
0 (Ω) ∩ C1,α (Ω).

Lemma 3.4. Let w ∈W 1,p(x)
0 (Ω). There exists a positive constant C∗, independent of

w, such that ‖uw‖ ≥ C∗, for all solutions uw obtained in Lemma 3.3.

Proof. Since uw 6= 0 is a solution of problem (Pw), we have∫
Ω

|∇uw|p(x) + |uw|p(x)

p (x)
dx =

∫
Ω
f(x, uw, |∇w|p(x)−2∇w)uwdx.

Then, from (f2) and (f3), there exists a positive constant C3, independent of w, such that∣∣∣f(x, t, |ξ|p(x)−2 ξ)
∣∣∣ ≤ 1

2p+
|t|p(x)−1 + C3 |t|q(x)−1 for all ξ ∈ RN . It is sufficient to consider

only the case ‖uw‖ < 1. Thus, by Proposition 2.2 and Proposition 2.5, we have

1

2p+

∫
Ω
|uw|p(x) dx+ C3

∫
Ω
|uw|q(x) dx ≥ 1

p+

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx

C3

∫
Ω
|uw|q(x) dx ≥ 1

2p+
‖uw‖p

+

C4 ‖uw‖q
−
≥ 1

2p+
‖uw‖p

+

‖uw‖ ≥
(

1

2p+C4

)1/(q−−p+)
:= C∗.

The proof is complete. �

Lemma 3.5. Let w ∈ W 1,p(x)
0 (Ω). There exists a positive constant C∗, independent

of w, such that ‖uw‖ ≤ C∗, for all solutions uw obtained in Lemma 3.4.

Proof. Notice that
Iw (uw) ≤ max

t≥0
Iw (tv0) ,

with v0 given as in Lemma 3.2. we get

Iw (uw)

≤ tp
+

p−

∫
Ω

(
|∇v0|p(x) + |v0|p(x)

)
dx− a1t

θ

∫
Ω
|v0|θ dx− a2 |Ω| .

Since θ > p+ and |v0|θ 6= 0, the map

t ∈ R 7−→ tp
+

p−

∫
Ω

(
|∇v0|p(x) + |v0|p(x)

)
dx− a1t

θ

∫
Ω
|v0|θ dx− a2 |Ω|
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attains a positive maximum, independent of w. So we get a constant C > 0 such that

Iw (uw) ≤ C. (3.6)

By (3.6), we have∫
Ω

|∇uw|p(x) + |uw|p(x)

p (x)
dx ≤ C +

∫
Ω
F (x, uw, |∇w|p(x)−2∇w)dx. (3.7)

Define G = {x ∈ Ω : |uw| > t0 > 1}, where t0 is given in (f4). Keeping in mind that uw is
a solution from (f2) and (f4), we have

∫
Ω
F (x, uw, |∇w|p(x)−2∇w)dx

≤
∫

Ω\G
F (x, uw, |∇w|p(x)−2∇w)dx+

∫
G
F (x, uw, |∇w|p(x)−2∇w)dx

≤ C5

(
t0 +

|t0|p(x)

p(x)

)
|Ω\G|+

∫
Ω

|∇uw|p(x)

θ
dx

≤ C5

(
t0 +

|t0|p
+

p−

)
|Ω\G|+

∫
Ω

|∇uw|p(x) + |uw|p(x)

θ
dx.

Returning to equation (3.7), we have

(
1

p+
− 1

θ

)∫
Ω

(
|∇uw|p(x) + |uw|p(x)

)
dx

≤ C + C5

(
t0 +

|t0|p
+

p−

)
|Ω\G| ,

where |Ω\G| denotes the Lebesgue measure in RN of the set Ω\G. Furthermore, we obtain(
1

p+
− 1

θ

)
‖uw‖p

−
≤ C + C5

(
t0 +

|t0|p
+

p−

)
|Ω\G| := C̃∗.

Thus,

‖uw‖ ≤

[(
1

p+
− 1

θ

)−1

C̃∗

]1/p−

:= C∗.

The proof is complete. �

Now we are ready to show that problem (P) has a positive solution.
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Proof of Theorem 3.1. We consider a sequence {un} ⊂W 1,p(x)
0 (Ω)∩C1,α (Ω) as solutions

of {
−∆p(x)un + |un|p(x)−2 un = f

(
x, un, |∇un−1|p(x)−2∇un−1

)
in Ω,

un = 0 on ∂Ω,
(P)n

obtained by the Mountain Pass Theorem in Lemma 3.3, starting with an arbitrary u0 ∈
W

1,p(x)
0 (Ω) ∩ C1,α (Ω) , |uw|C0(Ω) ≤ ρ1 and |∇uw|C0(Ω) ≤ ρ2. On the other hand, using

(P)n+1 and (P)n, we obtain the followings∫
Ω
|∇un+1|p(x)−2∇un+1 (∇un+1 −∇un) dx+

∫
Ω
|un+1|p(x)−2 un+1 (un+1 − un) dx

=

∫
Ω
f(x, un+1, |∇un|p(x)−2∇un) (un+1 − un) dx,

and

∫
Ω
|∇un|p(x)−2∇un (∇un+1 −∇un) dx+

∫
Ω
|un|p(x)−2 un (un+1 − un) dx

=

∫
Ω
f(x, un, |∇un−1|p(x)−2∇un−1) (un+1 − un) dx.

Then ∫
Ω

(
|∇un+1|p(x)−2∇un+1 − |∇un|p(x)−2∇un

)
(∇un+1 −∇un) dx

+

∫
Ω

(
|un+1|p(x)−2 un+1 − |un|p(x)−2 un

)
(un+1 − un) dx

=

∫
Ω

(
f(x, un+1, |∇un|p(x)−2∇un)− f(x, un, |∇un|p(x)−2∇un)

)
(un+1 − un) dx

+

∫
Ω

(
f(x, un, |∇un|p(x)−2∇un)− f(x, un, |∇un−1|p(x)−2∇un−1)

)
(un+1 − un) dx.
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From Proposition 2.2 and Proposition 2.4, we get∫
Ω
|η − ψ|p(x) dx

≤ 2

∥∥∥∥∥ |η − ψ|p(x)

(|η|+ |ψ|)
p(x)(2−p(x))

2

∥∥∥∥∥
L

2
p(x) (Ω)

∥∥∥(|η|+ |ψ|)
p(x)(2−p(x))

2

∥∥∥
L

2
2−p(x) (Ω)

≤ 2 max
p∈{p−,p+}

∥∥∥∥∥ |η − ψ|2

(|η|+ |ψ|)2−p(x)

∥∥∥∥∥
p/2

L
2

p(x)
.
p(x)
2 (Ω)

∥∥∥(|η|+ |ψ|)p(x)
∥∥∥(2−p)/2

L
2

2−p(x) .
2−p(x)

2 (Ω)

= 2 max
p∈{p−,p+}

(∫
Ω

|η − ψ|2

(|η|+ |ψ|)2−p(x)
dx

)p/2(∫
Ω

(|η|+ |ψ|)p(x) dx

)(2−p)/2

≤ 2 max
p∈{p−,p+}

(∫
Ω

|η − ψ|2

(|η|+ |ψ|)2−p(x)
dx

)p/2(
1 +

∫
Ω

(|η|+ |ψ|)p(x) dx

)1/2

Similarly∫
Ω
|∇η −∇ψ|p(x) dx

≤ 2 max
p∈{p−,p+}

(∫
Ω

|∇η −∇ψ|2

(|∇η|+ |∇ψ|)2−p(x)
dx

)p/2(
1 +

∫
Ω

(
|∇η|p(x) + |∇ψ|p(x)

)
dx

)1/2

.

Considering the assumption 1 < p− ≤ p+ < 2, and applying (3.1) we obtain

max
p∈{p−,p+}

(∫
Ω

|η − ψ|2

(|η|+ |ψ|)2−p(x)
dx

)p/2

≤ max
p∈{p−,p+}

(
1

p− − 1

∫
Ω

(
|η|p(x)−2 η − |ψ|p(x)−2 ψ

)
· (η − ψ) dx

)p/2
≤ 1

p− − 1

(
1 +

∫
Ω

(
|η|p(x)−2 η − |ψ|p(x)−2 ψ

)
· (η − ψ) dx

)
,

and

max
p∈{p−,p+}

∫
Ω

|∇η −∇ψ|2

(|∇η|+ |∇ψ|)2−p(x)
dx

≤ 1

p− − 1

(
1 +

∫
Ω

(
|∇η|p(x)−2∇η − |∇ψ|p(x)−2∇ψ

)
· (∇η −∇ψ) dx

)
.
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Let 1 +

(∫
Ω

(|η|+ |ψ|)p(x) dx

) 1
2

:= L3 and 1 +

(∫
Ω

(|∇η|+ |∇ψ|)p(x) dx

) 1
2

:= L4.Then

L3, L4 is bounded and L3, L4 ≥ 1. Therefore,∫
Ω
|η − ψ|p(x) dx

≤ 2L3

p− − 1
+

2L3

p− − 1

∫
Ω

(
|η|p(x)−2 η − |ψ|p(x)−2 ψ

)
· (η − ψ) dx,

and ∫
Ω
|∇η −∇ψ|p(x) dx

≤ 2L4

p− − 1
+

2L4

p− − 1

∫
Ω

(
|∇η|p(x)−2∇η − |∇ψ|p(x)−2∇ψ

)
· (∇η −∇ψ) dx.

Thus, if we choose M |Ω| = 2(L3+L4)
p−−1

, we have

ρ̃p(x) (un+1 − un) =

∫
Ω

(
|un+1 − un|p(x) + |∇un+1 −∇un|p(x)

)
dx

≤ 2 (L3 + L4)

(p− − 1)
+

2L1L3

p− − 1
ρp(x) (un+1 − un)

+
2L2L4

p− − 1

∫
Ω
|∇un −∇un−1|p(x)−1 |un+1 − un| dx−M |Ω|

=
2L1L3

p− − 1
ρp(x) (un+1 − un) +

2L2L4

p− − 1

∫
Ω
|∇un −∇un−1|p(x)−1 |un+1 − un| dx.

Applying Proposition 2.3 to the right-hand side of the above inequality, we get

ρ̃p(x) (un+1 − un)

≤ 2L1L3

p− − 1
ρp(x) (un+1 − un)

+
2L2L4

p− − 1

[
1

p−
ρp(x) (un+1 − un) +

p+ − 1

p−
ρp(x) (un − un−1)

]
≤

(
2L1L3

p− − 1
+

2L2L4

(p− − 1) p−

)
ρp(x) (un+1 − un)

+
2L2L4 (p+ − 1)

p− (p− − 1)
ρp(x) (un − un−1)

≤ 2L1L3p
− + 2L2L4

(p− − 1) p−
ρ̃p(x) (un+1 − un) +

2L2L4 (p+ − 1)

p− (p− − 1)
ρ̃p(x) (un − un−1)

or

1− 2L1L3p
− + 2L2L4

p− (p− − 1)
ρ̃p(x) (un+1 − un) ≤ 2L2L4 (p+ − 1)

p− (p− − 1)
ρ̃p(x) (un − un−1) . (3.8)
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From (3.8), 1− 2L1L3p−+2L2L4

(p−−1)p− > 0 holds. Thus

ρ̃p(x) (un+1 − un) ≤ 2L2L4 (p+ − 1)

p− (p− − 1)− 2 (L1L3p− + L2L4)
ρ̃p(x) (un − un−1) .

Let
2L2L4(p+−1)

p−(p−−1)−(2L1L3p−+2L2L4)
:= K. According to (3.4), we have K < 1. Now, applying

the triangle inequality consecutively, we get

∫
Ω
|∇un+k −∇un|p(x) dx

≤
(

2p
+−1Kn+k−1 + 22(p+−1)Kn+k−2 + · · ·+ 2(k−1)(p+−1)Kn

)∫
Ω
|∇u1 −∇u0|p(x) dx

≤
(

2(k−1)(p+−1)Kn+k−1 + 2(k−1)(p+−1)Kn+k−2 + · · ·+ 2(k−1)(p+−1)Kn
)∫

Ω
|∇u1 −∇u0|p(x) dx

≤ 2(k−1)(p+−1) 1−Kk

1−K
Kn

∫
Ω
|∇u1 −∇u0|p(x) dx.

Therefore, we obtain that

ρ̃p(x)(un+k − un) ≤ 2(k−1)(p+−1)+1 1−Kk

1−K
Knρ̃p(x)(u1 − u0).

Since lim
n→∞

Kn = 0, using Proposition 2.1 we have

lim
n→∞

‖un+k − un‖ = 0.

Therefore, it follows that the sequence {un} strongly converges in W
1,p(x)
0 (Ω) to some

function u ∈ W
1,p(x)
0 (Ω), as it easily follows proving that {un} is a Cauchy sequence in

W
1,p(x)
0 (Ω). Since ‖un‖ ≥ C∗ for all n, we have that u > 0 in W

1,p(x)
0 (Ω). �

References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory,
J. Funct. Anal., 14(1973), 349–381.

[2] R. Ayazoglu(Mashiyev) and Ismail Ekincioglu, Electrorheological Fluids Equations In-
volving Variable Exponent with Dependence on the Gradient via Mountain Pass Techniques,
Numerical Functional Analysis and Optimization, Volume 37, 2016, Issue 9, 1144-1157.

[3] M. M. Boureanu, P. Pucci and V. D. Radulescu, Multiplicity of solutions for a class of
anisotropic elliptic equations with variable exponent, Complex Var. Elliptic Equ. 56 (2011),
755-767.

86



R. Ayazoglu (Mashiyev), S. Akbulutb, E. Akkoyunluc – Solutions for . . .

[4] H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and
convergence functionals, Proc. Am. Math. Soc. 8 (1983), 486–490.
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variable exponents, Springer-Verlag, Berlin, 2011.

[8] X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω),
J. Math. Anal. Appl. 262 (2001), 749-760.

[9] X. L. Fan and D. Zhao, , On the spaces Lp(x) (Ω) and Wm,p(x) (Ω), J. Math. Anal.
Appl., 263(2001), 424-446.

[10] X. L. Fan and D. Zhao,A class of De Giorgi type and Hölder continuity, Nonlinear
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[16] O. Kovăčik and J. Răkosnik, On spaces Lp(x) and W k,p(x), Czechoslovak Math., J.
41(116)(1991), 592-618.

[17] D. S. Mitrinoviċ, J. E. Pečariċ and A. M. Finj, Classical and New Inequalities in
Analysis Kluwer Academic Publishers, Dordrecht, 1993.

[18] M. Montenegro and M. Montenegro, Existence and nonexistence of solutions for quasi-
linear elliptic equations, J. Math. Anal. Appl., 245(2000), 303–316.

[19] P. Pucci and J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal.,
59(1984), 185-210.

[20] D. Ruiz and A. Suarez, Existence and uniqueness of positive solution of a logistic
equation with nonlinear gradient term, Proc. R. Soc. Edinburgh, 137(3)(2007), 555–566.

[21] D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear
problems, J. Dif. Equ., 199(2004), 96–114.

87



R. Ayazoglu (Mashiyev), S. Akbulutb, E. Akkoyunluc – Solutions for . . .
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