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ABSTRACT. We introduce new classes of g—starlike and g—convex functions of
complex order involving the g—derivative with respect to (7, k)—symmetric points.
Furthermore, the application of the results are also illustrated. We find estimates
on the coefficients for second and third coefficients of these classes.
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1. INTRODUCTION

Observations: Recently, the area of the g—analysis has attracted serious attention of
the researchers. The great interest is due to its applications in various branches of
mathematics and physics, as for example, in the areas of ordinary fractional calculus,
optimal control problems, g—difference and g—integral equations and in g—transform
analysis. The generalized g—Taylor formula in the fractional g—calculus was intro-
duced by Purohit and Raina [32]. The application of g—calculus was initiated by
Jackson [21, 22]. He was the first to develop the g—integral and g—derivative in a
systematic way. Later, geometrical interpretation of the g—analysis has been recog-
nized through studies on quantum groups. Simply, the quantum calculus is ordinary
classical calculus without the notion of limits. It defines g—calculus and h—calculus.
Here h ostensibly stands for Planck’s constant, while ¢ stands for quantum. Mo-
hammed and Darus [28] studied approximation and geometric properties of these
g—operators in some subclasses of analytic functions in compact disk. Recently,
Purohit and Raina [32, 33] have used the fractional g—calculus operators in investi-
gating certain classes of functions which are analytic in the open disk. Also Purohit
[31] also studied these g—operators, defined by using the convolution of normalized
analytic functions and g—hypergeometric functions. A comprehensive study on the
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applications of g—calculus in the operator theory may be found in [11]. Ramachan-

dran et al. [34] have used the fractional ¢g—calculus operators in investigating certain

bound for g—starlike and g—convex functions with respect to symmetric points.
Let A denote the class of all analytic function of the form

f(2) :z—i—Zanz", (1)
n=2

in the open unit disc i = { z: z € C; |z] < 1}. Let S be the subclass of A consisting
of functions which are univalent in U. Also, let P denote the class of functions of
the form

oo
p(z)zl—i-chz" (zelU)
n=1
which are analytic and convex in U and satisfy the condition
Re (p(z)) >0, (zelU).

We denote by S§*, C, K and C* the familiar subclasses of A consisting of functions
which are respectively starlike, convex, close-to-convex and quasi-convex in /. Our
favorite references of the field are [17, 20] which covers most of the topics in a lucid
and economical style.

The Bieberbach conjecture about the coeflicient of the univalent functions in the
unit disk was formulated by Bieberbach [13] in the year 1916. The conjecture states
that for every function f € S, given by (1), we have | a,, |< n for every n. Strict
inequality holds for all n unless f is the Koebe function or one of its rotation. For
many years, this conjecture remained as a challenge to mathematicians. After the
proof of | az |< 3 by Lowner in 1923, Fekete-Szegd surprised the mathematicians
with the complicated inequality

‘ag - ,ua%‘ <1+2exp <—2,u)
1—p
which holds good for all values 0 < p < 1. Note that this inequality region was
thoroughly investigated by Schaefer and Spencer [39]. For a class functions in A
and a real (or more generally complex) number p, the Fekete-Szego problem is all
about finding the best possible constant C(u) so that {ag — ,ua%‘ < C(p) for every
function in A.

In univalent function theory, all geometrically defined subclasses does have beau-
tiful analytic characterization defined in terms of differential inequality. So extend-
ing the existing subclasses in g-calculus has numerous applications. To provide a
unified approach to the study of various properties of the certain subclasses of A,
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we introduce new classes of (j, k) symmetric functions of complex order involving
g—derivative of f and have obtained the Fekete-Szegd inequality for the classes.

If f and g are analytic in U, we say that the function f is subordinate to g,
written as f(z) < g(z) in U, if there exist a Schwarz function w(z), which is analytic
in Y with w(0) = 0 and | w(z) |< 1such that f(z) = g(w(z)) for z € U. Furthermore,
if the function g(z) is univalent U, then we have the following equivalence holds( see
[14] and [27] ):

f(z) <g(z) < f(0) = g(0) and  f(UU) Cg(Uh).

For function f € A given by (1) and 0 < ¢ < 1, the g—derivative of a function f is
defined by (see [21, 22])

D) = =S oz, 2

D,f(0) = f'(0) and Dgf(z) = Dy(Dyf(z)). From (2), we deduce that

Dyf(2) =14 [n],anz""", (3)
n=2
where
[l = T4 ()

lim Dy (h(z)) = lim <[n]qz”*1> =n2""t = 1/(2),

q—1 q—1

where h' is the ordinary derivative.
As a right inverse, Jackson [21] introduced the g—integral

[t =0-0) > a"f o).
0 n=0

provided that the series converges. For a function h(z) = 2", we observe that

z

zn-i—l zn—‘rl “

/ h(t)dgt = lim = = / h(t)dt,
q—1- [n—l—l]q n+1

0 0
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z
where [ h(t)dt is the ordinary integral.

0
Making use of D, f(z), Seoudy and Aouf in [41] introduced the subclsses ()
and €,(a) of the class A for 0 < a < 1 which are defined by

yq*(a)_{feA;ReW>a,zeu}, (5)
CKq(a)—{fE.A:ReDq(l_jﬁq(igz))>0¢,z62/{}. (6)
We note that
f e (a) & 2D f € S (), (7)
and
qlinﬁ Sy (a) = {f cA: qlir{lﬁ ReZqu(‘ZSZ) >,z € Z/l} =.7"(a)

. T Dq(Zqu(Z))
ql_l)nlni Cq(r) = {f cA: q1_1>n1af RQW
where .#*(a) and €' («) are respectively, the classes of starlike of order @ and convex
of order « in U (see Robertson [36]).

Let k be a positive integer and ¢ = exp(27i/k). A domain D is said to be k—fold
symmetric if a rotation of D about the origin through an angle 27 /k carries D onto
itself. A function f € A is said to be k—fold symmetric in U if for each z € U

flez) = ef(2).

The family of all k—fold symmetric functions is denoted by S* and for k = 2, we
get class of the odd univalent functions. The notion of (j, k)—symmetric functions
(k=2,3,...;5=0,1,2,...(k—1)) is a generalization of even, odd, k—symmetrical
functions. Let ¢ = exp(2ni/k) and j = 0,1,2,...(k — 1) where £ > 2 is a natural
number. A function f : U — C is called (j, k)—symmetrical if

>,z GU} =% (),

flez) =l f(2), z €U.

We note that the family of all (j, k) —symmetric functions is denoted by S (k) Also,
S02) §(1.2) and S(F) are called even, odd and k—symmetric functions respectively.
We have the following decomposition theorem (see [25]).
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For every mapping f : D — C, and D is a k—fold symmetric set, there exist
exactly the sequence of (j, k) —symmetrical functions f;y,

1 k—1
) =22 fin(2), (8)
7=0

where
fik(z kZe Vi f(e2), (9)

(feAk=1,2..:7=012,... (k—1)).

The decomposition (8) is a generalization of the well-known fact that each func-
tion defined on a symmetrical subset U of C can be uniquely represented as the sum
of an even function and an odd function (see Theorem 1 of [25]). From (9), we can
get

f], ng Ujfgz Zg_vj (Zan€z ),

then

- 1 n=1Ilk+j;
fjk Z¢nan3 ay =1, Un z_(:) {0 ’I’L#lk:ij .
(10)
Motivated by Ma and Minda [26], we define a subclass of analytic functions of
complex order involving g—derivative of f.

AN\H

Definition 1. Let P be the class of all functions ¢ which are analytic and univalent
inU and for which ¢(U) is conver with $(0) =1 and Rep(z) > 0 for z € U.
A function f € A is said to be in the class S]q’lg’)‘(qb) if it satisfies the following
subordination condition:
D,F
1+ - (zf (/\()) 1><d>(z) (0<A<1, beC—-{0}; ¢p€P), (11)
7.k

where
Fix(z) = XzDgf(2) + (1 = N) f(2).

Definition 2. A function f € A is said to be in the class C;.{’,?’)‘(@, if it satisfies the

following subordination condition:

1 (Dq<quFA<z>>

14+
b quj,k(z)

—1)-<d>(z) (0<A<1, beC—{0}; p€P), (12)

where

Fx(2) = AzDgf (2) + (1 = A) f(2).
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Remark 1. The family Sj’lf’)‘(qﬁ) and C;{’,g”\(@ is of special interest for it con-
tains many well-known as well as many new classes of analytic univalent functions.
If we let A = 0, the classes Sj}i”)‘(qﬁ) and Cg’g’k(qﬁ) reduces to classes recently intro-
duced by Selvaraj, Karthikeyan and Lakshmi in [40]. If we let j =k =1 and A =0,

the classes S]’.{’:”\(qﬁ) and C;.J”]g’)‘(@ reduces to classes recently introduced by Seoudy
and Aouf in [41].

Lemma 1. [26] Let p(z) € P and also let v be a complex number, then
lco — ve?| < 2 max {1, |2v — 1|},
the result is sharp for functions given by

1+ 22
p(z) = 1_.2 p(2)

Lemma 2. [26] Let p(z) € P, then

—dv+2, if v <0
leg —ve?| < < 2, if 0<v<1, (13)
dv—2, if v> 1.

When v < 0 or v > 1, the equality holds if and only if p(z) = (1+2)/(1 — z) or one
of its rotations. If 0 < v < 1, then the equality if and only if p(z) = (14 22)/(1 — 2?)
or one of its rotations. If v =0, the equality holds if and only if

1 1 N\N1+z (1 1\1-2z
Y ) Sy <9<1
p(2) <2+2)1—z+<2 2>1+5m— =1,

or one of its rotations. If v =1, the equality holds if and only if

1 1 1 142 1 1 1-=2
S B <9 <1).
p(2) <2+2ﬁ>1—z+<2 219>1+z’(0_19_ )

Also the above upper bound is sharp and it can be improved as follows when 0 < v <1
lco —ved| +vler]? < 2, (0<v<1/2),
e — v | + (1 —v)|er]? < 2, (1/2<wv < 1).

In the present paper, we obtain the Fekete-Szego inequalities for the class S]‘{f’)‘(qb)

and C;’,f”\(gb). We employ the technique adapted by Ma and Minda [26] to find the
coefficient estimates for our class.
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2. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that the function
0<g<1l, 0<A<1, beC—-{0}, ¢p€P, [n]qisgivenby (4) and z € U.

Theorem 3. Let ¢(2) = 1 + Biz + Byz® + -+ (By £ 0). If f(2) € SIpN(¢), then

2 Db (¢ . (17A+M31q)[31q—¢3u)‘}
By (1= X+ A[2]q) [2]g — w2 (1= X+ X[2lq) [2]q — ¥2 ’

2 | B1b|
lag — paz| < max {1,
(1= X+ A[3]g) 8 — ¥3

(14)
The result is sharp.

Proof. If f € S]q’g’)‘(qb), then there exists a Schwarz function w(z), which is analytic
in U with w(0) =0 and | w(z) |< 1 € U such that

1+ 7 (1) = oten (15)
Define the function p(z) by
p(z):izg=1+012+02z2+---,zeu. (16)

Since w(z) is Schwarz function, we see that Re p(z) > 0 and p(z) = 1.
Therefore

_(pz) -1
sl =0 (25 1)
_ 1 A\ » ) s
—qb(z [clz+<02—2>z —I—(03—c102+4>z —i—})
2
=1+ %Blclz + |:;Bl <62 - 621> + leBZC%:| 22 + e (17)

Now by substituting (17) in (15), we have

1 (2D,F\(2) 1 1 c? 1_ 5] 5
1+- (==~ -1)=1+=B -B -21)+=B
+ b < Fin(2) ) + 5 1€12 + [2 1 <02 5 + 1 acy | 27 +

From this equation, we obtain

(1 - A + )\[2]q) [2]q - ¢2a o Blcl
b 2T
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(1-A+ A[?;]q) Blg — ¥s . <(1 A /\[2b]q) 2]q — w2> a? = 31202 B BZC% n BZC%’

or equivalently

. Blclb
C2((1 = A+ AR2g) [2]g — ¥2)

a2

as

_ Bib d(, B Bibi,
S 2 ((1 — A+ )‘[3]11) [3]11 - 1/’3) (Cz 21 <1 By (1 — A+ )‘[Q]q) [2]q - 1/’2)> .

Therefore,
Bqb

L= A+A8lg) 8y — ¢

a5 — pa| = 5 e v, (18)

where

v=1l1- 224 Bib (%_ (1A +A3Jy) [3]q—wgu>]
2 By (1 _)\+)‘[2]q) [2}61 ) (1 _)‘+)‘[2]q) [2]q — 2 ( )
19
Our result now follows by an application of Lemma 1.
The result is sharp for the functions
2D F\(z)

fir(2)

This completes the proof of Theorem 3.

2D F\(z)

= Z2 an
= 9(=) d fik(2)

= (2).

. : bA
Similarly, we can prove the following theorem for the class Cﬁk (9).

Theorem 4. Let ¢(z) = 1 + Bz + Boz? + -+ with By > 0. If f(2) given by (1)
belongs to C;-],’;?’A(@; then

agfy,a2| < | B1b] max{l
27 Bl (1= 2+ ABlg) Blg — va) ’

B2 Bib <w27 (8l (1 = X+ A[3lg) [3lq — ¥3) )‘}
By (1= A+A[2lg) [2lg — 2 (212 (1= A+ Al21g) [21q — 2)
(20)

The result is sharp.
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Theorem 5. Let ¢(z) =1+ Bz + Bez? + -+ with By > 0 and By > 0. Let

[(1 = A+ A2]g) [2]g — ¥2] BRbva + [(1 = A+ A[2]q) [2]q — ¥2]” (B2 — B1)

o (1= T ABl,) Bl — vs] Bb ’
(21)
10N N20g) [2g — ] BRba 4 [(1— A+ A2)g) [2)g — dal” (Ba + By)
? [(1— A+ X[3]y) [B]q — 3] B3 ’
(22)
o = X+ A2)g) [2)g — W] BEbta +[(1— A+ M2]g) [2g — va]* B (23)
’ [(1— X+ A[3lg) [8¢ — ¢s] Bb

If f(z) given by (1) belongs to S;.]’IS’)‘(QZ)) with b > 0, then

2 2
Bob b Yo _ I . <
A BBl w5 T - ARl Bl —va <(1f%+ﬂ31q)[31q7w3 (1*>\+A[2]q)[2]q*w2> i mson

laz—pa3| < Byb

=3+ 2Blq)Blg— %3 i
_Bob B v ’ .
(1_x+x[3J:)[s1q—ws B (1_A+A[fﬁq)[zlq—wz ((1—A+A[3J§)[3]q—w3 B (1—%+M2§q)[2lq—wz) vz
(24)
Further, if o1 < p < 03, then
~ e (1 =2+ 2[2]g) [2lg — ¥2)? [B — B2 - o ( B ey R s )] 2
las — ua2| + =3 T ABly) Bly — ) B 1 2T A oAt A 2g) 2q — ¢ ¥ (1 =X+ X2lg) [2lq — %2 las|
< B1b
T (1= A+ A[Blg) Blg —¥3
(25)
If 03 < p < 09, then
Lo (L= AR [2)g — $2)? [ Bib < (22 MBlg) Blg = s ﬂ ’
195 = 1ozl L T a  ABly) Bly — 9082 | T P T o Azl @y — s \ 2 T T A2y 2 — 0"/ ] 12!
- B1b
= T2+ ABlg) Bl — s
(26)

The result is sharp.

Proof. Applying Lemma 2 to (18) and (19), we can obtain our results. To show that
the bounds are sharp, we define the functions g, (n = 2,3,4...) by

1 (2D Hpn(2)
”b( Hom(2)

and the functions %) and %\ (0 < A < 1) by

1+i<wgzgz)—1>:¢<m>, Z3(0) = 0 = F(0) - 1

L) =0 Honl0) = 0= 0) -
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and

1+2<W-1):¢<—m>, G0(0) = 0 = Z(0) — 1.

Clearly, the functions 73, %) and 9\ € SJ‘{’:’/\(@. If u < o1 or > 09, then the
equality holds if and only if f is J#4, or one of its rotations. When o1 < p < o9,
the equality holds if and only if f is J#43, or one of its rotations. If u = o1, then
the equality holds if and only if f is .%#), or one of its rotations. If y = o9, then the
equality holds if and only if f is ¢\, or one of its rotations.

Similarly, we can obtain the following theorem.

Theorem 6. Let ¢(z) =1+ Biz+ Byz? + -+ with By >0 and By > 0. Let

[2]7 (1 = X+ A2]g) [2]g — ¥2) [bBFv2 + (1 = A+ A[2]g) [2]g — ¢2) (B2 — B1)]

e B3], (1= A+ ABl, >[ ] = ) ’
Ly = R A 22 2]y — ) (DB + (1= 2+ A(200) 2]y~ ¥2) (B2 + B1)

’ BIb[3], (1= A+ B3], >[ o — 3) ’
o N ARD) 21, = o) B + (= A+ N2lo) 2y = v2) B

Bb[3]g (1= A+ Al3g) [Blg — ¥s)
If f(z) given by (1) belongs to C?”]i”)‘(@ with b > 0, then

lag — pa3| < (27

Bob BPb? { _ Blg((1=2+A[3]¢)[38]qg —¥3) l
[3lq (1— >\+)\[3]q Blg—v3) T Blg(T=2FABIqIBlg—¥3) (1= AFA2])2]g —$2) [215(\1—%+A[2Jq\[2]q—w2>“,

B1b
[3]q<:1*>\+>\[3]q:‘[3]q*¢’3)

—Bob _ B2p2 lw _Blg((l=2+A[3]¢)[38]q —¥3) J
[8]g (1=X+A[3]q)[8lg —v¥3) Bl (T=2+A[B]q)Blq —¥3) (T—A+A[2]q) 2] —¥2) (V2 [2]5(\1—)\+A[2]q\[2]q71/;2)M

Further, if x1 < p < x3, then

2
lag — pasz| +

[212((1 = A + A[2q) [21q — ¥2)? B2b
By — Bg
(38lg((1 — X + Al3lq) [8]q — ¥3)Bb

B wa — [Blq([8lg — ¥3) u \a2|2
(1= X+ 2x[2]g) [2]g — Y2 [213((1 — X+ A[2lq) [21q — ¥2)
Bib

< .
T [Blg((1 = A+ A[8lq) [Blg — ¥3)

If x3 < p < X2, then

[212((1 = A + A[2]q) [21q — ¥2)?
[81q((1 — X + A[3lg) [81q — v3)B3b

2
lag — pasz| +

2 _ 8y —
By + By + = " (“’ - Blgi = A + MSlq) Blg wS)“)] oz ®
2

(1 =X+ X[2q) [21q — [212((1 = X + X[2]q) [2]g — ¥2)
< Bib .
8] ((1 = A+ A[3]q) [8lg — ¥3)

The result is sharp.
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Taking ¢ — 17 in Theorem 3, we obtain the following result for the functions
belonging to the class SJI.”,;\ ().

Corollary 7. Let ¢(z) = 1+ Byz+ Bo22+--- (B1 # 0). If f(2)given by (1) belongs
to the class S]l.”]?(gb), then

|Bi|lb
a3 — pa3] < P max

| By Bib 34+ 9X — g
S 310N o - <¢2_ “)'}

"IBy 244X — 4y 244X\ — o

The result is sharp.

Taking ¢ — 17 in Theorem 4, we obtain the following result for the functions
belonging to the class C?,?((b).

Corollary 8. Let ¢(z) = 1+ Biz+ Boz?+---(By #0). If f(2) given by (1)belongs
to the class C;.)’,;\(QZ)), then

a5 | B1]b] { <¢_9—|—18)\—3¢3 )}
3 “2—9+18)\ 31/}3 2+2>\ Py 7 4(2+2A—w2)” '

The result is sharp.

Taking ¢ — 17 in Theorem 5, we obtain the following result for the functions
belonging to the class Sjl.”,;\ ().

Corollary 9. Let ¢(z) =1+ Byz + By2z% +--- with By > 0 and By > 0. Let

Bibha(2 4+ 4\ — 1) + (By — B1)(2 + 4\ — 19)?

e B2b(3 + O\ — 1) ’
_ Bibiha(2 + 4\ — ) + (Ba + B1)(2 + 4\ — ¢n)?
B B2b(3 + 9\ — 1)3) ’
e = DR 40— 49) 4 By(2 + 4 = ¢

B?b(3 4 9\ — 43)
If f(z)given by (1) belongs to the class S]l?’]j(gb) with b > 0, then

Bab B7b? 349N —eh: .
5 3+9,\27w3 + (2+4,\7¢2)1(3+9/\—w3) (1/}2 o 2+4A7¢Z N) if p<oy,
a3 — pay] < § =8ts if o4 <p<os,

—Bsb B7b? 3+9A—1) -
T~ T (V2 Eok) if 1o
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Further, if o4 < p < og, then

05— 2|+ (244X — ap2)? 'B B Bib 349243 "a 2 < Bib
TR B B o N — ) | T 24 A —wn \ 2 2+ dn—uu )| S 3o s
If 06 < p < 05, then
2 (244N —2)? | B3b 349 —vs \1, Bib
- rEATY2) g 4B - L L —
s I ey el L sy waygl Ky wawvatc) | LUy waon

The result is sharp.

Taking ¢ — 17 in Theorem 6, we obtain the following result for the functions
belonging to the class C;.”,;\(qﬁ).

Corollary 10. Let ¢(z) =1+ Biz + Boz? + -+ with By > 0 and By > 0. Let

| A(242X — ) [B3ay + (By — B1)(2 + 2\ — )]
X4 = B2b(9 + 18X — 3¢3) ’

A2+ 2) — ) [Bibga 4 (Ba + B1)(2 + 2) — ¢)]
X5 = B2b(9 + 18X — 3¢3) ’
424 2X — o) [Bibis + Ba(2 42X — )]
X6 = B2b(9 + 18X — 31)3) ‘

If f(2) given by (1) belongs to C;-)’];\(gb) with b > 0, then

Bob Bb? 94+ 18\ —34: .
9FT8A—305 T OFI8N"30s) (3T —03) (1/’2 - 4(2+2>\7¢;)/~‘ if < X
2 )
laz — paz| < m if xa <p<xs,
—Bsb B?b? 9+181—3% .
OFISA 305 (9+18)\—3z/;;,)(2+2/\—w2) <¢2 - 4(2+2A—w23) if w2z Xs
Further, if x4 < p < xs, then
g A(242X — 9ho)? [ B2b ( 9+ 18X — 3ub3 )] ) Bib
_ By — Bo — - <_°v
las Ha2‘+be(9+18)\—31/J3) LT o o e PP a2 o — ) 92" < 57783 — 305
If x6 < p < x5, then
2 4(2 + 2X\ — h2)? [ Bb ( 9+ 18X — 3us )] 2 B1b
- By +B - <_°v
las ”a2‘+be(9+18>\731/13) L Bt o T P2 T 10 2 — ) a2l < 5785 — 394

The result is sharp.
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Remark 2. For the special case A =0 in Theorem 3, 4, 5 and 6, we get the results
similar to those obtained by Selvaraj, Karthikeyan and Lakshmi (see Theorem 1, 2,

3 and 4 of [40]).

Remark 3. For the special case A\=0, j =1 and k =1 in Theorem 3, 4, 5 and 6,
we get the results similar to those obtained by Seoudy and Aouf (see Theorem 1, 2,

3 and 4 of [41]).

Remark 4. For the special case X = 0 in Corollary 7, we get the results similar to
those obtained by Selvaraj, Karthikeyan and Lakshmi (see Corollary 2 of [40]).

Remark 5. For the special case A\=10, j =1 and k = 1 in Corollary 7, we get the
result similar to those obtained by Ravichandran et al. [35].

Remark 6. For the special case A\ = 0 in Corollary 8, 9 and 10 we get the results
similar to those obtained by Selvaraj, Karthikeyan and Lakshmi (see Corollary 3, 4

and 5 of [40]).

Remark 7. For the special case A =0, j =1 and k = 1 in Corollary 8, 9 and 10
we get the results similar to those obtained by Seoudy and Aouf (see Corollary 2, 3

and 4 of [41]).
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