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1. Preliminaries

Throughout this paper, X,Y and Z stand for topological vector spaces. Let Y ∗ and
Z∗ be topological duals of Y and Z, respectively, and 〈., .〉 be the duality pairing.
Let K ⊂ Y and D ⊂ Z be proper (K 6= ∅ and K 6= Y ) convex cones with nonempty
interior (intK 6= ∅, intD 6= ∅). The set of all linear continuous functions from
X to Y is denoted by L(X,Y ) and l(K) = K ∩ (−K) is the linearity of K. If
K ∩ (−K) = {0}, then K is called pointed. Let Y and Z be partially ordered by
K and D, respectively. The ordering relations induced on Y and Z denoted by ≤K
and ≤D, respectively, consist of

y1 ≤K y2 ⇐⇒ y2 ∈ y1 +K,

and
z1 ≤D z2 ⇐⇒ z2 ∈ z1 +D.

The negative polar cone and the strict negative polar cone K∗ of K are denoted by
K∗ and (K∗)◦, and defined as follows:

K∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ K}
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and,
(K∗)◦ = {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0, ∀y ∈ K \ l(K)}.

The negative polar cone D∗ of D and the strict negative polar cone (D∗)◦ are defined
similarly. It is clear that he negative polar cone and the strict negative polar cone
are convex and cone. The indicator function δM : X −→ R∪{+∞} of a set M ⊆ X
is defined by

δM (x) =

{
0 if x ∈M,

+∞ if x /∈M.

Definition 1.1. Let A be a nonempty subset of Y . An element ȳ ∈ A is called a
Pareto minimal or efficient point of A with respect to K and is denoted by ȳ ∈ MinA,
iff

(A− ȳ) ∩ (−K \ {0}) = ∅,

and ȳ is said to be a weak Pareto minimal point of A with respect to K and is
denoted by ȳ ∈WMinA iff

(A− ȳ) ∩ (−intK) = ∅.

Note that MinA ⊆ WMinA, also the set of all weak Pareto minimal points of
A is closed.

Definition 1.2. Let A be a nonempty subset of Y and ε ∈ K. An element ȳ ∈ A
is called an ε-weak Pareto minimal point of A with respect to K and is denoted by
ȳ ∈ ε−WMinA iff

(A− ȳ + ε) ∩ (−intK) = ∅.

In the similar way we can define ε− Pareto minimal point of a set. It is stright-
forward to check that WMinA ⊂

⋂
ε∈K

ε−WMinA. Since the convexity plays an

important role in vector optimization and especially in this paper, we recall it. The
mapping F : X → Y is said to be K−convex, if for every α ∈ [0, 1] and x, y ∈ X

αF (x) + (1− α)F (y) ∈ F (αx+ (1− α)y) +K.

and the mapping F : X → Y is said to be K−convexlike on S if for any x, y ∈ S, λ ∈
[0, 1] there exists z ∈ S such that

λF (x) + (1− λ)F (y)− F (z) ∈ K

Remark that if we take Y = < and K = [0,∞) then the K− convexity of F reduces
to the usual definition of the convexity for a function.
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Definition 1.3. Let F : X −→ Y be a given map. The subdifferential of F at
x̄ ∈ X is given by

∂F (x̄) = {T ∈ L(X,Y ) : F (x)− F (x̄) ≥K T (x− x̄) ∀x ∈ X}.

It is clear that 0 ∈ ∂F (x̄) iff F (x) ≥K F (x̄) for all x ∈ K. This means F (x̄) is Pareto
minimal point of the range F iff the zero mapping belongs to the subdifferential of
F at x̄. Let ε ∈ K. The ε-subdifferential of F at x̄ ∈ X is given by

∂εF (x̄) := {T ∈ L(X,Y ) : F (x)− F (x̄) + ε ≥K T (x− x̄) ∀x ∈ X}.

It is straightforward to check that ∂εF (
−
x) =

⋂
ε≤β
β∈K

∂βF (
−
x). Every T ∈ ∂εF (x̄) is

called an ε-subgradient. If y∗ ∈ Y ∗, then

y∗ ◦ ∂F (x̄) = {y∗ ◦ T : T ∈ ∂F (x̄)}.

In this paper, we consider the following cone-constrained vector optimization
problem , sometimes called D-C vector optimization where D-C refers to difference
of two convex functions:

(P )

{
K −MinF (x)−G(x),

subject to x ∈ C and H(x)− S(x) ∈ −D.
(1)

where F,G : X −→ Y are K−convex and S,H : X −→ Z are D-convex maps.

Definition 1.4. [12] Suppose that Ω := {x ∈ C : H(x) − S(x) ∈ −D} and ε ∈ K.
An element x̄ ∈ Ω is called an ε−weak local Pareto minimal solution of problem (P )
iff there exists a neighborhood U of x̄ such that

F (x̄)−G(x̄) ∈ ε−WMin(G− F )(U ∩ Ω),

i.e.,
(F −G)(U ∩ Ω) ⊂ F (x̄)−G(x̄)− ε+ Y \ −intK,

where (F −G)(U ∩ Ω) = {F (x)−G(x) : x ∈ U ∩ Ω}.

2. Sufficient Optimality Conditions

In the sequel, let X be a normed space and φ be a positive bi-function φ : X ×
X −→ R+. In what follows, using a generalized notion of monotonicity, we establish
new sufficient optimally conditions for an ε−weak Pareto minimal solution for the
vector optimization problem (P ). The following definition extends the notion of
directionally approximately pseudo-dissipative in norm space X.
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Definition 2.1. A set-valued map M : X ⇒ L(X,Y ) is called φ−directionally
approximately pseudo-dissipative at x̄ ∈ X iff, for every u ∈ SX and ε ∈ intK, there
exists δ > 0 such that

∀x ∈ B(u, δ), ∀t ∈ (0, δ) ∃T ∗ ∈M(x̄+ tx), ∃T ∈M(x̄) : (T ∗ − T )(x) ≤K εφ(x, x̄).

Note that if φ(x, y) = 1, Definition 2.1 reduces to the directionally approximately
pseudo-dissipative.

Remark 2.1. Any single valued mapping is φ−directionally approximately pseudo-
dissipative .

Remark 2.2. If Y = C or R, Definition 2.1 reduces to the definition of a direction-
ally approximate pseudo-dissipativity introduced by Penot [4].

It must be noted that the class of approximately pseudo-dissipative maps is
a subset of the class of directionally approximately pseudo-dissipative maps. In
fact, every directionally gap-continuous mapping at x̄ is directionally approximately
pseudo-dissipative at x̄ .

Theorem 2.1. Let x̄ ∈ Ω. Assume that the set-valued maps (∂ ε
2
F ) and (∂H) are

both φ−directionally approximately pseudo-dissipative at x̄and φ is a bounded bi-
function. If , for all T ∈ ∂ ε

2
F (x̄) and L ∈ ∂H(x̄), there exist (y∗, z∗) ∈ K∗\{0}×D∗

such that {
y∗ ◦ (−T ) + z∗ ◦ (−L) ∈ ∂

(
y∗ ◦ (−G) + z∗ ◦ (−S)

)
(x̄),

〈z∗, H(x̄)− S(x̄)〉 = 0,

then x̄ is an ε−weak local Pareto minimal solution of problem (P ).

Proof. From φ−directionally approximately pseudo-dissipativity of the set-valued
maps ∂ ε

2
F and ∂H at x̄, there exists δ > 0 such that for each t ∈ (0, δ) and

v ∈ B(0, δ) we have

∃T ′ ∈ ∂ ε
2
F (x̄+ tv), T ∈ ∂ ε

2
F (x̄) such that (T

′ − T )(v) ≤K αφ(x̄, v),

and
∃L′ ∈ ∂H(x̄+ tv), L ∈ ∂H(x̄) such that (L

′ − L)(v) ≤D γφ(x̄, v),

where α ∈ intK, γ ∈ intD and u = 0 for Definition 2.1. Now, set U = x̄ + B(0, δ).
As x− x̄ ∈ B(0, δ), so for any x ∈ U ∩ Ω, it follows that

∃T ′ ∈ ∂ ε
2
F (x̄+t(x̄−x)), T ∈ ∂ ε

2
F (x̄) such that (T−T ′)(x− x̄) ≤K αφ(x̄, x−x̄), (2)
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and

∃L′ ∈ ∂H(x̄+t(x̄−x)), L ∈ ∂H(x̄) such that (L−L′)(x− x̄) ≤D γφ(x̄, x− x̄). (3)

Since T
′ ∈ ∂ ε

2
F (x̄+ t(x− x̄)) and T ∈ ∂ ε

2
F (x̄), we have

F (y)− F (x̄+ t(x̄− x))− T ′(y − (x̄+ t(x̄− x))) +
ε

2
∈ K ∀y ∈ X, (4)

and,

F (y)− F (x̄)− T (y − x̄) +
ε

2
∈ K ∀y ∈ X. (5)

For the case y = x in (4) and y = x̄+ t(x̄− x) in (5) we have,

F (x)− F (x̄+ t(x̄− x))− (1 + t)T
′
(x− x̄) +

ε

2
∈ K, (6)

and,

F (x̄+ t(x̄− x))− F (x̄) + tT (x− x̄) +
ε

2
∈ K. (7)

By adding (6) to (7), we get

F (x)− F (x̄)− [−tT + (1 + t)T
′
](x− x̄) + ε ∈ K.

By using the same argument and L
′ ∈ ∂H(x̄+ t(x̄− x) and L ∈ ∂H(x̄) we have

H(x)−H(x̄)− [−tL+ (1 + t)L
′
](x− x̄) ∈ D.

Thus, for every y∗1 ∈ K∗ and z∗1 ∈ D∗ we have,

〈y∗1, F (x)− F (x̄)− [−tT + (1 + t)T
′
](x− x̄) + ε〉 ≥ 0,

〈z∗1 , H(x)−H(x̄)− [−tL+ (1 + t)L
′
](x− x̄)〉 ≥ 0.

(8)

Since T ∈ ∂ ε
2
F (x̄) and L ∈ ∂H(x̄), by using hypothesis of theorem, there exist

y∗ ∈ K∗ \ {0} and z∗ ∈ D∗ such that{
y∗ ◦ (−T ) + z∗ ◦ (−L) ∈ ∂

(
y∗ ◦ (−G) + z∗ ◦ (−S)

)
(x̄)

〈z∗, S(x̄)−H(x̄)〉 = 0.

Consequently, for all x ∈ X we get

(
y∗◦(−G)+z∗◦(−S)

)
(x)−

(
y∗◦(−G)+z∗◦(−S)

)
(x̄)−

(
y∗◦(−T )+z∗◦(−L)

)
(x− x̄) ≥ 0,
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which implies for all x ∈ X that

〈y∗,−G(x) +G(x̄) + T (x− x̄)〉+ 〈z∗,−S(x) + S(x̄) + L(x− x̄)〉 ≥ 0. (9)

Since y∗ ∈ K∗ \ {0} ⊂ K∗, z∗ ∈ D∗, it follows from (8) and the arbitrariness of x on
U ∩ Ω that

〈y∗, F (x)− F (x̄)− [−tT + (1 + t)T
′
](x− x̄) + ε〉 ≥ 0

〈z∗, H(x)−H(x̄)− [−tL+ (1 + t)L
′
](x− x̄)〉 ≥ 0. (10)

Combining (9) and (10), we derive for all x ∈ U ∩ Ω〈
y∗,
(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ (1 + t)(T − T ′)(x− x̄) + ε

〉
+
〈
z∗,
(
H(x)− S(x)

)
−
(
H(x̄)− S(x̄)

)
+ (1 + t)(L− L′)(x− x̄)

〉
≥ 0,

That is, 〈
y∗,
(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ ε
〉

+
〈
z∗,
(
H(x)− S(x)

)
〉 − 〈z∗, H(x̄)− S(x̄)〉

+ 〈y∗, (1 + t)(T − T ′)(x− x̄)〉

+ 〈z∗, (1 + t)(L− L′)(x− x̄)〉 ≥ 0.

Hence since H(x)− S(x) ∈ −D, for all x ∈ U ∩ Ω we get

〈z∗, H(x)− S(x)〉 ≤ 0.

Moreover, it can be deduced from 〈z∗, H(x̄)− S(x̄))〉 = 0, (2) and (3) that

〈y∗,
(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ ε
〉

+M(1 + t)y∗(α) +M(1 + t)z∗(γ) ≥ 0.

Since α and γ are arbitrary elements respectively in intK and intD, for all n ∈ N
we have α

n ∈ intK and γ
n ∈ intD. Therefore there exist neighborhood Un of x̄ and

sequence {tn} such that tn → 0 and for all x ∈ Un ∩ Ω we get,

〈y∗,
(
F (x)−G(x)

)
−
(
F (x̄−G(x̄))

)
+ ε
〉

+M(1 + tn)y∗(
α

n
) +M(1 + tn)z∗(

γ

n
) ≥ 0.

Now, assume that V = ∪∞n=1Vn, where Vn are the increasing sequences subset of
Un. Hence, by the latter inequality and choosing sufficiently large n ∈ N, it can be
deduced for all x ∈ V ∩ Ω

〈y∗,
(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ ε
〉

+M
(1 + tn)

n
y∗(α) +M

(1 + tn)

n
z∗(γ) ≥ 0,
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by letting n→ +∞, we finally conclude that

〈y∗,
(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ ε
〉
≥ 0.

Therefore, considering K is a pointed cone(
F (x)−G(x)

)
−
(
F (x̄)−G(x̄)

)
+ ε /∈ −intK ∀x ∈ U ∩ Ω,

which completes the proof of the theorem.

The following example shows that the boundedness of φ in Theorem (2.1) is
essential.

Example 2.1. Let X = R, Y = R2, Z = R,K = R2
+, D = R+, ε = 0, x̄ = 0. Now,

we define the mappings F,G : X −→ Y and H,S : X −→ Z as follows:

F (x) = (x2, x2), G(x) = (x, x), H(x) = x, S(x) = 0, φ(x, y) = |x− y|.

We have F,G : X −→ Y are K−convex and H,S : X −→ Z are D−convex and

∂F (x) = {(2x, 2x)}, ∂G(x) = {(1, 1)}, ∂S(x) = {0}, ∂H(x) = {1}

and φ is unbounded. By Remark (2.1) ∂H(x) is φ−directional approximately pseudo
dissipative and ∂F (x) is φ−directional approximately pseudo dissipative suppose
that x ∈ SX = B(0, 1), ε = (a, b) ∈ intK be given. Let δ = min{ a

b2(1+a)c ,
b

b2(1+b)c}
so for all x ∈ B(u, δ), t ∈ (0, δ) let T ∗ = (2tx.2tx) ∈ ∂F (x̄ + tx) = {(2tx, 2tx)} and
T = (0, 0) ∈ ∂F (x̄) = {(0, 0)} so we have

a|x| ≥ 2tx2, b|x| ≥ 2tx2

or

(T ∗ − T )(x− x̄) = (2tx, 2tx)(x) = (2tx2, 2tx2) ≤K εφ(x, x−) = (a|x|, b|x|).

Also for T ∈ ∂ ε
2
F (x̄) = {(0, 0)}, L ∈ ∂H(x̄) = {1} we consisder y∗ = (1, 0), z∗ = 1

so we have {
y∗ ◦ (−T ) + z∗ ◦ (−L) ∈ ∂

(
y∗ ◦ (−G) + z∗ ◦ (−S)

)
(x̄),

〈z∗, H(x̄)− S(x̄)〉 = 0,

but x̄ is not an ε−weak local Pareto minimal solution of problem (P ) because there
is not neighbourhood U of x̄ = 0 such that

(F (x)−G(x))− (F (x̄)−G(x̄)) + ε = (x2 − x, x2 − x) /∈ −intK
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Remark 2.3. It is important to notice that if ε = 0, Theorem (2.1) provides
sufficient optimality conditions for a weak pareto minimal solution of the vector
optimization problem (P). The notion of Diff-Max maps which was first introduced
by Michelot [2] means that each point of the effective domain is a local maximum for
the subdifferential according to the inclusion relation, or from the ε-subdifferential.
In fact, F is said to be Diff-Max at x̄ iff there exists neiborhood of x̄ such that for
all x ∈ U(x̄), the following inclusion holds

∂F (x) ⊆ ∂F (x̄).

Note that if F is Diff-Max at x̄ then ∂F is directionally approximately pseduo-
dissipative at x̄.

Remark 2.4. If ε = 0, then Theorem (2.1) is a sufficient optimality condition for
a proper Pareto minimal solution for the vector optimization problem (P).

3. Necessary Optimality Conditions

In this section we present a neccessary optimality conditions for D.C vector opti-
mization problems. In order to prove the result we need the following lemma which
is an improvement of the corresponding lemma given in [10] with a new and an easy
proof.

Lemma 3.1. Let C be a convex subset of X. If the map F : C −→ Y is K−convexlike
and G : C −→ Z is D−convexlike and the system{

F (x) ∈ −intK
G(x) ∈ −intD,

}
has no solution in C, then there exist (y∗, z∗) ∈ K∗ × D∗ such that (y∗, z∗) 6=

(0, 0),
〈y∗, F (x)〉+ 〈z∗, G(x)〉 ≥ 0 ∀x ∈ C.

Proof. We can easily prove that F (C) +K and G(C) +D are convex set. Let

g : C ⇒ 2X×Y

g(x) = (F (x) +K)× (G(x) +D)

so we have g(C)∩ int(−K ×−D) = ∅ and since g(C) is convex set by the sepration
theorem, there exists a nonzero (y∗, z∗) ∈ (Y ∗, Z∗) such that

〈y∗,−k〉+〈z∗,−d〉 ≤ α ≤ 〈y∗, F (x) + k〉+〈z∗, G(x) + d〉 for all (k, d) ∈ (K,D), x ∈ C
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and this implies that (y∗, z∗) ∈ (K∗, D∗) and

〈y∗, F (x)〉+ 〈z∗, G(x)〉 ≥ 0 ∀x ∈ C.

Remark 3.1. One can verify ,by slightly modifications of the proof of Lemma 3.1,
that the result of Lemma 3.1 is still valid when{

F (x) ∈ −intK
G(x) ∈ −intD,

}
replace by {

F (x) ⊆ −intK
G(x) ⊆ −intD.

}
The following example shows that the Lemma 3.1 is a real improvement of the

corresponding lemma appeared in [10].

Example 3.1. LetX = R, Y = R2, C = [0, π],K = D = R2
+, F (x) = (0, sinx), G(x) =

(0, cosx) therefore F is K−convexlike and G is D−convexlike but are not K−convex
and D−convex, setting x∗ = (1, 0), y∗ = (1, 0) we have

〈x∗, F (x)〉+ 〈y∗, G(x)〉 = 0 ≥ 0.

The following example shows that the seceond part of the result of the Theorem
(4.1) of [12] may fault. This is the main reason why we omited it in the conclusion of
the Theorem (4.1). In other words, Happing the parts of the result of the Theorem
(4.1) of [12] simultaneously is impossible.

Example 3.2. Take X = R, Y = Z = R2, C = [−2,−1],K = D = [0,+∞) ×
[0,+∞), x̄ = ◦, ε = (◦, ◦). Consider F,G,H, S : R→ R2 defined by

F (x) = (x, 0)
G(x) = (2x, 0)
H(x) = (2x− 1,−1)
S(x) = (x2, 0)

Clearly F,G are K−convex and H,S are D−convex, with ∂G(x) = {2} , ∂H(x) =
{2} . So

F (x)−G(x)− (F (x)−G(x)) = (−x, 0) /∈ −intK, ∀x ∈ U(0) ∩ C
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which implies that x̄ = 0 is ε−weak local minimal solution of (P ), Now if

〈z∗, H(x)− S(x)〉 = 〈z∗, (−1,−1)〉 = 0⇒ z∗ = 0

and
(y∗o∂G+ z∗o∂H) = 2y∗ ∈ ∂(y∗o(x, 0) + δU∩Ω)(x̄)

which implies that x ≤ 0 for all x ∈ U ∩ C which is contradiction.
The above example is also a counterexample for Theorem [4.1,4.2] of [?]. So corallaris
[4.2,4.3,4.4,4.5,4.6] are not correct.

The following Theorem modify and extend the Theorem (4.1) of [12].

Theorem 3.2. Let x̄ ∈ Ω. If the vector-valued map F : X −→ Y is a K−convexlike
map, the vector-valued map H : X −→ Z is a D−convexlike map, and x̄ is an
ε−weak local minimal solution of (P ), then there exist (y∗, z∗) ∈ K∗ × D∗ and
(y∗, z∗) 6= (0y∗ , 0z∗) such that

(y∗ ◦ ∂G+ z∗ ◦ ∂H)(x̄) ⊂ ∂〈y∗,ε〉(y∗ ◦ F + z∗ ◦H + δU∩C)(x̄). (11)

Proof. Let x̄ ∈ Ω and ε ∈ K. Since x̄ is an ε-weak local minimal solution of (P),
there exists a neighborhood U of x̄ such that for all x ∈ U ∩ C,

F (x)−G(x)− (F (x̄)−G(x̄)) + ε /∈ −intK.

Now suppose that T ∈ ∂G(x̄) and L ∈ ∂H(x̄) be an arbitrary elements. Since
F : X −→ Y is a K−convexlike and G : X −→ Z is a D−convexlike maps, therefore
it is easy to check that F (.) − F (x̄) − T (. − x̄) + ε is a K−convexlike map and
H(.)−H(x̄)−L(.− x̄) is a D−convexlike map. Using the latter, we prove that the
system {

F (x)− F (x̄)− T (x− x̄) + ε ∈ −intK

H(x)−H(x̄)− L(x− x̄) ∈ −intD,
(12)

has no solution in U ∩ C. Arguing by contradiction, assume that there exists a
solution x0 ∈ U ∩ C of (11). Thus{

F (x0)− F (x̄)− T (x0 − x̄) + ε ∈ −intK,
H(x0)−H(x̄)− L(x0 − x̄) ∈ −intD.

(13)

Since T ∈ ∂G(x̄) and L ∈ ∂S(x̄), we have

G(x)−G(x̄)− T (x− x̄) ∈ K ∀x ∈ X,
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and
S(x)− S(x̄)− L(x− x̄) ∈ D ∀x ∈ X.

Let x = x0, so we have{
−G(x0) +G(x̄) + T (x0 − x̄) ∈ −K,
−S(x0) + S(x̄) + L(x0 − x̄) ∈ −D.

(14)

Since −K − intK = −intK and −D − intD = −intD, and H(x̄) − S(x̄) ∈ −D
combining (13) and (14) we obtain{

F (x0)−G(x0)− (F (x̄)−G(x̄)) + ε ∈ −intK,
H(x0)− S(x0) ∈ −intD,

this contradicts to the assumption that x̄ is an ε−weak local minimal solution of
(P). Hence, system (12) has no solution. It follows from Lemma (3.1) that there
exists (y∗, z∗) 6= (0, 0) such that for all x ∈ U ∩ C

〈y∗, F (x)− F (x̄)− T (x− x̄) + ε〉+ 〈z∗, G(x)−G(x̄)− L(x− x̄)〉 ≥ 0

Consequently,

(y∗ ◦ F + z∗ ◦H)(x)− (y∗ ◦ F + z∗ ◦H)(x̄) + 〈y∗, ε〉 − (y∗ ◦ T + z∗ ◦ L)(x− x̄) ≥ 0

Thus we have that,

(y∗ ◦ ∂G+ z∗ ◦ ∂H) ⊂ ∂〈y∗,ε〉(y∗ ◦ F + z∗ ◦H + δU∩C).

This completes the proof.
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