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QUANTUM CODES FROM CYCLIC CODES OVER A3

A. Dertli, Y. Cengellenmis

Abstract. In this paper, the quantum codes over F2 are constructed by using
the cyclic codes over A3 = F2+uF2+vF2+wF2+uvF2+uwF2+vwF2+uvwF2 with
u2 = u, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv. Moreover, the parameters of
quantum codes over F2 are determined.
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1. Introduction

Quantum error correcting codes are used in quantum computing to protect quantum
information from errrors. The first error correcting code was discovered by Shor in
[14] and independently by Steane in [1]. Although the theory quantum error cor-
recting codes has differences from theory classical error correcting codes, Calderbank
et al, gave a way to construct quantum error correcting codes from classical error
correcting codes.

Many quantum error correcting codes have been constructed by using classical
error correcting codes over many finite rings [2-16].

In [17], the finite ring Ak = F2[v1, ..., vk]/
〈
v2i = vi, vivj = vjvi

〉
, 1 ≤ i, j ≤ k was

introduced.
In this paper, we give some knowledges about the ring A3, in section 2. A

necessary and sufficient condition for cyclic codes over A3 that contains its dual is
given in section 3. The parameters of quantum error correcting codes are obtained
from cyclic codes over A3. Some examples are given.

2. Preliminaries

In [17], the finite ring Ak = F2[v1, ..., vk]/
〈
v2i = vi, vivj = vjvi

〉
, 1 ≤ i, j ≤ k was

introduced firstly. By taking k = 3, we get the finite ring
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A3 = F2 + uF2 + vF2 + wF2 + uvF2 + uwF2 + vwF2 + uvwF2

=

{
a1 + ua2 + va3 + wa4 + uva5 + uwa6 + vwa7

+uvwa8 : ai ∈ F2, 1 ≤ i ≤ 8

}
with u2 = u, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv. This ring has char-
acteristic 2 and cardinality 22

3
. It is not a local ring. The only unit in the ring

A3 is 1. It is a principal ideal ring. Moreover, it is clear that A3 is isomorphic to
F2[a, b, c]/

〈
a2 − a, b2 − b, c2 − c, ab− ba, ac− ca, bc− cb

〉
.

We define the Gray map Φ from A3 to F 8
2 as follows,

Φ : A3 −→ F 8
2

a1 + ua2 + va3 + wa4 + uva5 + uwa6 + vwa7 + uvwa8 7−→ ζ

where ζ = (a8, a6 + a7, a5 + a7, a4 + a5 + a6 + a7, a3 + a7, a2 + a3 + a6 + a7, a1 + a3 +
a5 + a7, a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8).

This map Φ can be extended to An
3 in obvious way.

Theorem 1. The Gray map Φ is a distance preserving map from An
3 (Lee distance)

to F 8n
2 (Hamming distance) and it is also F2-linear.

The Hamming distance dH(x, y) between two vector x and y over F2 is the
Hamming weight of the vector x− y.

The Lee weight wL(x) of x = (x0, x1, ..., xn−1) ∈ An
3 is defined as wL(x) =

wH(Φ(x)). The Lee distance dL(x, y) is given by dL(x, y) = wL(x − y) for any
x, y ∈ An

3 .
A linear code C of length n over A3 is a A3-submodule of An

3 .

Lemma 2. Let C be a linear code of length n over A3 with rank k and minimum
Lee distance d, then Φ(C) is a [8n, k, d] linear code over F2.

For any x = (x0, ..., xn−1) , y = (y0, ..., yn−1) the inner product is defined as

xy =
n−1∑
i=0

xiyi

If xy = 0, then x and y are said to be orthogonal. Let C be a linear code of
length n over R, the dual of C

C⊥ = {x : ∀y ∈ C, xy = 0}
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which is also a linear code over R of length n. A code C is self orthogonal, if C ⊂ C⊥
and self dual, if C = C⊥.

Theorem 3. Let C be a linear code of length n over A3.If C is self orthogonal, so
is Φ (C) .

Proof. It is proved that as in [3].

Let

λ1 = 1 + u+ v + uv + w + uw + vw + uvw

λ2 = u+ uv + uw + uvw

λ3 = v + uv + vw + uvw

λ4 = w + uw + vw + uvw

λ5 = uv + uvw

λ6 = uw + uvw

λ7 = vw + uvw

λ8 = uvw

It is easy to show that λ2i = λi, λiλj = 0 and
8∑

k=1

λk = 1, where i, j = 1, 2, ..., 8 and

i 6= j. This show that A3 =
8∑

k=1

λkF2. Therefore, for any a ∈ A3, a can be expressed

uniquely as a =
8∑

k=1

λkak, where ak ∈ F2, for k = 1, 2, ..., 8.

If Bi (i = 1, 2, ..., 8) are codes over F2, we denote their direct sum by

B1 ⊕B2 ⊕ ...⊕B8 = {b1 + ...+ b8 : bi ∈ Bi, i = 1, ..., 8}

Definition 1. Let C be a linear code of length n over A3, we define

C1 = {a ∈ Fn
2 : ∃b, c, d, e, f, g, h ∈ Fn

2 , γ ∈ C}
C2 = {b ∈ Fn

2 : ∃a, c, d, e, f, g, h ∈ Fn
2 , γ ∈ C}

C3 = {c ∈ Fn
2 : ∃a, b, d, e, f, g, h ∈ Fn

2 , γ ∈ C}
C4 = {d ∈ Fn

2 : ∃a, b, c, e, f, g, h ∈ Fn
2 , γ ∈ C}

C5 = {e ∈ Fn
2 : ∃a, b, c, d, f, g, h ∈ Fn

2 , γ ∈ C}
C6 = {f ∈ Fn

2 : ∃a, b, c, d, e, g, h ∈ Fn
2 , γ ∈ C}

C7 = {g ∈ Fn
2 : ∃a, b, c, d, e, f, h ∈ Fn

2 , γ ∈ C}
C8 = {h ∈ Fn

2 : ∃a, b, c, d, e, f, g ∈ Fn
2 , γ ∈ C}

where γ = λ1a+ λ2b+ λ3c+ λ4d+ λ5e+ λ6f + λ7g + λ8h.
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It is noted that Ci (i = 1, ..., 8) are linear codes over F2. Moreover, C = λ1C1 ⊕
...⊕ λ8C8 and |C| = |C1| |C2| ... |C8| .

Theorem 4. Let C =
8∑

i=1
λiCi be a linear code of length n over A3. Then C⊥ =

8∑
i=1

λiC
⊥
i .

Lemma 5. If Gi are generator matrices of binary linear codes Ci (i = 1, ..., 8),
then the generator matrix of C is

G =


λ1G1

λ2G2
...

λ8G8


Let dL minimum Lee weight of linear code C over A3. Then,

dL = dH(Φ (C)) = min{dH(C1), dH(C2), ..., dH(C8)}

where dH(Ci) denotes the minimum Hamming weights of codes C1, C2,...,C8, respec-
tively.

Proposition 1. Let C =
8∑

i=1
λiCi be a linear code of length n over A3, where Ci

are codes over F2 of length n for i = 1, ..., 8. Then C is a cyclic code over A3 iff
Ci, i = 1, ..., 8 are all cyclic codes over F2.

Proof. Let
(
ai0, a

i
1, ..., a

i
n−1
)
∈ Ci, where i = 1, ..., 8. Assume that mi = λ1a

1
i +λ2a

2
i +

... + λ8a
8
i for i = 0, 1, ..., n − 1. Then (m0,m1, ...,mn−1) ∈ C. Since C is a cyclic

code, it follows that (mn−1,m0, ...,mn−2) ∈ C. Note that (mn−1,m0, ...,mn−2) =
λ1(a

1
n−1, a

1
0, ..., a

1
n−2) + ...+λ8(a

8
n−1, a

8
0, ..., a

8
n−2). Hence (ain−1, a

i
0, ..., a

i
n−2) ∈ Ci,for

i = 1, ..., 8. Therefore, C1, C2,...,C8 are cyclic codes over F2.
Conversely, suppose that C1, C2,...,C8 are cyclic codes over F2. Let (m0,m1, ...,mn−1) ∈

C, where mi = λ1a
1
i +λ2a

2
i + ...+λ8a

8
i for i = 0, 1, ..., n−1. Then

(
ai0, a

i
1, ..., a

i
n−1
)
∈

Ci for i = 1, ..., 8. Note that (mn−1,m0, ...,mn−2) = λ1(a
1
n−1, a

1
0, ..., a

1
n−2) + ... +

λ8(a
8
n−1, a

8
0, ..., a

8
n−2) ∈ C = λ1C1 ⊕ ...⊕ λ8C8. So, C is a cyclic code over A3.

Proposition 2. Suppose that C =
8∑

i=1
λiCi is a cyclic code of length n over A3.Then

C = 〈λ1f1, λ2f2, ..., λ8f8〉
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where f1, f2,...,f8 are generator polynomials of C1, C2,...,C8 respectively.

Lemma 6. For any cyclic code C =
8∑

i=1
λiCi of length n over A3, there exist a

unique polynomial f(x) such that C = 〈f (x)〉 and f (x) | xn − 1 where fi(x) are
the generator polynomials of Ci, i = 1, 2, ..., 8 and f (x) = λ1f1(x) + λ2f2(x) + ...+
λ8f8(x).

Lemma 7. Let C =
8∑

i=1
λiCi be a cyclic code of length n over A3, where C1, C2,...,C8

are binary codes.Then

C⊥ = 〈λ1h∗1 + λ2h
∗
2 + ...+ λ8h

∗
8〉

where for h∗i (x) are the reciprocal polynomials of hi (x) = (xn − 1) /fi (x), that is,
h∗i (x) = xdeg hi(x)hi

(
x−1

)
for i = 1, 2, ..., 8.

Lemma 8. A cyclic code C with generator polynomial f (x) contains its dual code
iff

xn − 1 ≡ 0 (mod ff∗)

where f∗(x) is the reciprocal polynomial of f(x), [7].

3. Quantum codes from cyclic codes over A3

Lemma 9. Let C1 and C2 be linear codes over Fq with parameters [n, k1, d1]q and

[n, k2, d2]q, respectively and C⊥2 ⊆ C1. Furthermore, let

d = min{wt(v) : v ∈ (C1\C⊥2 ) ∪ (C2\C⊥1 )} ≥ min{d1, d2}

Then, there exist a quantum error correcting code C with parameters [[n, k1 + k2 − n, d]]q.

In particular, if C⊥1 ⊆ C1, then there exist a quantum error correcting code C with
parameter [[n, 2k1 − n, d]] , where d1 = min{wt(v) : v ∈ C1\C⊥1 }, [11].

Theorem 10. Let C be a cyclic code of arbitrary length n over A3, where f (x) =
λ1f1(x)+λ2f2(x)+ ...+λ8f8(x),then C⊥ ⊆ C iff xn−1 ≡ 0 (mod fi(x)f∗i (x)) , where
f∗i (x) are the reciprocal polynomials of fi(x) respectively, for i = 1, 2, ..., 8.

Proof. Let xn − 1 ≡ 0 (mod fi(x)f∗i (x)) for i = 1, 2, ..., 8. By using Lemma 8
C⊥i ⊆ Ci for i = 1, 2, ..., 8. By using this, we get

λiC
⊥
i ⊆ λiCi
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for i = 1, 2, ..., 8. Hence,
8∑

j=1
λjC

⊥
j ⊆

8∑
j=1

λjCj . So, we have

〈
8∑

j=1
λjh

∗
j (x)

〉
⊆〈

8∑
j=1

λjfj(x)

〉
. This implies that C⊥ ⊆ C.

Conversely, if C⊥ ⊆ C, then
8∑

j=1
λjC

⊥
j ⊆

8∑
j=1

λjCj . Since Ci are the binary codes

such that λiCi is equal to C mod λi, i = 1, ..., 8, we have C⊥i ⊆ Ci, i = 1, ..., 8. So,
xn − 1 ≡ 0 (mod fi(x)f∗i (x)) , i = 1, ..., 8.

Theorem 11. Let C =
8∑

i=1
λiCi be a cyclic code of length n over A3. If C⊥i ⊆ Ci

where i = 1, 2, ..., 8, then C⊥ ⊆ C and there exists a quantum error-correcting code
with parameters [[8n, 2k − 8n, dL]] , where dL is the minimum Lee weight of the code
C and k is the dimension of the code Φ(C).

4. Examples

Example 1. Let n = 7

x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) ∈ F2 [x]

Let fi (x) = x3 + x + 1, i = 1, 2, ..., 8. Thus Ci are [7, 4, 3] linear codes of length 7.
So, Φ(C) is [56, 32, 3] linear code. Clearly, C⊥ ⊆ C. Hence we obtain a quantum
code with parameters [[56, 8, 3]] .
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n Ci φ(C) [[N,K,D]]

4 [4, 3, 2] [32, 24, 2] [[32, 16, 2]]

8 [8, 6, 2] [64, 48, 2] [[64, 32, 2]]

14 [14, 11, 3] [112, 88, 3] [[112, 64, 3]]

15 [15, 8, 4] [120, 64, 4] [[120, 8, 4]]

30 [30, 17, 6] [240, 136, 6] [[240, 32, 6]]

31 [31, 21, 5] [248, 168, 5] [[248, 88, 5]]

31 [31, 16, 7] [248, 128, 7] [[248, 8, 7]]

64 [64, 45, 8] [512, 360, 8] [[512, 208, 8]]

5. Conclusion

In this paper, we have given the structure of cyclic codes over A3 = F2 + uF2 +
vF2 + wF2 + uvF2 + uwF2 + vwF2 + uvwF2 with u2 = u, v2 = v, w2 = w, uv =
vu, uw = wu, vw = wv. to obtain quantum codes from cyclic codes over this ring.
We have established a method to obtain self-orthogonal codes over F2 as the Gray
images of cyclic codes over the ring A3. Finally, we have constructed some examples
of quantum codes to illustrate the main result in which some of them are new in
literature.
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