No. 50/2017 pp. 1-10

doi: 10.17114/j.aua.2017.50.01

EXACT CONTROLLABILITY FOR THE WAVE PROBLEM WITH ROBIN CONDITIONS ON AN ε - PERIODIC DOMAIN

M. Dumitrache and C. Gheldiu

ABSTRACT. The paper presents the study of the exact controllability on an ε -periodic domain lying along two directions. The exact control is applied on a part of the boundary domain, in the case of the wave problem with Robin conditions. The result is a plane wave problem, with convection term end exactly controlled by a control which represents a combination between the limit of the initial control and the convection of the limit.

2010 Mathematics Subject Classification: 35B27, 76M50.

Keywords: two-scale convergence, homogenization, HUM, Robin conditions.

1. Introduction

The article studies in the homogenization of a wave problem with Robin condition controlled by an exact intern control exerted on a part of the border of the structure. The problem was studied on a fixed domain in [3]. The structure is three-dimensional, rectangular type, denoted by Ω , with the inferior base fixed in the plane XOY (or X_1OX_2) and it is consisted of deformable solid. In the interior of the structure we have a parallelepiped which has the same median plan with the initial parallelepiped and in which are distributed empty spheres (holes) with period ε , but only following the directions OX_1 and OX_2 . The thickness of the initial parallelepiped is $k\varepsilon$ (k > 0) and the thickness of the included parallelepiped is $hk\varepsilon$ (0 < h < 1), we will denote by Γ_h - the median plan, Γ_ε^+ - the upper face and Γ_{ε}^{-} - the base – the lower face. The domain which is occupied by the material is denoted by Ω_{ε} and it is an ε periodically perforated domain following the directions OX_1 and OX_2 only in the band size $hk\varepsilon$. The domain is similarly to the domain from [5]. On the cover Γ_{ε}^+ is applied a force v_{ε} which determines oscillations in whole structure Ω_{ε} , v_{ε} satisfying the exact control condition for Ω_{ε} . We made the construction of the control v_{ε} using the HUM method introduced by Lions in [4]. For the homogenization of the wave problem we applied the dilatation method and the two-scale convergence method.

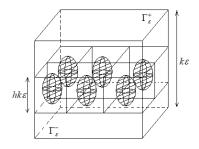


Figure 1: The domain Ω_{ε}

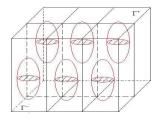


Figure 2: The domain Ω_{ε}^*

2. The Statement of Problem of the Free Waves with Robin Conditions

First, we made dilatation $z = \frac{x_3}{k\varepsilon}$ that transforms the partial perforated domain Ω_{ε} into Ω_{ε}^* , the domain where the base is in the plan X_1OX_2 , the superior cover Γ_{ε}^+ is transformed into Γ^+ , the thickness of the structure is 1, and the middle parallelepiped has the thickness h.

We consider the domain Ω_{ε}^* covered with the grid εY^* , where Y^* is the periodicity cell, definite by $Y^* = Y \backslash T$, where $Y = (0,1)^3$ is the representative cell and T is the hole from the interior of Y, transformed from the initial sphere with the dilatation $z = \frac{x_3}{k\varepsilon}$. We denote by $S_h^{+,-}$ the covers of Y^* . Initial, the cell Y^* is distributed in the parallelepiped Ω with the period ε .

Now, we consider the wave problem on Ω_{ε}

$$\begin{cases}
 u_{\varepsilon}'' - \Delta u_{\varepsilon} + q u_{\varepsilon} = 0_{\varepsilon} \text{ in } \Omega_{\varepsilon} \times (0, T) \\
 \frac{\partial u_{\varepsilon}}{\partial \nu} + a u_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{+} \times (0, T) \\
 \frac{\partial u_{\varepsilon}}{\partial \nu} = 0 \text{ on } (\partial T_{\varepsilon} \cup \partial \Omega_{\varepsilon}^{\infty}) \times (0, T) \\
 u_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{-} \\
 u_{\varepsilon}(0) = u_{\varepsilon}^{0}, \ u_{\varepsilon}'(0) = u_{\varepsilon}^{1} \text{ in } \Omega_{\varepsilon}
\end{cases} \tag{1}$$

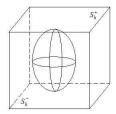


Figure 3: The cell Y^*

where $T_{\varepsilon} = \varepsilon T$ such that $T_{\varepsilon} \cap \partial \Omega = \emptyset$, $\partial \Omega_{\varepsilon}^{\infty}$ is the lateral border of Ω_{ε} .

We consider the following conditions satisfied:

i) $q = q\left(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}\right) = q\left(y_1, y_2\right)$ and $0 < m \le q\left(y_1, y_2\right) = q\left(y_\alpha\right) \le M$ a.e. $Y^*;$ $a = a\left(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}\right) = a\left(y_1, y_2\right) = a\left(y_\alpha\right)$ with the property $0 < \alpha \le a\left(y_\alpha\right) \le \beta$ a.e. $S_h^+;$ $q \in L_{(1,2)per}^{\infty}\left(Y^*\right), \quad a \in L_{(1,2)per}^{\infty}\left(S_h^+\right).$

ii) $(u_{\varepsilon}^0, u_{\varepsilon}^1) \in V_{\varepsilon} \times L^2(\Omega_{\varepsilon})$ where V_{ε} is the Hilbert space $V_{\varepsilon} = \{u \in H^1(\Omega_{\varepsilon}) : u = 0 \text{ on } \Gamma_{\varepsilon}^-\}$, the norm induced by the space $H^1(\Omega_{\varepsilon})$, and the condition $u_{\varepsilon}^0 \in L^2(\Gamma_{\varepsilon}^+)$.

After the dilatation operation, we multiply the first equation of the system (1) by u'_{ε} , we integrate by parts on $\Omega_{\varepsilon} \times (0,T)$ and we obtain

$$\frac{1}{2} \int_{0}^{T} \frac{d}{dt} \int_{\Omega_{\varepsilon}^{*}} \left(u_{\varepsilon}^{\prime}\right)^{2} dx_{\alpha} dz dt +
+ \frac{1}{2} \int_{0}^{T} \frac{d}{dt} \int_{\Omega_{\varepsilon}^{*}} \left[\frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} \cdot \frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} + \frac{1}{(k\varepsilon)^{2}} \left(\frac{\partial u_{\varepsilon}}{\partial z} \right)^{2} \right]^{2} dx_{\alpha} dz dt +
+ \frac{1}{2} \int_{0}^{T} \frac{d}{dt} \int_{\Omega_{\varepsilon}^{*}} \mu\left(\frac{x_{\alpha}}{\varepsilon}\right) (u_{\varepsilon})^{2} dx_{\alpha} dz dt +
+ \frac{1}{2} \int_{0}^{T} \frac{d}{dt} \int_{\Gamma^{+}} a\left(\frac{x_{\alpha}}{\varepsilon}\right) (u_{\varepsilon})^{2} dx_{\sigma^{\varepsilon}} dt = 0$$
(2)

and we denote the energy of the system by:

$$E_{u}(t) = \frac{1}{2} \int_{\Omega_{\varepsilon}^{*}} (u_{\varepsilon}')^{2} dx_{\alpha} dz + \frac{1}{2} \int_{\Omega_{\varepsilon}^{*}} \left[\frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} \cdot \frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} + \frac{1}{(k\varepsilon)^{2}} \left(\frac{\partial u_{\varepsilon}}{\partial z} \right)^{2} \right] dx_{\alpha} dz + \frac{1}{2} \int_{\Omega_{\varepsilon}^{*}} q\left(\frac{x_{\alpha}}{\varepsilon} \right) (u_{\varepsilon})^{2} dx_{\alpha} dz + \frac{1}{2} \int_{\Gamma^{+}} a\left(\frac{x_{\alpha}}{\varepsilon} \right) (u_{\varepsilon})^{2} d\sigma^{\varepsilon} (x_{\alpha})$$

so, the relation (2) implies

$$E_{u}(T) = E_{u}(0) =$$

$$= \frac{1}{2} \|u_{\varepsilon}^{1}\|_{L^{2}(\Omega_{\varepsilon}^{*})}^{2} + \frac{1}{2} \|u_{\varepsilon}^{0}\|_{V_{\varepsilon}}^{2} + \frac{1}{2} \int_{\Omega_{\varepsilon}^{*}}^{2} q\left(\frac{x_{\alpha}}{\varepsilon}\right) \left(u_{\varepsilon}^{0}\right)^{2} dx_{\alpha} dz +$$

$$+ \frac{1}{2} \int_{\Gamma^{+}}^{2} a\left(\frac{x_{\alpha}}{\varepsilon}\right) \left(u_{\varepsilon}^{0}\right)^{2} d\sigma^{\varepsilon} (x_{\alpha}) \leq C_{1} \|u_{\varepsilon}^{0}\|_{V_{\varepsilon}}^{2} + \frac{1}{2} \|u_{\varepsilon}^{1}\|_{L^{2}(\Omega_{\varepsilon}^{*})}^{2}.$$

We use the conservation of the energy and the conditions i), ii), and we obtain

$$E_u(t) \leq C$$

so, we get

$$\|u_{\varepsilon}^{1}\|_{L^{2}(\Omega_{\varepsilon}^{*})} \leq C, \|u_{\varepsilon}\|_{V_{\varepsilon}} \leq C, \|u_{\varepsilon}\|_{L^{2}(\Gamma^{+})} \leq C$$

$$\left(\|u_{\varepsilon}\|_{V_{\varepsilon}} = \int_{\Omega_{\varepsilon}^{*}} \left[\frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} \cdot \frac{\partial u_{\varepsilon}}{\partial x_{\alpha}} + \frac{1}{(k\varepsilon)^{2}} \left(\frac{\partial u_{\varepsilon}}{\partial z} \right)^{2} \right] dx_{\alpha} dz \right)$$

which implies the next two-scale convergences:

$$\begin{cases} u_{\varepsilon} \xrightarrow{2s} u\left(x_{\alpha}\right) \in H^{1}\left(\Gamma_{h}^{+}\right), \ u_{\varepsilon}' \xrightarrow{2s} u'\left(x_{\alpha}\right) \in H^{-1}\left(\Gamma_{h}^{+}\right) \\ \nabla u_{\varepsilon} \xrightarrow{2s} \nabla_{x_{\alpha}} u\left(x_{\alpha}\right) + \nabla_{y_{\alpha}} U\left(y_{\alpha}, z\right) + k^{-1} \nabla_{z} U\left(y_{\alpha}, z\right) \end{cases}$$

where

$$U \in L^{2}\left(0, T; H^{1}_{(1,2)per}\left(Y\right)/\mathbb{R}\right)$$

and from ii) we obtain

$$u_{\varepsilon}^{0} \xrightarrow{2s} \frac{u^{0}\left(x_{\varepsilon}\right)}{\left(measY^{*}\right)}, \ u_{\varepsilon}^{1} \xrightarrow{2s} \frac{u^{1}\left(x_{\alpha}\right)}{\left(measY^{*}\right)}.$$

3. The Homogenization of the Free Waves Problem with Robin Conditions

For problem (1) we apply the two-scale convergence method [1] and we find the plan hyperbolic limit problem:

$$(measY^*) u''(x_{\alpha}) - \frac{\partial}{\partial x_{\alpha}} \left(A_{\alpha\beta} \frac{\partial u}{\partial x_{\beta}} \right) + b_{\alpha} \frac{\partial u}{\partial x_{\alpha}} + \lambda u(x_{\alpha}) = 0 \text{ in } \Gamma_h^+ \times (0, T),$$
$$u(x_{\alpha}) = 0 \text{ on } \partial \Gamma_h^+ \times (0, T),$$
$$u(0) = \frac{u^0}{measY^*}, u'(0) = \frac{u^1}{measY^*} \text{ in } \Gamma^+,$$

where

$$y = (y_{\alpha}, z)$$

$$A_{\alpha\beta} = \int_{Y^*} \frac{\partial \left(y_{\alpha} + \chi^{\alpha}(y)\right)}{\partial y_{\gamma}} \cdot \frac{\partial \left(y_{\beta} + \chi^{\beta}(y)\right)}{\partial y_{\gamma}} dy + \frac{1}{k^{2}} \int_{Y^*} \frac{\partial \chi^{\alpha}}{\partial z} \left(y\right) \cdot \frac{\partial \chi^{\beta}}{\partial z} \left(y\right) dy$$

$$b_{\alpha} = -\int_{Y^*} \left[\frac{\partial \gamma}{\partial y_{\alpha}} \left(y\right) + \frac{1}{k} \frac{\partial \gamma}{\partial z} \left(y\right) \right] dy + \int_{S_{h}^{+}} a \left(y_{\alpha}\right) \cdot \chi^{\alpha} \left(y_{\alpha}, 1\right) d\sigma \left(y_{\alpha}\right)$$

$$\lambda = \int_{Y^*} q \left(y_{\alpha}\right) dy + \int_{S_{h}^{+}} a \left(y_{\alpha}\right) \cdot \gamma \left(y_{\alpha}, 1\right) d\sigma \left(y_{\alpha}\right),$$

where the correctors $\chi^{\beta}(y)$, $\gamma(y) \in H^{1}_{(1,2)per}(Y)$, $(\beta = 1,2)$ verifies the weak microscopic problems

$$\int_{Y^*} \frac{\partial \left(y_{\beta} + \chi^{\beta}(y)\right)}{\partial y_{\alpha}} \cdot \frac{\partial q}{\partial y_{\alpha}} dy + \frac{1}{k^2} \int_{Y^*} \frac{\partial \chi^{\beta}}{\partial z} (y) \cdot \frac{\partial q}{\partial z} (y) dy = 0,$$

$$\int_{Y^*} \left[\frac{\partial \gamma}{\partial y_{\alpha}} (y) \cdot \frac{\partial q}{\partial y_{\alpha}} (y) + \frac{1}{k^2} \frac{\partial \gamma}{\partial z} (y) \cdot \frac{\partial q}{\partial z} (y) \right] dy +$$

$$+ \frac{1}{k} \int_{S_h^+} \alpha (y_{\alpha}) \cdot q (y_{\alpha}, 1) d\sigma (y_{\alpha}) = 0,$$

 $\forall q \in H^1_{(1,2)per}\left(Y^*/\mathbb{R}\right).$

4. The HUM Method for the Construction of the Exact Control of the Problem (1)

We consider the system

$$\begin{cases}
\phi_{\varepsilon}'' - \Delta \phi_{\varepsilon} + q \phi_{\varepsilon} = 0 \text{ in } \Omega_{\varepsilon} \times (0, T), \\
\frac{\partial \phi_{\varepsilon}}{\partial \nu} + a \phi_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{+} \times (0, T), \\
\phi_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{-} \times (0, T), \\
\frac{\partial \phi_{\varepsilon}}{\partial \nu} = 0 \text{ on } (\partial T_{\varepsilon} \cup \partial \Omega_{\varepsilon}^{\infty}) \times (0, T), \\
\phi_{\varepsilon}(0) = \phi_{\varepsilon}^{0}, \phi_{\varepsilon}'(0) = \phi_{\varepsilon}^{1},
\end{cases}$$
(3)

where $(\phi_{\varepsilon}^{0}, \phi_{\varepsilon}^{1}) \in L^{2}(\Omega_{\varepsilon}) \times V'_{\varepsilon}$, $\|\phi_{\varepsilon}^{0}\|_{L^{2}(\Omega_{\varepsilon})} \leq C$, $\|\phi_{\varepsilon}^{1}\|_{V'_{\varepsilon}} \leq C$ and the retrograde system:

$$\begin{cases} y_{\varepsilon}'' - \Delta y_{\varepsilon} + q u_{\varepsilon} = 0 \text{ in } \Omega_{\varepsilon} \times (0, T), \\ \frac{\partial y_{\varepsilon}}{\partial \nu} + a y_{\varepsilon} = -\phi_{\varepsilon} \text{ on } \Gamma_{\varepsilon}^{+} \times (0, T), \\ y_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{-} \times (0, T), \\ \frac{\partial y_{\varepsilon}}{\partial \nu} = 0 \text{ on } (\partial T_{\varepsilon} \cup \partial \Omega_{\varepsilon}^{\infty}) \times (0, T), \\ y_{\varepsilon}(T) = y_{\varepsilon}'(T) = 0 \text{ in } \Omega_{\varepsilon} \end{cases}$$

$$(4)$$

and we consider the application

$$\Lambda_{\varepsilon}: F_{\varepsilon} \to F_{\varepsilon}' \quad \Lambda_{\varepsilon} \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) = \left(y_{\varepsilon}' \left(0 \right), -y_{\varepsilon} \left(0 \right) \right) \Rightarrow \\
\left\langle \Lambda_{\varepsilon} \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right), \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) \right\rangle_{F_{\varepsilon}^{1}, F_{\varepsilon}} = \int_{\Omega_{\varepsilon}} \left[y_{\varepsilon}' \left(0 \right) \cdot \phi_{\varepsilon}^{0} - y_{\varepsilon} \left(0 \right) \cdot \phi_{\varepsilon}^{1} \right] dx, \tag{5}$$

where $F_{\varepsilon} = L^{2}(\Omega_{\varepsilon}) \times V'_{\varepsilon}$ and $F'_{\varepsilon} = L^{2}(\Omega_{\varepsilon}) \times V_{\varepsilon}$.

We multiply the first equation from the system (4) by ϕ_{ε} , we integrate by parts two times on $\Omega_{\varepsilon} \times (0,T)$ and we obtain

$$0 = \int_{0}^{T} \int_{\Omega_{\varepsilon}} \left(y_{\varepsilon}'' - \Delta y_{\varepsilon} + q u_{\varepsilon} \right) \phi_{\varepsilon} dx dt =$$

$$= \left[\int_{\Omega_{\varepsilon}} \left(y_{\varepsilon}' \phi_{\varepsilon} - y_{\varepsilon} \phi_{\varepsilon}' \right) dx \right] \Big|_{0}^{T} - \int_{0}^{T} \int_{\Gamma_{\varepsilon}^{+}} \left(\frac{\partial y_{\varepsilon}}{\partial \nu} \cdot \phi_{\varepsilon} - y_{\varepsilon} \cdot \frac{\partial \phi_{\varepsilon}}{\partial \nu} \right) d\sigma^{\varepsilon} (x) dt +$$

$$+ \int_{0}^{T} \int_{\Omega_{\varepsilon}} y_{\varepsilon} \left(\phi_{\varepsilon}'' - \Delta \phi_{\varepsilon} + q \phi_{\varepsilon} \right) dx dt =$$

$$= \int_{\Omega_{\varepsilon}} \left[y_{\varepsilon}'\left(T\right) \phi_{\varepsilon}\left(T\right) - y_{\varepsilon}\left(T\right) \phi_{\varepsilon}'\left(T\right) - y_{\varepsilon}'\left(0\right) \phi_{\varepsilon}\left(0\right) + y_{\varepsilon}\left(0\right) \phi_{\varepsilon}'\left(0\right) \right] dx + \int_{0}^{T} \int_{\Gamma_{\varepsilon}^{+}}^{+} \phi_{\varepsilon}^{2} d\sigma^{\varepsilon}\left(x\right) dt.$$

Using the relation (5) we have:

$$\left\langle \Lambda_{\varepsilon} \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right), \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) \right\rangle_{F_{\varepsilon}', F_{\varepsilon}} = \int_{0}^{T} \int_{\Gamma_{\varepsilon}^{+}} \phi_{\varepsilon}^{2} d\sigma^{\varepsilon} \left(x \right) dt =$$

$$= \left\| \phi_{\varepsilon} \right\|_{L^{2}(0, T; L^{2}(\Gamma_{\varepsilon}^{+}))}^{2} = \left\| \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) \right\|_{F_{\varepsilon}}^{2}$$

$$(6)$$

we deduce that

$$\left\| \Lambda_{\varepsilon} \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) \right\|_{F_{\varepsilon}'} = \left\| \left(\phi_{\varepsilon}^{0}, \, \phi_{\varepsilon}^{1} \right) \right\|_{F_{\varepsilon}} = \left(\left\| \phi_{\varepsilon}^{0} \right\|_{L^{2}(\Omega_{\varepsilon})}^{2} + \left\| \phi_{\varepsilon}^{1} \right\|_{V_{\varepsilon}'}^{2} \right)^{1/2} \le C \tag{7}$$

it means that Λ_{ε} is bounded and from relation (6) results that we can apply Lax-Milgram, so that Λ_{ε} is an isomorphism from F_{ε} to F'_{ε} .

Now, we consider the system (1) to which we attach an application $v_{\varepsilon} = -\phi_{\varepsilon}$ on Γ_{ε}^{+} and we have

$$\begin{cases}
 u_{\varepsilon}'' - \Delta u_{\varepsilon} + q u_{\varepsilon} = 0 \text{ in } \Omega_{\varepsilon} \times (0, T), \\
 \frac{\partial u_{\varepsilon}}{\partial \nu} + a u_{\varepsilon} = \nu_{\varepsilon} \text{ on } \Gamma_{\varepsilon}^{+} \times (0, T), \\
 u_{\varepsilon} = 0 \text{ on } \Gamma_{\varepsilon}^{-} \times (0, T), \\
 \frac{\partial u_{\varepsilon}}{\partial \nu} = 0 \text{ on } (\partial T_{\varepsilon} \cup \partial \Omega_{\varepsilon}^{\infty}) \times (0, T), \\
 u_{\varepsilon}(0) = u_{\varepsilon}^{0}, u_{\varepsilon}'(0) = u_{\varepsilon}^{1} \text{ in } \Omega_{\varepsilon}.
\end{cases} \tag{8}$$

But Λ_{ε} is an isomorphism, so result

$$y_{\varepsilon}'(0) = u_{\varepsilon}^{1}, \ y_{\varepsilon}(0) = u_{\varepsilon}^{0}$$

and because $v_{\varepsilon} = -\phi_{\varepsilon}$ we observe that y_{ε} is the solution of the problem (8) which has unique solution, so

$$y_{\varepsilon} = u_{\varepsilon} \Rightarrow u_{\varepsilon}(T) = u'_{\varepsilon}(T) = 0$$

and the system (1) accepts an exact control $v_{\varepsilon} \in L^{2}\left(0, T; L^{2}\left(\Gamma_{\varepsilon}^{+}\right)\right)$.

5. The Limit of the Exact Control

Because $v_{\varepsilon} = -\phi_{\varepsilon}$, it is enough to study the convergence of ϕ_{ε} . The first equation of the system (3) is multiplied with ϕ_{ε} , then we integrate it by parts on $\Omega_{\varepsilon} \times (0, T)$, we take into account the conditions satisfied by ϕ_{ε}^{0} and ϕ_{ε}^{1} , we find like in section 1:

$$\|\phi_{\varepsilon}\|_{L^2(0,T;L^2(\Omega_{\varepsilon}))} \le C$$

and from equations (6), (7), we find

$$\|\phi_{\varepsilon}\|_{L^2(0,T;L^2(\Gamma^+))} \le C$$

and from relation (3) we get the estimation

$$\|\phi_{\varepsilon}^0\|_{L^2(\Omega_{\varepsilon})} \le C.$$

From all these relations we obtain the two-scale convergences

$$\phi_{\varepsilon} \stackrel{2s}{\to} \phi(x_{\alpha}), \ \phi_{\varepsilon}^{0} \stackrel{2s}{\longrightarrow} \frac{\phi^{0}(x_{\alpha})}{(measY^{*})}.$$

Because ϕ_{ε}^1 isn't a regular function, we apply the regularization method of a problem (3), resulting o problem with regular conditions, we compute the limit for it (like for problem (1)) and finally we obtain the next limit problem for the control limit:

$$\begin{cases}
(measY^*) \phi''(x_{\alpha}) - \frac{\partial}{\partial x_{\alpha}} \left(A_{\alpha\beta} \frac{\partial \phi}{\partial x_{\beta}} (x_{\alpha}) \right) + \\
= b_{\alpha} \frac{\partial \phi}{\partial x_{\alpha}} (x_{\alpha}) + \lambda \phi (x_{\alpha}) = 0 \text{ in } \Gamma^{+} \times (0, T), \\
\phi = 0 \text{ on } \Gamma^{+} \times (0, T), \\
\phi (0) = \frac{\phi^{0}}{measY^{*}}, \phi'(0) = \frac{\phi^{1,*}}{measY^{*}} \text{ in } \Gamma^{+}
\end{cases}$$

where $\phi^{1,*}(x_{\alpha})$ is equal with

$$\phi^{1,*}\left(x_{\alpha}\right) = \frac{\partial g_{1}^{*}}{\partial x_{1}}\left(x_{\alpha}\right) + \frac{\partial g_{2}^{*}}{\partial x_{2}}\left(x_{\alpha}\right)$$

where we have the convergence

$$g_{\beta}^{\varepsilon} \xrightarrow{2s} g^*(x_{\alpha}), \ \beta = 1, 2$$

and

$$\mathbf{g}_{\beta}^{\varepsilon}\left(x_{\alpha},z\right) = \frac{\partial \rho_{\varepsilon}}{\partial x_{\alpha}} \cdot \frac{\partial \chi^{\beta}}{\partial x_{\alpha}} \left(\frac{x_{\alpha}}{\varepsilon},z\right) + \frac{1}{k^{2}} \frac{\partial \rho_{\varepsilon}}{\partial z} \left(x_{\alpha},z\right) \cdot \frac{\partial \chi^{\beta}}{\partial z} \left(x_{\alpha},z\right), \ \beta = 1,2$$

with ρ_{ε} is the solution of the elliptical problem a little regular:

$$\begin{cases} -\left[\frac{\partial^{2}\rho_{\varepsilon}}{\partial x_{1}^{2}} + \frac{\partial^{2}\rho_{\varepsilon}}{\partial x_{2}^{2}} + \frac{1}{k^{2}}\frac{\partial^{2}\rho_{\varepsilon}}{\partial z^{2}}\right] + \\ +q\left(\frac{x_{\alpha}}{\varepsilon}\right)\rho_{\varepsilon}\left(x_{\alpha},z\right) = -\phi_{\varepsilon}^{1} \text{ in } \Omega_{\varepsilon}^{*}, \\ \frac{\partial\rho_{\varepsilon}}{\partial\nu} = 0 \text{ on } \left(\partial T_{\varepsilon} \cup \partial \Omega_{\varepsilon}^{\infty}\right), \\ \rho_{\varepsilon} = 0 \text{ on } \Gamma^{-}, \\ \frac{\partial\rho_{\varepsilon}}{\partial\nu} + a\left(\frac{x_{\alpha}}{\varepsilon}\right)\rho_{\varepsilon}\left(x_{\alpha},z\right) = 0 \text{ on } \Gamma^{+}. \end{cases}$$

This regularization method is in [2], and $\phi^{1,*}$ is obtained in [6]. Finally, we obtain a macroscopic problem of controlled waves:

$$\begin{cases}
(measY^*) u'' - \frac{\partial}{\partial x_{\alpha}} \left(A_{\alpha\beta} \frac{\partial u}{\partial x_{\beta}} \right) + \\
+ b_{\alpha} \frac{\partial u}{\partial x_{\alpha}} + \lambda u = F(x_{\alpha}) \text{ in } \Gamma^+ \times (0, T), \\
u = 0 \text{ on } \partial \Gamma^+ \times (0, T), \\
u(0) = \frac{u^0}{measY^*}, u'(0) = \frac{u^1}{measY^*} \text{ in } \Gamma^+,
\end{cases}$$

where the control of the limit problem is

$$F\left(x_{\alpha}\right) = \left[\int\limits_{\mathcal{S}_{h}^{+}} \chi^{\beta}\left(y_{\alpha}, 1\right) d\sigma\left(y_{\alpha}\right)\right] \cdot \frac{\partial v}{\partial x_{\beta}}\left(x_{\alpha}\right) + \left[\int\limits_{\mathcal{S}_{h}^{+}} \gamma\left(y_{\alpha}, 1\right) d\sigma\left(y_{\alpha}\right)\right] \cdot v\left(x_{\alpha}\right)$$

where $v = -\phi \in L^2(0, T; L^2(\Gamma^+))$.

References

- [1] A. Ainouz, Two-scale homogenization of a Robin problem in perforated media, Applied Mathematical Sciences, 1, 36 (2007), 1789-1802.
- [2] D. Cioranescu, P. Donato, Exact internal controllability in perforated domains, J. Math. Pures et Appl., nr 68(1989), 185-213.
- [3] V. Komornik, Exact controllability and stabilization. The multiplier method, Masson (Paris), Series Editors: P. G. Ciarlet and J.L. Lions (1994).
- [4] J.L. Lions, Controlabilite exacte. Perturbations et stabilization des systemes distribues, Tomes 1 et 2. Masson(Paris), 1988.
- [5] V. Lukes, E. Rohan, Modeling of acoustic transmission through perforated layer, Applied and Computational Mechanics 1(2007), 137-142.

[6] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics, Heriott Watt Symposium, 4, Pitman n. 39, 136-212.

Mihaela Dumitrache

Department of Mathematics and Computer Science, Faculty of Science, Physical Education and Computer Science,

University of Pitesti,

Pitesti, Romania

email: $mihaela_dumitrache_1@yahoo.com$

Camelia Gheldiu

Department of Mathematics and Computer Science, Faculty of Science, Physical Education and Computer Science,

University of Pitesti,

Pitesti, Romania

email: camelia.gheldiu@upit.ro