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EXACT CONTROLLABILITY FOR THE WAVE PROBLEM WITH
ROBIN CONDITIONS ON AN &- PERIODIC DOMAIN

M. DUMITRACHE AND C. GHELDIU

ABSTRACT. The paper presents the study of the exact controllability on an e-
periodic domain lying along two directions. The exact control is applied on a part
of the boundary domain, in the case of the wave problem with Robin conditions.
The result is a plane wave problem, with convection term end exactly controlled by
a control which represents a combination between the limit of the initial control and
the convection of the limit.
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1. INTRODUCTION

The article studies in the homogenization of a wave problem with Robin condi-
tion controlled by an exact intern control exerted on a part of the border of the
structure. The problem was studied on a fixed domain in [3]. The structure is
three-dimensional, rectangular type, denoted by 2, with the inferior base fixed in
the plane XOY ( or X;0X5) and it is consisted of deformable solid. In the interior
of the structure we have a parallelepiped which has the same median plan with the
initial parallelepiped and in which are distributed empty spheres (holes) with pe-
riod €, but only following the directions OX; and OXs. The thickness of the initial
parallelepiped is ke (k > 0) and the thickness of the included parallelepiped is
hke (0 < h < 1), we will denote by I'j, - the median plan, I'? - the upper face and
I'Z - the base — the lower face. The domain which is occupied by the material is
denoted by €2, and it is an ¢ periodically perforated domain following the directions
OX1 and OXy only in the band size hke. The domain is similarly to the domain
from [5]. On the cover 'l is applied a force v. which determines oscillations in
whole structure €2., v, satisfying the exact control condition for €).. We made the
construction of the control v.using the HUM method introduced by Lions in [4]. For
the homogenization of the wave problem we applied the dilatation method and the
two-scale convergence method.
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Figure 2: The domain (2}

2. THE STATEMENT OF PROBLEM OF THE FREE WAVES WITH ROBIN
CONDITIONS

First, we made dilatation z = 72 that transforms the partial perforated domain
Q. into Qf, the domain where the base is in the plan X;0X>, the superior cover
I'f is transformed into I'", the thickness of the structure is 1, and the middle
parallelepiped has the thickness h.

We consider the domain €2} covered with the grid Y™, where Y* is the periodicity
cell, definite by Y* = Y\T, where Y = (0,1)” is the representative cell and T is the
hole from the interior of Y, transformed from the initial sphere with the dilatation
z = 73. We denote by S}T’_ the covers of Y*. Initial, the cell Y* is distributed in
the parallelepiped 2 with the period ¢.

Now, we consider the wave problem on {2,

uz — Aug + que = 0- in Qe x (0,7)

87’“{/84_&“6 =0 on F;— X (07T)

G =0on (9T:UINZ) x (0,T) @)
ue =0onI';

ue (0) = w2, ul (0) = ug in Qc
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Figure 3: The cell Y*

where T, = €T such that T, N 9Q = (), 9N is the lateral border of Q..
We consider the following conditions satisfied:
)g=q(2,2) =q(y,y) and 0 < m < q(y1,52) = ¢(ya) < M ae. Y

a=a(%,2) =a(y,y2) = a(ya) with the property 0 < a < a(ya) < S ace. S

q € L?iQ)pe’r‘ (Y*) ? ac L??,Q)per (S;lr) :

i) (ul,ul) € Vo x L*(Q.) where V; is the Hilbert space

Ve={uwe H" (Q:) : w=0 on I'; }, the norm induced by the space H' (), and the

condition u? € L? (I'}).

After the dilatation operation, we multiply the first equation of the system (1)

by u., we integrate by parts on . x (0,7) and we obtain

1 (T d N2
2/0 dt/; (ul)” dzodzdt+
2
1 Td [ [ou ou 1 [ou)?
= — : o dxqdzdt
+2/0 dt \/(2; lﬁxa 0z + (k5)2 <8z> Tadzdlt
1 T d Ty 2
B ta 2
—1-2/0 dt/;'u(5>(u5) drodzdt+ (2)

1 T d Lo 2
= — — e) drgedt =
+2/0 dt /F+a(€ >(u ) t 0

and we denote the energy of the system by:

Ous Oue 1 [Ou-\?
laxa 63;‘0[ + (k€)2 ( 92 ) dl’ad,z—i_

E, (t) = ;/(ula)Qdacadz—l—;/

€

+% /q (%) (ue)? dzodz + % /a (%) (ue)? do® (20)

a T+

£
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so, the relation (2) implies

2 1 x 2
v. T 2/(] (f) (ul)” dzadz+
0z

1 2 1
Ly L 2

1 Tq c
+2/@(8)(@fda¢%>gcqmg

T+

2 1 2
v. T3 HU;HN(Qg) :

We use the conservation of the energy and the conditions i), ii), and we obtain

E,(t)<C

so, we get

HU;HLQ(Q;) < C’ ||U<EHVE < C’ ||u5||L2(F+) <C

B Ous  Oug 1 Oug 2
”Mm_/b%fm+w¥<%> drod:

Qr

which implies the next two-scale convergences:
ue 25 u(ze) € H (T}), ul 25 (za) € H ' (T})
Vue 2, Vot (Ta) + Vi U (Yar 2) + k7IVU (Yas 2)
where

Ue L (0, T Hy gyper (V) /R)

and from ii) we obtain

3. THE HOMOGENIZATION OF THE FREE WAVES PROBLEM WITH ROBIN
CONDITIONS

For problem (1) we apply the two-scale convergence method [1] and we find the plan
hyperbolic limit problem:
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(measY ™) u" (z4) —

0 ou ou
- A « a) = i F+ 7T )
v < a58x5>+b 8xa+)\u(x )=0in I} x (0,7

u(zq) =0o0n ol x (0,7),

where

Yy = (yav Z)

8
v (y) - (K (y) dy

du - —
0y 0y vt k2
Y* Y=

Ans = / 0 (Ya + X (v)) . 0 (yﬂ + P (y)) 1 / Iy

bo = —/ [(;ZL (y)+ligz (y)} dy+/a(ya)-x“ (Yo, 1) do (ya)
Y= St

A:/q<ya>dy+/a(y@w(ya,l)da(ya),
Y* s;f

where the correctors x? (y), v (y) € H(l1 2)per (Y), (8 =1,2) verifies the weak micro-
scopic problems

d(ys+x°(y) dq 1 [0x° dq B
/ e e dy + 2| o (y) - 92 (y)dy =0,
Y* Y*
Oy . 9 10y, . %
/ [ v (v) v (y) + 29, (y) o (y)] dy+

Y *

= / o (¥a) - 4 (Yar 1) dor (o) = 0,

S

g€ Hlyy ., (Y*/R).
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4. THE HUM METHOD FOR THE CONSTRUCTION OF THE EXACT CONTROL OF
THE PROBLEM (1)

We consider the system

¢g_A¢€+q¢€ :0 ln Qg X (07T)7

%—{—agf) =0on Tt x (0,7)

ov € c ’ ’

¢e=0o0onT7 x(0,7), ®)

% =0on (97: UOQX) x (0,T),

¢ (0) = @2, ¢L (0) = @2,
where (¢2, ¢1) € L? (Q) x V., WSHLQ(QE) =G
system.:

< (' and the retrograde

[¢2]

vz

Yyl — Aye + que =0 in Q. x (0,7),

8?/5 — +

5 +ay. = —¢- on I'T x (0,T),

ye=0onI'; x (0,7), (4)
%e — 0 on (AT UINX) x (0,T),

Y= (T) = yL(T) =0 in Q.

and we consider the application
Ac: F. — Fg, Ae (¢27 QS;) = (yfs (0) y —Ye (0)) =
(e (62, 02) (02, 62)) o . = / [42(0) - 62 — e (0) - o] da, (5)

Qe

where F. = L% () x V! and F! = L? (Q) x V..
We multiply the first equation from the system (4) by ¢., we integrate by parts
two times on Q. x (0,7") and we obtain

T
0= / / (v — Aye + que) pedudt =

0 Q.

T 0y 0. e
. //(8y-¢€—ys-ay>da (x) dt+

Orzr

= / (yete — Y=ol

€

dx] —

T
+ Ye (¢/5/ — A¢pe + qqﬁg)dazdt =
/]

£
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T
= / [yfs (T) ¢ (T') — ye (1) (b; (T) - y(/e (0) ¢ (0)+y: (0) ¢/8 (0)]dm+/ / (ﬁgdaa (z)dt

Q. 0T
Using the relation (5) we have:
(A (62, 1) (6% 01 1. / [ a0
0 F+

n (6)

= 16ellz2(0,msz2(rry) = (82, 1)

we deduce that

1/2
12 (82 ) e = 11062 D1, = (1€ o0y + I02I1,) <€ ()

it means that A. is bounded and from relation (6) results that we can apply Lax-
Milgram, so that A, is an isomorphism from F; to F..

Now, we consider the system (1) to which we attach an application v, = —¢. on
'S and we have

— Aug + qu. =0in Q. x (0,7,
8“5 +aus = v. on T'F x (0,7),
us—OonF8 x (0, T) (8)
Gus =0 on (97 UONX) x (0,T),
ue (0) = ul, vl (0) = u} in Q..

But A. is an isomorphism, so result

YL (0) = uz, y= (0) = uf
and because v. = —¢@. we observe that y. is the solution of the problem (8) which
has unique solution, so
ye:Ue:us(T):u,la(T> =0
and the system (1) accepts an exact control v, € L? (0,T; L* (T'})).
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5. THE LiMIT OF THE ExacT CONTROL

Because v. = —¢, it is enough to study the convergence of ¢.. The first equation
of the system (3) is multiplied with ¢., then we integrate it by parts on Q. x (0,7,
we take into account the conditions satisfied by ¢ and ¢!, we find like in section 1:

10l 20,7522 (00y) < C
and from equations (6), (7), we find

0ell L2020ty < C

and from relation (3) we get the estimation

192l 2,y < €

From all these relations we obtain the two-scale convergences

¢° (za)
(measY ™)’

b B ¢ (2a), ¢ 2

Because ¢! isn’t a regular function, we apply the regularization method of a
problem (3), resulting o problem with regular conditions, we compute the limit for
it (like for problem (1)) and finally we obtain the next limit problem for the control
limit:

(measY™) ¢" (xq) — % <Aaﬁa‘% (%v)) +
= ba B (2a) + A (za) = 0 in T x (0,T),
¢ =0onT+ x (0,T),

1,%

0 .
¢ (0) = meﬁsY* ) ¢/ (O) = mfasY* in I'*
where ¢'* (z4) is equal with

dg5
(")332 (‘TOC)

x 91
d’l’ (1a) = 873311 (Ta) +

where we have the convergence
e 25 %
gIB—>g (xa)7/8:172

and

o’
0z

_ 9pe 0P (xa ) 1 9p.

T 0zo Ozq \ e 292 (Ta,2), B=1,2

g% (xowz) (ma,z) ’

8
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with p. is the solution of the elliptical problem a little regular:

+q (%) Pe ($a7 Z) = —Cbé in Q:a
%= — 0 on (9T UINX),
pe=0on T,

%pj +a (%) pe (Ta,z) =0on I't.

This regularization method is in [2], and ¢1** is obtained in [6].
Finally, we obtain a macroscopic problem of controlled waves:

(measY™*)u" — % (Aa5%> +

o2 + M= F(zq4) in T x (0,7),
u=0o0ndl'" x (0,7)
u(0) = u' (0) v in I,

measY *
where the control of the limit problem is

_u
measY *

F(2a) = / 3 (Yo 1) dor (3 -§;<xa>+ / Y (o 1) do () | - ()

+ +
S S

where v = —¢ € L? (0,T; L? (I'")).
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