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EXACT CONTROLLABILITY FOR THE WAVE PROBLEM WITH
ROBIN CONDITIONS ON AN ε- PERIODIC DOMAIN
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Abstract. The paper presents the study of the exact controllability on an ε-
periodic domain lying along two directions. The exact control is applied on a part
of the boundary domain, in the case of the wave problem with Robin conditions.
The result is a plane wave problem, with convection term end exactly controlled by
a control which represents a combination between the limit of the initial control and
the convection of the limit.
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1. Introduction

The article studies in the homogenization of a wave problem with Robin condi-
tion controlled by an exact intern control exerted on a part of the border of the
structure. The problem was studied on a fixed domain in [3]. The structure is
three-dimensional, rectangular type, denoted by Ω, with the inferior base fixed in
the plane XOY ( or X1OX2) and it is consisted of deformable solid. In the interior
of the structure we have a parallelepiped which has the same median plan with the
initial parallelepiped and in which are distributed empty spheres (holes) with pe-
riod ε, but only following the directions OX1 and OX2. The thickness of the initial
parallelepiped is kε (k > 0) and the thickness of the included parallelepiped is
hkε (0 < h < 1), we will denote by Γh - the median plan, Γ+

ε - the upper face and
Γ−
ε - the base – the lower face. The domain which is occupied by the material is

denoted by Ωε and it is an ε periodically perforated domain following the directions
OX1 and OX2 only in the band size hkε. The domain is similarly to the domain
from [5]. On the cover Γ+

ε is applied a force vε which determines oscillations in
whole structure Ωε, vε satisfying the exact control condition for Ωε. We made the
construction of the control vεusing the HUM method introduced by Lions in [4]. For
the homogenization of the wave problem we applied the dilatation method and the
two-scale convergence method.
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Figure 1: The domain Ωε

Figure 2: The domain Ω∗
ε

2. The Statement of Problem of the Free Waves with Robin
Conditions

First, we made dilatation z = x3
kε that transforms the partial perforated domain

Ωε into Ω∗
ε, the domain where the base is in the plan X1OX2, the superior cover

Γ+
ε is transformed into Γ+, the thickness of the structure is 1, and the middle

parallelepiped has the thickness h.
We consider the domain Ω∗

ε covered with the grid εY ∗, where Y ∗ is the periodicity
cell, definite by Y ∗ = Y \T , where Y = (0, 1)3 is the representative cell and T is the
hole from the interior of Y , transformed from the initial sphere with the dilatation
z = x3

kε . We denote by S+,−
h the covers of Y ∗. Initial, the cell Y ∗ is distributed in

the parallelepiped Ω with the period ε.
Now, we consider the wave problem on Ωε

u
′′
ε −∆uε + quε = 0ε in Ωε × (0, T )

∂uε
∂ν + auε = 0 on Γ+

ε × (0, T )
∂uε
∂ν = 0 on (∂Tε ∪ ∂Ω∞

ε )× (0, T )
uε = 0 on Γ−

ε

uε (0) = u0ε, u′ε (0) = u1ε in Ωε

(1)
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Figure 3: The cell Y ∗

where Tε = εT such that Tε ∩ ∂Ω = ∅, ∂Ω∞
ε is the lateral border of Ωε.

We consider the following conditions satisfied:
i) q = q

(
x1
ε ,

x2
ε

)
= q (y1, y2) and 0 < m ≤ q (y1, y2) = q (yα) ≤ M a.e. Y ∗;

a = a
(
x1
ε ,

x2
ε

)
= a (y1, y2) = a (yα) with the property 0 < α ≤ a (yα) ≤ β a.e. S+

h ;
q ∈ L∞

(1,2)per (Y
∗) , a ∈ L∞

(1,2)per

(
S+
h

)
.

ii)
(
u0ε, u

1
ε

)
∈ Vε × L2 (Ωε) where Vε is the Hilbert space

Vε =
{
u ∈ H1 (Ωε) : u = 0 on Γ−

ε

}
, the norm induced by the space H1 (Ωε), and the

condition u0ε ∈ L2 (Γ+
ε ).

After the dilatation operation, we multiply the first equation of the system (1)
by u′ε, we integrate by parts on Ωε × (0, T ) and we obtain

1

2

∫ T

0

d

dt

∫
Ω∗

ε

(
u′ε
)2

dxαdzdt+

+
1

2

∫ T

0

d

dt

∫
Ω∗

ε

[
∂uε
∂xα

· ∂uε
∂xα

+
1

(kε)2

(
∂uε
∂z

)2
]2

dxαdzdt+

+
1

2

∫ T

0

d

dt

∫
Ω∗

ε

µ
(xα

ε

)
(uε)

2 dxαdzdt+ (2)

+
1

2

∫ T

0

d

dt

∫
Γ+

a
(xα

ε

)
(uε)

2 dxσεdt = 0

and we denote the energy of the system by:

Eu (t) =
1

2

∫
Ω∗

ε

(
u′ε
)2

dxαdz +
1

2

∫
Ω∗

ε

[
∂uε
∂xα

· ∂uε
∂xα

+
1

(kε)2

(
∂uε
∂z

)2
]
dxαdz+

+
1

2

∫
Ω∗

ε

q
(xα

ε

)
(uε)

2 dxαdz +
1

2

∫
Γ+

a
(xα

ε

)
(uε)

2 dσε (xα)
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so, the relation (2) implies
Eu (T ) = Eu (0) =

=
1

2

∥∥u1ε∥∥2L2(Ω∗
ε)
+

1

2

∥∥u0ε∥∥2Vε
+

1

2

∫
Ω∗

ε

q
(xα

ε

) (
u0ε

)2
dxαdz+

+
1

2

∫
Γ+

a
(xα

ε

) (
u0ε

)2
dσε (xα) ≤ C1

∥∥u0ε∥∥2Vε
+

1

2

∥∥u1ε∥∥2L2(Ω∗
ε)
.

We use the conservation of the energy and the conditions i), ii), and we obtain

Eu (t) ≤ C

so, we get ∥∥u1ε∥∥L2(Ω∗
ε)

≤ C, ∥uε∥Vε
≤ C, ∥uε∥L2(Γ+) ≤ C

∥uε∥Vε
=

∫
Ω∗

ε

[
∂uε
∂xα

· ∂uε
∂xα

+
1

(kε)2

(
∂uε
∂z

)2
]
dxαdz


which implies the next two-scale convergences:{

uε
2s−→ u (xα) ∈ H1

(
Γ+
h

)
, u′ε

2s−→ u′ (xα) ∈ H−1
(
Γ+
h

)
∇uε

2s−→ ∇xαu (xα) +∇yαU (yα, z) + k−1∇zU (yα, z)

where
U ∈ L2

(
0, T ;H1

(1,2)per (Y ) /R
)

and from ii) we obtain

u0ε
2s−→ u0 (xε)

(measY ∗)
, u1ε

2s−→ u1 (xα)

(measY ∗)
.

3. The Homogenization of the Free Waves Problem with Robin
Conditions

For problem (1) we apply the two-scale convergence method [1] and we find the plan
hyperbolic limit problem:
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(measY ∗)u′′ (xα)−

− ∂

∂xα

(
Aαβ

∂u

∂xβ

)
+ bα

∂u

∂xα
+ λu (xα) = 0 in Γ+

h × (0, T ) ,

u (xα) = 0 on ∂Γ+
h × (0, T ) ,

u (0) =
u0

measY ∗ , u
′ (0) =

u1

measY ∗ in Γ+,

where

y = (yα, z)

Aαβ =

∫
Y ∗

∂ (yα + χα (y))

∂yγ
·
∂
(
yβ + χβ (y)

)
∂yγ

dy +
1

k2

∫
Y ∗

∂χα

∂z
(y) · ∂χ

β

∂z
(y) dy

bα = −
∫
Y ∗

[
∂γ

∂yα
(y) +

1

k

∂γ

∂z
(y)

]
dy +

∫
S+
h

a (yα) · χα (yα, 1) dσ (yα)

λ =

∫
Y ∗

q (yα) dy +

∫
S+
h

a (yα) · γ (yα, 1) dσ (yα),

where the correctors χβ (y), γ (y) ∈ H1
(1,2)per (Y ), (β = 1, 2) verifies the weak micro-

scopic problems∫
Y ∗

∂
(
yβ + χβ (y)

)
∂yα

· ∂q

∂yα
dy +

1

k2

∫
Y ∗

∂χβ

∂z
(y) · ∂q

∂z
(y) dy = 0,

∫
Y ∗

[
∂γ

∂yα
(y) · ∂q

∂yα
(y) +

1

k2
∂γ

∂z
(y) · ∂q

∂z
(y)

]
dy+

+
1

k

∫
S+
h

α (yα) · q (yα, 1) dσ (yα) = 0,

∀q ∈ H1
(1,2)per (Y

∗/R) .
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4. The HUM Method for the Construction of the Exact Control of
the Problem (1)

We consider the system
ϕ′′
ε −∆ϕε + qϕε = 0 in Ωε × (0, T ) ,
∂ϕε

∂ν + aϕε = 0 on Γ+
ε × (0, T ) ,

ϕε = 0 on Γ−
ε × (0, T ) ,

∂ϕε

∂ν = 0 on (∂Tε ∪ ∂Ω∞
ε )× (0, T ) ,

ϕε (0) = ϕ0
ε, ϕ

′
ε (0) = ϕ1

ε,

(3)

where
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε) × V ′

ε ,
∥∥ϕ0

ε

∥∥
L2(Ωε)

≤ C,
∥∥ϕ1

ε

∥∥
V ′
ε
≤ C and the retrograde

system: 
y′′ε −∆yε + quε = 0 in Ωε × (0, T ) ,
∂yε
∂ν + ayε = −ϕε on Γ+

ε × (0, T ) ,
yε = 0 on Γ−

ε × (0, T ) ,
∂yε
∂ν = 0 on (∂Tε ∪ ∂Ω∞

ε )× (0, T ) ,
yε (T ) = y′ε (T ) = 0 in Ωε

(4)

and we consider the application

Λε : Fε → F ′
ε Λε

(
ϕ0
ε, ϕ

1
ε

)
=

(
y′ε (0) ,−yε (0)

)
⇒⟨

Λε

(
ϕ0
ε, ϕ

1
ε

)
,
(
ϕ0
ε, ϕ

1
ε

)⟩
F 1
ε ,Fε

=

∫
Ωε

[
y′ε (0) · ϕ0

ε − yε (0) · ϕ1
ε

]
dx, (5)

where Fε = L2 (Ωε)× V ′
ε and F ′

ε = L2 (Ωε)× Vε.
We multiply the first equation from the system (4) by ϕε, we integrate by parts

two times on Ωε × (0, T ) and we obtain

0 =

T∫
0

∫
Ωε

(
y′′ε −∆yε + quε

)
ϕεdxdt =

=

∫
Ωε

(
y′εϕε − yεϕ

′
ε

)
dx

 ∣∣∣∣ T

0
−

T∫
0

∫
Γ+
ε

(
∂yε
∂ν

· ϕε − yε ·
∂ϕε

∂ν

)
dσε (x) dt+

+

T∫
0

∫
Ωε

yε
(
ϕ′′
ε −∆ϕε + qϕε

)
dxdt =

6
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=

∫
Ωε

[y′ε (T )ϕε (T )− yε (T )ϕ
′
ε (T )− y′ε (0)ϕε (0)+yε (0)ϕ

′
ε (0)]dx+

T∫
0

∫
Γ+
ε

ϕ2
εdσ

ε (x)dt.

Using the relation (5) we have:

⟨
Λε

(
ϕ0
ε, ϕ

1
ε

)
,
(
ϕ0
ε, ϕ

1
ε

)⟩
F ′
ε ,Fε

=

T∫
0

∫
Γ+
ε

ϕ2
εdσ

ε (x)dt =

= ∥ϕε∥2L2(0,T ;L2(Γ+
ε )) =

∥∥(ϕ0
ε, ϕ

1
ε

)∥∥2
Fε

(6)

we deduce that

∥∥Λε

(
ϕ0
ε, ϕ

1
ε

)∥∥
F ′
ε
=

∥∥(ϕ0
ε, ϕ

1
ε

)∥∥
Fε

=
(∥∥ϕ0

ε

∥∥2
L2(Ωε)

+
∥∥ϕ1

ε

∥∥2
V ′
ε

)1/2
≤ C (7)

it means that Λε is bounded and from relation (6) results that we can apply Lax-
Milgram, so that Λε is an isomorphism from Fε to F ′

ε.
Now, we consider the system (1) to which we attach an application vε = −ϕε on

Γ+
ε and we have 

u′′ε −∆uε + quε = 0 in Ωε × (0, T ) ,
∂uε
∂ν + auε = νε on Γ+

ε × (0, T ) ,
uε = 0 on Γ−

ε × (0, T ) ,
∂uε
∂ν = 0 on (∂Tε ∪ ∂Ω∞

ε )× (0, T ) ,
uε (0) = u0ε, u

′
ε (0) = u1ε in Ωε.

(8)

But Λε is an isomorphism, so result

y′ε (0) = u1ε, yε (0) = u0ε

and because vε = −ϕε we observe that yε is the solution of the problem (8) which
has unique solution, so

yε = uε ⇒ uε (T ) = u′ε (T ) = 0

and the system (1) accepts an exact control vε ∈ L2
(
0, T ;L2 (Γ+

ε )
)
.
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5. The Limit of the Exact Control

Because vε = −ϕε, it is enough to study the convergence of ϕε. The first equation
of the system (3) is multiplied with ϕε, then we integrate it by parts on Ωε × (0, T ),
we take into account the conditions satisfied by ϕ0

ε and ϕ1
ε, we find like in section 1:

∥ϕε∥L2(0,T ;L2(Ωε))
≤ C

and from equations (6), (7), we find

∥ϕε∥L2(0,T ;L2(Γ+)) ≤ C

and from relation (3) we get the estimation∥∥ϕ0
ε

∥∥
L2(Ωε)

≤ C.

From all these relations we obtain the two-scale convergences

ϕε
2s→ ϕ (xα) , ϕ0

ε
2s−→ ϕ0 (xα)

(measY ∗)
.

Because ϕ1
ε isn’t a regular function, we apply the regularization method of a

problem (3), resulting o problem with regular conditions, we compute the limit for
it (like for problem (1)) and finally we obtain the next limit problem for the control
limit: 

(measY ∗)ϕ′′ (xα)− ∂
∂xα

(
Aαβ

∂ϕ
∂xβ

(xα)
)
+

= bα
∂ϕ
∂xα

(xα) + λϕ (xα) = 0 in Γ+ × (0, T ) ,

ϕ = 0 on Γ+ × (0, T ) ,

ϕ (0) = ϕ0

measY ∗ , ϕ
′ (0) = ϕ1,∗

measY ∗ in Γ+

where ϕ1,∗ (xα) is equal with

ϕ1,∗ (xα) =
∂g∗1
∂x1

(xα) +
∂g∗2
∂x2

(xα)

where we have the convergence

gεβ
2s−→ g∗ (xα) , β = 1, 2

and

gεβ (xα, z) =
∂ρε
∂xα

· ∂χ
β

∂xα

(xα
ε
, z
)
+

1

k2
∂ρε
∂z

(xα, z) ·
∂χβ

∂z
(xα, z) , β = 1, 2
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with ρε is the solution of the elliptical problem a little regular:

−
[
∂2ρε
∂x2

1
+ ∂2ρε

∂x2
2
+ 1

k2
∂2ρε
∂z2

]
+

+q
(
xα
ε

)
ρε (xα, z) = −ϕ1

ε in Ω∗
ε,

∂ρε
∂ν = 0 on (∂Tε ∪ ∂Ω∞

ε ) ,
ρε = 0 on Γ−,
∂ρε
∂ν + a

(
xα
ε

)
ρε (xα, z) = 0 on Γ+.

This regularization method is in [2], and ϕ1,∗ is obtained in [6].
Finally, we obtain a macroscopic problem of controlled waves:

(measY ∗)u′′ − ∂
∂xα

(
Aαβ

∂u
∂xβ

)
+

+bα
∂u
∂xα

+ λu = F (xα) in Γ+ × (0, T ) ,

u = 0 on ∂Γ+ × (0, T ) ,

u (0) = u0

measY ∗ , u
′ (0) = u1

measY ∗ in Γ+,

where the control of the limit problem is

F (xα) =

∫
S+
h

χβ (yα, 1) dσ (yα)

 · ∂v

∂xβ
(xα) +

∫
S+
h

γ (yα, 1) dσ (yα)

 · v (xα)

where v = −ϕ ∈ L2
(
0, T ;L2 (Γ+)

)
.
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