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SOME NEW RESULTS ASSOCIATED WITH THE BESSEL-STRUVE
KERNEL FUNCTION
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ABSTRACT. The main object of this note is to present two unified integrals
associated with the Bessel-Struve kernel function, which are expressed in terms of
Wright hypergeometric function. Some integrals involving exponential functions,
modified Bessel functions and Struve functions are also indicated as special cases of
our main results. Finally, with the help of our main results and their special cases,
we derive two reduction formulas for the Wright hypergeometric function.
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1. INTRODUCTION

In recent years, numerous (potentially useful) integral formulas associated with some
well known Special functions (for example, hypergeometric functions, Bessel func-
tions, Whittaker functions, Mittag-leffler functions, etc.) have been considered by
several authors. (see[3],[5],[6],[7],[8],[9],[10]) In a Sequel of such type of works, in this
paper, we further establish two new unified integral formulas involving Bessel-Struve
kernel function, which are expressed in terms of wright hypergeometric functions.
For our present investigation, we recall here the following definitions of some well
known Special functions :

The Wright hypergeometric is denoted by ,¥, and is defined by (see[2],[4])
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where the coefficients Ay, --- , 4, and By, --- , B, are positive real numbers such that
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A special case of (1) is
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where ,F} is the generalized hypergeometric function defined by (see[2])

; 00 (al)n”'(ap)n P
F = AN a2\
o 61, ..... s Bq; : nz:;) (ﬂl)n(ﬁq)n n!

= F (a1, ap; B, By 2),  (3)

where (), is the well known Pochhammer’s symbol (see[4]).
The Bessel-Struve kernel function S, (Az),\ € C which is unique solution of the

initial value problem £,u(z) = A\2u(z) with the initial condition u(0) = 1 and u/(0) =
Al (a+1)

VT (at3/3) is given by (see[1])

Soz()\z) = Ja(nz) — Zha(Z)\Z),VZ eC

where ), and h, are the normalized Bessel and Struve functions. The series repre-
sentation, of the Bessel-Struve kernel function is given as follows:
o
A2)"Ta+1)I'(n+1)/2
Vnll'(n/2 +a +1)

n=

Also we have the following relations of Bessel-Struve kernel function with exponential
functions, modified Bessel functions and Struve functions :

571/2(3) =e” ()
Sl =2 (6)
So(z) = To(=) + Lo(2) @
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21 L
5i(z) = PG 0
wherely, Lo and Iy, L1 are the modified Bessel and Struve functions of order zero
and one respectively (see[4])

Furthermore, we recall here the following known result of Lavoie and Trottier.
(seel7])

flerama (o) ) e (5) RS o

where R(a) > 0 and R(S5) > 0.

2. MAIN RESULTS

This section deals with some integral formulas involving Bessel-Struve kernel func-
tion.

Theorem 1. The following integral formula holds true:
For p,o, A € C and x > 0 with R(c) > 0, R(p) > 0,

/01 o 1= (1= 0 (1-5)7 Sa (- a1 - 2)?) do

<2>29 F(a+1)F(p) v (1/27 1/2)7 (07 1); /\y . (10)

g ﬁ o (a+171/2>7 (p+071);

Proof. By making use of (4) in the integrand of (10) and then interchanging the
order of integral sign and summation which is verified by uniform convergence of
the involved series under the given conditions, we get

X

/01 2 (12t (1 g)%_1 (1- Z)H S (1 — 2/4)(1 — 2)?) da

[e.e]

F(a—l—l) ()\y)”F(n+1)/2 1 _ otm)— N\ 2p—1 x\o+n—1
==/ anf(n/2+a+1)/0 O (Y I () B

n=0
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Now using (9) in the above equation we get
1 2p—1 o—1
/ 2L (1 — )2 (1 - %) (1 - %) Sa (\y(1 = 2/4)(1 — 2)2) da
0

_ <2> I(a+1)T(p) i T(n+1)/20(0 +n)(Ay)"
B VL3 « I(n/2+a+1)I'(p+0o+n)n!

3
which upon using (1) yields (10). This completes the proof of Theorem 1

(11)

Theorem 2. The following integral formula holds true :
For p,o,\ € C and x > 0 with R(o) > 0,R(p) > 0,

/01 2Pt (1 —x)? ! (1 — g)Qﬂ_l (1 — %)0_1 Sa (Azy(1 — m/3)2) dx

2\% T(a+ 1)(0) 1/2,1/2), i gy,
(o e s
" (@+1,1/2), (p+o,1);

12
= (12)
where oWy is the Wright hypergeometric function defined by (1).

Proof. 1t is easy to see that a similar argument as in the proof of Theorem 1 will
establish the integral formula (12).

Next we consider other variations of Theorem 1 and Theorem 2 in the form of
corollaries:

Corollary 3. In (11), on separating the hypergeometric series into its even and odd
terms, we get the following integral formulas:

/01 o 1 (1= D) (1-5)7 Sa (- /)1 - 2)?) do

(0,2);

2
-(3) "ot 1r(p) {10 2
(a+1a1)7(p+072)3
(1,1), (0 + 1,2);
+ <A2 >2‘P3 A1y2 (13)
(a+3/2,1),(p+0+1,2),(3/2,1);

where R(c) > 0,R(p) > 0.
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Corollary 4. On expanding the R.H.S of (12) in series form and then separating
the resulting series into its even and odd terms, we obtain

/01 2Pt (1 — )%t (1 — g)Qp—l (1 — %)U_l Sa (/\a:y(l - :(:/3)2) dx

(p72); 4A2y2
81

2\ %
:<3> MNa+1I(o) {1V2
(a+1,1),(p+0,2);

o, (1,1), (p+1,2);

+ (=2 v
< ) ) Tl @ 3/20), (o4 0 +1,2), (372, 1)
where R(a) > 0,R(p) > 0.

4A2y2
81

(14)

Corollary 5. On applying the result (A\,) = % in (13) and then by using (3),

we get the following integral formula:

/01 w1 (1= D) (1-5)7 Sa - /)1 0)?) do

_ ()" 1o a1 A2
(5] e nmen | s, (52), (2252)
o SNCSRCE R
F. 29I
Vl(a+ 3/2)(P+U)3 ! (a+3/2), (p+<27+1> : <p+<27+2> (3/2); 4

where (o) > 0, R(p) > 0, and o F3,3Fy are the generalized hypergeometric function
defined by (3).

Corollary 6. Further,on applying The result (\), = F%’\&)n) in (14) and then by

using (3), we obtain the following integral formula:

/01 2P (1 —z)? ! (1 - §>2p—1 (1 — Z)U_l Sa (Azy(1 — x/3)2) dx
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4 yp (1)’ (%1) ’ (%‘*‘2) ; 4)\2y2

+ 3Fy
WA () (etgn) (et O

(16)
where R(o) > 0, R(p) > 0.

3. SPECIAL CASES

In this section, we derive some interesting integral formulas involving exponential
functions, Bessel functions and Struve function as follows:

Corollary 7. On setting o = —1/2 and A = 1 in (10), and then by using (5), we
obtain the following integral formula:

/01 21 (1= z)2o! (1 _ £>2p—1 (1 _ §>0_1 o(y(1—2/4)(1-2)%) 1.

3 4
2 2p (Ga 1);
= <3> I'(p)1¥1 4 o 1) Yl - (17)

where R(c) > 0,R(p) > 0.

Corollary 8. Further, on setting o« = —1/2 and A =1 in (12), and then by using
(5), we arrive at

/01 2Pl (1 —g)2o ! (1 - §>2p71 (1 - E)071 e(zv(1=2/3)) g

3 4
2p (p7 1)7
_ <§> (o), 0, . % (18)

where R(o) > 0, R(p) > 0.

Corollary 9. On taking o = —1/2 and X = 1 in (13), and then by using (5), we

get
1 20—1 o—1
p—1 (1 . N20—1 (1 T\ _z (y(1—z/4)(1-z)?)
/0 7 (1 —x) (1 3) (1 4) e dx
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2 (Uv 2)?
-(3) pwm{lwz [ Z]
(1/2.1), (o + 0,2):

(0 +1,2);
L@ )

3/2,1),(p+ 0 +1,2);
where R(o) > 0, R(p) > 0.

Corollary 10. Further on taking o« = —1/2 and A =1 in (14), and then by using
(5), we arrive at

/01 w7 (e (1= )T (10T ) gy

3 4
2p (pa 2);
= <§> F(O‘)ﬁ 1\1’2 4:312
(1/271>7(p+0',2)§
(:0+ 172)5
+ <29y) 1V2 L;yf ' (20)
(3/2,1),(/)—1—0—1—1,2);

where R(c) > 0,R(p) > 0.

Corollary 11. On setting a = 1/2 and A =1 in (10), and then using (6), we obtain
the following integral formula:

/O L (1 e (1- g)”“ (1- 2)"*2 (e==0-2" _ 1) go

2 (0,1),(1/2,1/2);
_ <§> pyT2(P)2‘l,2 [ y] ' (21)
(p+0,1),(3/2,1/2);

where R(c) > 0,R(p) > 0.

Corollary 12. Further, on setting « = 1/2 and A =1 in (12), and then using (6),
we arrive at

/01 2 (1= 2o (1 - §>2P*3 (1- @"*1 (= 1) o

_ <2)2P yF(J)Q\IJQ |: (p7 1),(1/2,1/2); 4y] ‘ (22)
(p+0,1),(3/2,1/2); 2

where R(c) > 0,R(p) > 0.

95



N.U. Khan, S.W. Khan, M. Ghayasuddin — Some new results associated ...

Corollary 13. On settinga =1/2 and A = 1 in (13), and then using (6), we obtain

the following integral formula:

x)gp_1 (1 - x)rf—Z < y(l—a/a)(1-2)? _ 1) dz

1
/0 P~ (1 — )23 (1 ~3 1
2 (Ua 2);
el
(3/2,1), (p+ 0,2);
(1,1), (0 + 1,2);
+(3)2vs 42 - (23)
(2,1),(p+0+1,2),(3/2,1);

where R(c) > 0,R(p) > 0.
Corollary 14. Further, on setting « = 1/2 and A =1 in (14), and then using (6),

we arrive at
=) (e

1
/0 P72 (1 —z)?! (1 ~3 1
(2 2p yy/7L(0) v (p;2); 4y?
B <3> 2 1 81
(3/2,1), (p+ 0,2);
(L,1),(p+1,2);
’ el (24)

2y 4y~
81

+ | =] ,0
(9)2 ’ (2,1), (p+ 0 +1,2),(3/2,1);

where R(o) > 0, R(p) > 0.
Corollary 15. On setting o =0 and A =1 in (10), and then using (7), we obtain

the following integral formula:

x

)7 o (5o rin (- Do)

T'(p) . (%a%)? (0,1); J (25)

2

2
-(5) (1Y), (o+o)

where R(o) > 0,R(p) > 0, and Iy, Ly are the modified Bessel and Struve functions

of order zero.
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Corollary 16. Further on setting o =0 and A =1 in (12), and then using (7), we
arrive at

frort o (5 ) (05 ) e (05 o

2 o (l’l), <p7 1);
(17%)’ (p+0,1);

where R(o) > 0,R(p) > 0, and Iy, Ly are the modified Bessel and Struve functions
of order zero.

(26)

Corollary 17. On setting o =0 and A\ =1 in (13), and then using (7), we obtain
the following integral formula:

Lo e () (3 e D o) v (oo ) o)

20 (0,2);
~(3) t1 v
(L 1)7 (p+0, 2);
(1,1), (o +1,2);
+(3)2% e

(3/2,1),(p+0+1,2),(3/2,1);
where R(c) > 0,R(p) > 0.

Corollary 18. Further on setting o =0 and A =1 in (14), and then using (7), we
arrive at

forr o () ) (e (5 ) e (s (- 5)) e

(p,2);
B <2>2pr(0) 102 i
(L1),(p+0,2); O

(1’1)7(p+1’2)7 4y2

2y
+ () v 2 (28)
(9)2 ’ 3/2,1), (p+ 0 +1,2),(3/2,1);  °F

where R(o) > 0, R(p) > 0.
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Corollary 19. On setting o =1 and A =1 in (10), and then using (8), we obtain
the following integral formula:

T (B T I LS B I L I

2p (l,l)’ (07 1);
N <§> yl:/(%p)Q\I’Q e Yyl - (29)
(2’ %)7 (p—|-0, 1);

where R(o) > 0,R(p) > 0, and I;, L1 are the modified Bessel and Struve functions
of order zero.

Corollary 20. Further, on settinga =1 and A\ =1 in (12), and then using (8), we
arrive at

Jrer oot (5 0 () ) (05 )

(3,3) (p,1);
- (§)2p | - (30
(Z%)v (p+0,1)§

where R(o) > 0, R(p) > 0.

Corollary 21. On setting o« =1 and A =1 in (13), and then using (8), we obtain
the following integral formula:

[ () 5 (-3 (- S

2 (0,2);
= (;) yl'(p) § 192 ?f
(27 1)7 (,0 + o, 2);
(1,1), (o +1,2);
+(3) 2% S

(3/2,1),(p+0+1,2),(3/2,1);
where R(c) > 0,R(p) > 0.

Corollary 22. Further, on setting a« =1 and A = 1 in (14), and then using (8), we
arrive at

freroear o) o) (0 o ()
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2 (pa 2);
= <2> pyf(a) 1P =8
(2,1), (p+0,2);

(L 1)? (p +1, 2);
(%) it @
(3/2,1), (p+0+1,2),(3/2,1);
where R(o) > 0,R(p) > 0.

Remark 1. With the help of the result (X),, = F(li\(—:;l) in (17) and (18), respectively,
and then by using the definition of Whittaker function :

1
My ,(2) = 23 e*2 Py <2+u—k ;20 + 1 ;z>,

we obtain the following very interesting integral formulas:

/O ot (1 (1 -5 eemary,

2

2p 9 _l(pto)

where R(o) > 0, R(p) > 0.

lﬁleJ(1—39%‘1Q-—§)%_1Q-—Z)0_1ewﬂ—waim

_(pto)

- (2)2p3<p, ?) (L) T Mae g (49)9) (34)

where R(o) > 0, R(p) > 0.

4. REDUCIBILITY OF THE WRIGHT HYPERGEOMETRIC FUNCTION

Here we present two interesting reduction formulas for the Wright hypergeometric
function as follows:

(%7%)5 (Ua 1)’ (07 2)7 )\2y2
2 Vs Ay| = Vm 102 e
(a+1,3), (p+o,1); (a+1,1),(p+0,2);
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(1,1), (o +1,2);

A A2q2
(:f)awg a (35)
(@+3/2,1),(p+0+1,2),(3/2,1);
(%’%)7 (p7 1)7 (paz)a 2,2
4\ 4\
2 Uy Ty =710y 81y
(a—i—l,%), (p+o0,1); (a+1,1),(p+0,2);
1,1),(p+1,2); 2,2
2)\ ( 9 9 9 9 4)\
+<9y>2\1’3 8? (36)
(a+3/2,1),(p+0+1,2),(3/2,1);

The result (35) can be established by comparing (10) and (13), and the result (36)
can be established by comparing (12) and (14).
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