http://www.uab.ro/auajournal/

No. 48/2016 pp. 37-46

doi: 10.17114/j.aua.2016.48.04

Z-FILTER REGULAR SEQUENCE AND GENERALIZED LOCAL COHOMOLOGY

F. Hassani and B. Jalali

ABSTRACT. Let R be a commutative Noetherian ring and \mathcal{Z} be an stable under specialization subset of SpecR. Two notions of filter regular sequence and generalized local cohomology module with respect to a subset of SpecR be an stable under specialization introduced, and their properties are studied. Some vanishing and non-vanishing theorems are given for this generalized version of generalized local cohomology module.

2010 Mathematics Subject Classification: 13D45; 13D07

Keywords: Generalized local cohomology, filter regular sequence.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring. The theory of local cohomology module is one of the important and interesting subjects for some commutative and homological algebraists. The notion of generalized local cohomology modules

$$\mathrm{H}^i_{\mathfrak{a}}(M,N) := \underline{\lim}_{n} Ext^i_R(M/\mathfrak{a}^n M,N),$$

was introduced by Herzog in his Habilitationsschrift [9]. When M is a finitely generated R-module, then

$$\mathrm{H}^{i}_{\mathfrak{a}}(M,N) \cong \mathrm{H}^{i}_{\mathfrak{a}}(\mathbf{R}Hom_{R}(M,N))$$

for all integers i [13, Theorem 3.4]. Takahashi, Yoshino and Yoshizawa [12] have introduced the notion of local cohomology with respect to pairs of ideals. Yoshino and Yoshizawa [14, Theorem 2.10] have shown that for any abstract local cohomology functor δ from the category of homologically left bounded complexes of R-modules to itself, there is an *stable under specialization* subset \mathcal{Z} of SpecR such that $\delta \cong \mathbf{R}\Gamma_{\mathcal{Z}}$. Thus, all of these generalizations, with respect to an stable under specialization subset \mathcal{Z} of SpecR, may be considered as the largest possible generalization.

Throughout this paper, \mathcal{Z} to a subset of SpecR to be stable under specialization. A subset \mathcal{Z} of SpecR is said to be stable under specialization if $V(p) \subseteq \mathcal{Z}$ for all $p \in \mathcal{Z}$. Let M and N be two R-modules. For notations and terminologies not given in this paper, the reader is referred to [3, 4, 12] if, necessary. The notion of the local cohomology modules with respect to a subset of SpecR to be stable under specialization is introduced in [11] and for complexes see [10]. To be more precise, for any R-module M, set

$$\Gamma_{\mathcal{Z}}(M) := \{ x \in M | \operatorname{Supp}_R Rx \subseteq \mathcal{Z} \}.$$

The right derived functor of the functor $\Gamma_{\mathcal{Z}}(-)$ in C(R), $R\Gamma_{\mathcal{Z}}(M)$, exists and is denoted by $R\Gamma_{\mathcal{Z}}(M) := \Gamma_{\mathcal{Z}}(I)$, where I is any injective resolution of M. Also, for any integer i, the i-th local cohomology module of M with respect to \mathcal{Z} is denoted by

$$\mathrm{H}^i_{\mathcal{Z}}(M) := \mathrm{H}_{-i}(R\Gamma_{\mathcal{Z}}(M)).$$

To comply with the usual notation, for $\mathcal{Z} := V(\mathfrak{a})$, we denote $R\Gamma_{\mathcal{Z}}(-)$ and $H^i_{\mathcal{Z}}(M)$, by $R\Gamma_{\mathfrak{a}}(M)$ and $H^i_{\mathfrak{a}}(M)$, respectively. Denote the set of all ideals \mathfrak{b} of R such that $V(b) \subseteq \mathcal{Z}$ by $F(\mathcal{Z})$. Since for any R-module M, $\Gamma_{\mathcal{Z}}(M) = \bigcup_{\mathfrak{b} \in F(\mathcal{Z})} \Gamma_{\mathfrak{b}}(M)$, for any integer i, one can easily check that

$$\mathrm{H}^i_{\mathcal{Z}}(M) := \varinjlim_{\mathfrak{b} \in F(\mathcal{Z})} \mathrm{H}^i_{\mathfrak{b}}(M).$$

In this paper, we introduce a generalization of the notion of generalized local cohomology module, which we say a generalized local cohomology module with respect to a subset of SpecR to be stable under specialization. For each integer $i \geq 0$, we define the functor $H_{\mathcal{Z}}(-,-): C(R) \to C(R)$ by

$$\mathrm{H}^i_{\mathcal{Z}}(M,N) := \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext^i_R(\frac{M}{\mathfrak{a}M},N),$$

for all M and $N \in C(R)$ (where C(R) denotes the category of R-modules and R-homomorphisms). Then $H_{\mathcal{Z}}(-,-)$ is an additive, R-linear functor which is contravariant in the first variable and covariant in the second variable. This functor do indeed generalize all the functors described in [6, 9, 12]. One of our main goals is to give criteria for the vanishing and non-vanishing of $H^i_{\mathcal{Z}}(M, N)$, by using \mathcal{Z} -grade_NM. The organization of this paper is as follows.

We introduce the notion of filter regular sequence with respect to a subset of SpecR to be stable under specialization. Some their characterizations are presented in Section 2. In Section 3, a generalization of generalized local cohomology modules is defined and their basic properties are studied. In the final section we discuss the vanishing and non-vanishing of generalized local cohomology.

2. Preliminaries and Definitions

We start with the following new definition that is a generalization of \mathfrak{a} -filter regular M-sequence, where \mathfrak{a} is an ideal of R and M is a finitely generated R-module.

Definition 1. Let x_1, x_2, \ldots, x_r be a sequence of R and M be a finitely generated R-module. We say that x_1, x_2, \ldots, x_r is an \mathcal{Z} -filter regular M-sequence, if $Supp(\frac{(x_1, x_2, \ldots, x_{i-1})M:_M x_i}{(x_1, x_2, \cdots, x_{i-1})M}) \subseteq \mathcal{Z}$, for all $i = 1, 2, \ldots, r$.

In addition, if x_1, x_2, \ldots, x_r belong to \mathfrak{b} , then we say that x_1, x_2, \ldots, x_r is an \mathbb{Z} -filter regular M-sequence in \mathfrak{b} .

Note that as a special case, if $\mathcal{Z} = \emptyset$, then x_1, x_2, \ldots, x_r is an \mathcal{Z} -filter regular M-sequence if and only if it is a weak M-sequence in the sense of [9, Definition 1.1.1], if $\mathcal{Z} = V(\mathfrak{a})$ then x_1, x_2, \ldots, x_r is called an \mathfrak{a} -filter regular M-sequence in sense of [7, Definition 2.1], and $\mathcal{Z} = W(I, J)$ then x_1, x_2, \ldots, x_r is called an (I, J)-filter regular M-sequence in sense of [5, Definition 2.1].

For a system of elements $\underline{x} = \{x_1, x_2, \cdots, x_r\}$ of R and an integer $0 \le i \le r$, let $\underline{x_i} = \{x_1, x_2, \cdots, x_i\}$. Note that $\underline{x_0}$ is the empty set. The following Proposition gives an equivalent condition for the existence of \mathcal{Z} -filter regular M-sequence.

Proposition 1. Let M be an finitely generated module over a local ring R with maximal ideal \mathfrak{m} . Then the following condition are equivalent:

- (i) x_1, x_2, \ldots, x_r is an \mathbb{Z} -filter regular M-sequence.
- (ii) $x_i \notin \bigcup p_{p \in Ass_{\frac{M}{x_{i-1}M}} \setminus \mathcal{Z}}$ for all $i = 1, 2, \dots, r$.
- (iii) $\frac{x_1}{1}, \frac{x_2}{1}, \dots, \frac{x_r}{1}$ is a poor M_p -sequence for all $p \in \text{Supp } M \setminus \mathcal{Z}$.
- (iv) for all i = 1, 2, ..., r; $x_1, x_2, ..., x_i$ is \mathbb{Z} -filter regular M-sequence and $x_{i+1}, x_{i+2}, ..., x_r$ is \mathbb{Z} -filter regular $\frac{M}{\underline{x}_{i-1}M}$ -sequence.

Proof. (ii) \Rightarrow (i) Suppose the contrary and let $1 \leq i \leq r$ be such that Supp $(\frac{\underline{x}_{i-1}M:_Mx_i}{\underline{x}_{i-1}M}) \not\subseteq \mathcal{Z}$. Then there is $q \in \operatorname{Supp}(\frac{\underline{x}_{i-1}M:_Mx_i}{\underline{x}_{i-1}M}) \setminus \mathcal{Z}$. Thus there exist $p \subseteq q$, which $p \in \operatorname{Ass}((\frac{\underline{x}_{i-1}M:_Mx_i}{\underline{x}_{i-1}M})$, then there is $y \in \underline{x}_{i-1}M:_Mx_i$ such that $p = 0 : \underline{x}_{i-1}M + y$, therefore $x_i \in p \subseteq \bigcup q_{q \in \operatorname{Ass}(\frac{M}{\underline{x}_{i-1}M})} \setminus \mathcal{Z}$. This is a contradiction and the proof is complete.

(i) \Rightarrow (ii) Suppose that contrary. Let $1 \leq i \leq r$ be such that $x_i \in \bigcup p_{p \in Ass \frac{M}{\underline{x_{i-1}M}} \setminus \mathcal{Z}}$. Then there is $x_i \in p$ for some $p \in \bigcup Ass \frac{M}{\underline{x_{i-1}M}} \setminus \mathcal{Z}$, thus $p = (0 : \underline{x_{i-1}M} + y)$

for some $y \in M$, so $p \in Ass \frac{x_{i-1}M \cdot_M x_i}{\underline{x}_{i-1}M} \setminus \mathcal{Z}$. Thus is a contradiction. Therefor $x_i \notin \bigcup p_{p \in Ass \frac{M}{\underline{x}_{i-1}M}} \setminus \mathcal{Z}$ for all $i = 1, 2, \dots, r$ and proof is complete.

 $(iii) \Rightarrow (i) \text{ Let Supp}(\frac{\underline{x}_{i-1}M:_M x_i}{\underline{x}_{i-1}M}) \not\subseteq \mathcal{Z}, \text{ then there is } p \in \text{Supp}(\frac{\underline{x}_{i-1}M:_M x_i}{\underline{x}_{i-1}M}) \backslash \mathcal{Z}, \text{ hence } p \in \text{Supp } M \backslash \mathcal{Z}, \text{ it follows from } (iii) \text{ that } (\frac{x_1}{1}, \cdots, \frac{x_{i-1}}{1}) M_p = (\frac{x_1}{1}, \cdots, \frac{x_{i-1}}{1}) M_p :_{M_p}$ $\underline{x_i}. \text{ Thus } p \notin \text{Supp}(\frac{\underline{x}_{i-1}M:_M x_i}{\underline{x}_{i-1}M}), \text{ which is a contradiction.}$

The equivalence of (iii) and (iv), and (i) \Rightarrow (iii) are clear.

The following Theorem characterizes the existence of a \mathbb{Z} -filter regular M-sequence of length n in \mathfrak{b} .

Theorem 1. Let $n \in \mathbb{N}$. Then the following statements are equivalent.

- (i) \mathfrak{b} contains a \mathcal{Z} -filter regular M-sequence of length n.
- (ii) Any Z-filter regular M-sequence in \mathfrak{b} of length less than n can be extended to a Z-filter regular M-sequence of length n in \mathfrak{b} .
- (iii) Supp $\operatorname{Ext}_{R}^{i}(\frac{R}{h}, M) \subseteq \mathcal{Z}$ for all i < n.
- (iv) If Supp $N \subseteq V(\mathfrak{b})$, then Supp $\operatorname{Ext}_R^i(N, M) \subseteq \mathcal{Z}$ for all i < n.
- (v) Supp $H_{\mathfrak{b}}^i(M) \subseteq \mathcal{Z}$ for all i < n.
- (vi) If $Ann \ N \subseteq \mathfrak{b}$, then Supp $H^i_{\mathfrak{b}}(N,M) \subseteq \mathcal{Z}$ for all i < n.

Proof. The proof is similar to proof of Theorem 2.2 of [7].

- **Remark 1.** (i) We denote the set of all ideal \mathfrak{a} of R such that $V(\mathfrak{a}) \subseteq \mathcal{Z}$ by $F(\mathcal{Z})$, if for every $\mathfrak{a} \in F(\mathcal{Z})$, $Supp \frac{M}{\mathfrak{a}M} \nsubseteq \mathcal{Z}$, Proposition 2.2 and Theorem 2.3 case (iii) \Longrightarrow (ii) imply that every two maximal \mathcal{Z} -filter regular M-sequence in \mathfrak{a} have the same length. We denote the length of a maximal \mathcal{Z} -filter regular M-sequence in \mathfrak{a} by $g(\mathfrak{a}, M)$.
- (ii) We define $\mathfrak{a} \leq \mathfrak{b}$ if $\mathfrak{a} \supseteq \mathfrak{b}$ for $\mathfrak{a}, \mathfrak{b} \in F(\mathcal{Z})$. $F(\mathcal{Z})$ is non-empty we shall apply Zorn's Lemma to this partially ordered set, and so it follows from Zorn's Lemma that $F(\mathcal{Z})$ has at least one maximal element.

Definition 2. We denoted \mathcal{Z} -filter regular M-sequence by $fg(\mathcal{Z}, M)$, and define

$$fg(\mathcal{Z}, M) = \inf \{ fg(\mathfrak{a}, M) \mid \mathfrak{a} \in F(\mathcal{Z}) \}$$

= $\inf \{ fg(\mathfrak{a}, M) \mid \mathfrak{a} \text{ is maximal element of direct set } F(\mathcal{Z}) \}.$

As an important special case of the previous remark we have, if $\operatorname{Supp}(\frac{x_{i-1}M:x_i}{\underline{x}_{i-1}M}) = \emptyset$, then x_1, x_2, \dots, x_i is poor \mathcal{Z} -regular M-sequence and if, in addition, $\underline{x}_rM \neq M$, we call x_1, x_2, \dots, x_r a \mathcal{Z} -regular M-sequence.

Remark 2. Let R be a Notherian ring, M a finitely generated R-module, and \mathfrak{a} an ideal of R such that $\mathfrak{a}M \neq M$. Then all maximal M-regular sequence in a have the same length and the common Length of the maximal M-regular sequence in \mathfrak{a} called the grade of \mathfrak{a} on M, denoted by $\operatorname{grade}(\mathfrak{a}, M)$, see more details [9].

Definition 3. Suppose that M finitely generated R-module and \mathcal{Z} be a subset of SpecR to be stable under specialization. We define the grade of \mathcal{Z} on M, denoted by $grade(\mathcal{Z}, M)$, as $grade(\mathcal{Z}, M) = \inf \{grade(\mathfrak{a}, M) | \mathfrak{a} \in F(\mathcal{Z})\}$ = $\inf \{grade(\mathfrak{a}, M) | \mathfrak{a} \text{ is maximal element of direct set } F(\mathcal{Z})\}.$

3. Generalized Local Cohomology Modules Defined By $\mathcal Z$

In the section, we investigate the basic properties of generalized local cohomology modules defined by a subset of $\operatorname{Spec} R$ to be stable under specialization.

Let M and N be finitely generated R-module over a local ring (R, \mathfrak{m}) and let \mathcal{Z} to a subset of SpecR to be stable under specialization. For each integer $i \geq 0$, we define the

$$H_{\mathcal{Z}}^{i}(M,N) := \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext_{R}^{i}(\frac{M}{\mathfrak{a}M},N)$$

for all $M, N \in \mathcal{C}(R)$. Then $H^i_{\mathcal{Z}}(-,-)$ is an additive, R-linear functor which is contravariant in the first variable and covariant in the second variable.

Theorem 2. Let M be a fixed R-module. Then for each $i \geq 0$, the functors $\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext^i_R(\frac{M}{\mathfrak{a}M}, -)$ and $\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} H^i_{\mathfrak{a}}(M, -)$ (from $C(R) \longrightarrow C(R)$) are naturally equivalent.

Proof. We explain the construction of the functor $\varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} \mathrm{H}^i_{\mathfrak{a}}(M,-)$, let $\mathfrak{a},\mathfrak{b}\in F(\mathcal{Z})$

with $\mathfrak{a} \leq \mathfrak{b}$ ($\mathfrak{a} \supseteq \mathfrak{b}$). Thus the natural homomorphism $Ext^i_R(\frac{M}{\mathfrak{a}^n M}, N) \longrightarrow Ext^i_R(\frac{M}{\mathfrak{b}^n M}, N)$, for any integear $i \geq 0$ and any R-module N. Also if $n \leq m$, then the diagram

$$\begin{array}{cccc} Ext_R^i(\frac{M}{\mathfrak{a}^nM},N) & \longrightarrow & Ext_R^i(\frac{M}{\mathfrak{b}^nM},N) \\ & & & \downarrow & & \downarrow \\ Ext_R^i(\frac{M}{\mathfrak{a}^mM},N) & \longrightarrow & Ext_R^i(\frac{M}{\mathfrak{b}^mM},N) \end{array}$$

commutes. Thus we have a homomorphism

$$\lambda_{\mathfrak{a}}^{\mathfrak{b}}: \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext_{R}^{i}(\frac{M}{\mathfrak{a}^{n}M}, N) \longrightarrow \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext_{R}^{i}(\frac{M}{\mathfrak{b}^{n}M}, N)$$

that is $\lambda_{\mathfrak{a}}^{\mathfrak{b}}: \mathrm{H}^{i}_{\mathfrak{a}}(M, N) \longrightarrow \mathrm{H}^{i}_{\mathfrak{b}}(M, N)$. So that, these homomorphisms together with the modules $\mathrm{H}^{i}_{\mathfrak{a}}(M, N)$ from the direct system of R-modules and R-homomorphisms over the directed set $F(\mathcal{Z})$.

Since $\varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} \operatorname{H}^i_{\mathfrak{a}}(M,-)$ and $\varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} Hom^i_R(\frac{M}{\mathfrak{a}M},-)$ are naturally equivalent functors

$$(\text{from } \mathcal{C}(R) \longrightarrow \mathcal{C}(R)) \text{ and the sequences, } (\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \operatorname{H}^{i}_{\mathfrak{a}}(M, -))_{i \in \mathbb{N}} \text{ and } (\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext^{i}_{R}(\frac{M}{\mathfrak{a}M}, -))_{i \in \mathbb{N}},$$

are negative strongly connected sequences of functors, these two sequences are isomorphic. In particular

$$\varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} \mathrm{H}^{i}_{\mathfrak{a}}(M,N) \cong \varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} Ext^{i}_{R}(\frac{M}{\mathfrak{a}M},N) = \mathrm{H}_{\mathcal{Z}}(M,N),$$

for any integer $i \geq 0$ and any R-module N.

In this part, we investigate some basic properties of generalized local cohomology modules defined by a subset of stable under specialization of SpecR.

Remark 3. (i) For an R-module M, we denote by $\Gamma_{\mathcal{Z}}(M)$ the set of elements x of M such that $SuppRx \subseteq \mathcal{Z}$.

(ii) We say that M is \mathbb{Z} -torsion (res. \mathbb{Z} -torsion free) precisely when $\Gamma_{\mathbb{Z}}(M) = M$ (res. $\Gamma_{\mathbb{Z}}(M) = 0$). It is clear that if M = R, then $H^{i}_{\mathbb{Z}}(M, N)$ is converted to $H^{i}_{\mathbb{Z}}(N)$. In addition, if $\mathbb{Z} = V(\mathfrak{a})$ then $H^{i}_{\mathbb{Z}}(N)$, coincides with $H^{i}_{\mathfrak{g}}(N)$.

Lemma 3. let M and N are finitely generated R-modules. Then

- (i) $Supp N \subseteq \mathcal{Z}$ if and only if $\Gamma_{\mathcal{Z}}(N) = N$.
- (ii) $H^0_{\mathcal{Z}}(M,N) = Hom(M,\Gamma_{\mathcal{Z}}(N)).$
- (iii) if $Supp M \cap Supp N \subseteq \mathcal{Z}$, then $H^i_{\mathcal{Z}}(M,N) = Ext^i_R(M,N)$, for all $i \geq 0$.

Proof. (i) It is clear. (ii)

$$\begin{array}{lcl} \mathrm{H}^{0}_{\mathcal{Z}}(M,N) & = & \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \mathrm{H}^{0}_{\mathfrak{a}}(M,N) \\ & \cong & \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Hom(M,\Gamma_{\mathfrak{a}}(N)) \\ & = & Hom(M,\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \Gamma_{\mathfrak{a}}(N)) = Hom(M,\Gamma_{\mathcal{Z}}(N)). \end{array}$$

(iii) There is a minimal injective resolution E^* of N, such that Supp $E^i \subseteq \text{Supp } N$ for all $i \geq 0$. Since

Supp
$$(Hom(M, E^i)) \subseteq \text{Supp } M \cap \text{Supp } N \subseteq \mathcal{Z},$$

 $Hom(M, E^i)$ is \mathcal{Z} -torsion. Therefore, for all $i \geq 0$,

$$\begin{array}{cccc} \mathbf{H}^{i}_{\mathcal{Z}}(M,N) & \cong & \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \mathbf{H}^{i}_{\mathfrak{a}}(M,N) \cong \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \mathbf{H}^{i}(\Gamma_{\mathfrak{a}}(Hom(M,E^{*})) \\ & \cong & \mathbf{H}^{i}(\varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \Gamma_{\mathfrak{a}}(Hom(M,E^{*})) \cong \mathbf{H}^{i}(\Gamma_{\mathcal{Z}}(Hom(M,E^{*}))) \\ & \cong & \mathbf{H}^{i}(Hom(M,E^{*}) \cong Ext^{i}_{B}(M,N). \end{array}$$

It is obvious that if $\mathcal{Z} = V(\mathfrak{a})$, then $H^i_{\mathcal{Z}}(M,N)$ coincide with $H^i_a(M,N)$ the generalized local cohomology module was introduced by Herzog [9].

4. Vanishing and Non-Vanishing of $\mathrm{H}^i_{\mathcal{Z}}(M,N)$

Lemma 4. Suppose that subset \mathcal{Z} be stable under specialization of SpecR, $M(\neq 0)$ finitely generated R-module of finite projective dimension, and N an R-module of finite kurll dimension. Then $H^i_{\mathcal{Z}}(M,N)=0$ for all $i>pd(M)+\dim N$.

Proof. Suppose that $\mathfrak{a} \in F(\mathcal{Z})$. Then in view of [1], $H^i_{\mathfrak{a}}(M, N) = 0$ for all $i > pd(M) + \dim N$. By the Theorem (3.1), we have

$$\mathrm{H}^i_{\mathcal{Z}}(M,N) = \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} \mathrm{H}^i_{\mathfrak{a}}(M,N),$$

so that $H_{\mathcal{Z}}^{i}(M, N) = 0$ for all $i > pd(M) + \dim N$.

Remark 4. Suppose that M and N are finitely generated R-modules and that (o: M) $N \neq N(M \otimes N \neq 0)$. Recall that the N-grade of M, grade $_N M$, is the length of any maximal N-sequence contained in (0:M). Then grade $_N M$ is equal to the least integer s such that $Ext_R^s(M,N) \neq 0$.

For any ideal \mathfrak{a} of R for which $\mathfrak{a}N \neq N$, we define the grade of \mathfrak{a} on N as $\operatorname{grad}_N \frac{R}{\mathfrak{a}}$ (Remark 2.5).

Definition 4. Let M and N be finitely generated R-modules and the subset \mathcal{Z} of SpecR be stable under specialization. We define N-grade of M with respect to \mathcal{Z} , denoted by \mathcal{Z} -grade $_NM$, as

$$\mathcal{Z} - grade_N M = \inf \{ grade_N \frac{M}{\mathfrak{a}M} | \mathfrak{a} \in F(\mathcal{Z}) \}$$

$$= \inf \{ grade_N \frac{M}{\mathfrak{a}M} | \mathfrak{a} \text{ is maximal element of directed set } F(\mathcal{Z}) \}.$$

Note: If every $\mathfrak{a} \in F(\mathcal{Z})$, $\frac{M}{\mathfrak{a}M} = 0$, then $\mathcal{Z}\text{-}grade_N M = \infty$, other wise we have $\mathcal{Z}\text{-}grade_N M < \infty$.

Theorem 5. Let M and N finitely generated R-modules and subset of \mathcal{Z} of SpecR be stable under specialization. If \mathcal{Z} -grade_N $M = r < \infty$, then $H^i_{\mathcal{Z}}(M, N) = 0$ for all i < r, and $H^i_{\mathcal{Z}}(M, N) \neq 0$.

Proof. By Theorem 2, $H^i_{\mathcal{Z}}(M, N) = \varinjlim_{\mathfrak{a} \in F(\mathcal{Z})} Ext^i_R(\frac{M}{\mathfrak{a}M}, N)$, for all i. Let $i < grade_N \frac{M}{\mathfrak{a}M}$

for all $\mathfrak{a} \in F(\mathcal{Z})$, this implies that $H^i_{\mathcal{Z}}(M,N)=0$. Next there is an ideal \mathfrak{b} of $F(\mathcal{Z})$ for which $\operatorname{grade}_N \frac{M}{\mathfrak{b}M} = r$. Let $\mathfrak{a} \in F(\mathcal{Z})$ such that $\mathfrak{b} \geq \mathfrak{a}$ ($\mathfrak{a} \subseteq \mathfrak{b}$). Since $\operatorname{grade}_N \frac{M}{\mathfrak{a}M} \geq r$, there is an N-sequence x_1, x_2, \ldots, x_r which is contained in $\operatorname{Ann}(\frac{M}{\mathfrak{a}M})$. Consider the natural epimorphism $\mu: \frac{M}{\mathfrak{a}M} \longrightarrow \frac{M}{\mathfrak{b}M}$. Let $A = \ker \mu$, so that the sequence

$$0 \longrightarrow A \longrightarrow \frac{M}{\mathfrak{g}M} \longrightarrow \frac{M}{\mathfrak{h}M} \longrightarrow 0,$$

is exact. Thus induces the long exact sequence

$$\cdots \longrightarrow Ext_R^{r-1}(A,N) \longrightarrow Ext_R^r(\frac{M}{\mathfrak{h}M},N) \longrightarrow Ext_R^r(\frac{M}{\mathfrak{a}M},N) \longrightarrow .$$

We know that $(0:\frac{M}{\mathfrak{a}M})\subseteq (0:A)$, so that x_1,x_2,\ldots,x_r is an N-sequence contained in (0:A). thus $Ext_R^{r-1}(A,N)=0$. Therefore for every $\mathfrak{a}\in F(\mathcal{Z})$ with $\mathfrak{b}\geq \mathfrak{a}$, the map $Ext_R^r(\frac{M}{\mathfrak{b}M},N)\longrightarrow Ext_R^r(\frac{M}{\mathfrak{a}M},N)$ is monomorphism. Since $Ext_R^r(\frac{M}{\mathfrak{b}M},N)\neq 0$, it follows that $\varinjlim_{\mathfrak{a}\in F(\mathcal{Z})} Ext_R^i(\frac{M}{\mathfrak{a}M},N)\neq 0$, so that the proof is completed.

Corollary 6. Suppose that N is finitely generated R-module and subset of \mathcal{Z} of SpecR is stable under specialization. Then

$$\inf\{i|H_{\mathcal{Z}}^i(N)\neq 0\} = \inf\{depthN_p|p\in\mathcal{Z}\}.$$

Proof. By Theorem 5, $\inf\{i|\mathcal{H}_{\mathcal{Z}}^i(N)\neq 0\}=grade(\mathcal{Z},N)$. It is clear from the definition that $grade(\mathcal{Z},N)\leq grade(p,N)$ for all $p\in\mathcal{Z}$, and it follows from Proposition 1, that $grade(p,N)\leq depthN_p$. Further more, if $grade(\mathcal{Z},N)=\infty$, then $\mathfrak{a}N=N$, for all $a\in F(\mathcal{Z})$. This shows that $depthM_p=\infty$ for all $p\in\mathcal{Z}$. Now, suppose that $N\neq\mathfrak{a}N$ for some $\mathfrak{a}\in F(\mathcal{Z})$ and choose a maximal \mathfrak{a} -filter raqular N-sequence \underline{x} in \mathfrak{a} . By Proposition 1, there exists $p\in Ass(\frac{M}{\underline{x}M})\setminus\mathcal{Z}$, and $\mathfrak{a}\subseteq p$. Since $pR_p\in Ass(\frac{M}{\underline{x}M})_p$, pR_p consists of zero-divisors of $\frac{M_p}{\underline{x}M_p}$. Therefore \underline{x} is a maximal M_p -sequence. Hence, the proof is complete.

As a generalization of the usual local cohomology modules, Takahashi, Yoshino and Yoshizawa [12] introduced the local cohomology modules with respect to a pair of ideals (I,J). Let I and J be two ideals of R. We are concerned with the subset $W(I,J)=\{p\in \operatorname{Spec} R\mid I^n\subseteq p+J \text{ for an integer } n\geq 1\}$ of $\operatorname{Spec} R$. For an R-module M we denoted $\Gamma_{I,J}(M)=\{x\in M\mid \operatorname{Supp}(Rx)\subseteq W(I,J)\}$. Indeed, for Z:=W(I,J) one can deduce that $\mathbf{R}\Gamma_{\mathcal{Z}}(-)$ and $\mathbf{H}^i_{\mathcal{Z}}(-)$ are $\mathbf{R}\Gamma_{I,J}(-)$ and $\mathbf{H}^i_{I,J}(-)$, respectively.

Corollary 7. Suppose that N is finitely generated R-module and that I and J are ideals of R. Then

$$\inf\{i|H_{I,J}^{i}(N)\neq 0\} = \inf\{depthN_{p}|p\in W(I,J)\}.$$

Thus the result coincides with [12, Theorem 4.1].

References

- [1] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasg. Math. J., 21(1980), 173-181.
- [2] M. P. Brodmann, Finiteness result for associated primes of certain ext-modules, Comm. Algebra, 36(2008), 1527-1536.
- [3] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Application, Cambridge University Press, 1998.
- [4] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, 1993.
- [5] F. Dehghani-Zadeh, Filter regular sequence and generalized local cohomology with respect to a pair of ideals, J. Math. Ext., 6(4)(2012), 11-19.
- [6] F. Dehghani-Zadeh and H. Zakeri, Some results on graded generalized local cohomology modules, J. Math. Ext., 5(1)(2010), 59-73.
- [7] A. Fathi, A. Tehranian and H. Zakeri, Filter regular sequences and generalized local cohomology modules, Bull. Malaysian Math. Sci. Soc., 38(2)(2015), 467-482.
- [8] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. Math., 88(1968), 403-450.
- [9] J. Herzog, *Komplexe*, Auflösungen und Dualität in Der Lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1970.
- [10] B. Jalali F. Hassani and M. Rahro Zargar, *The derived category analogue of some results in local cohomology*, Mat. Palermo, II. Ser (2016). doi:10.1007/s12215-016-0275-5.

- [11] R. Naghipour, K. Divaani-Aazar and M. Tousi, *The Lichtenbaum-Hartshorne theorem for generalized local cohomology and connectedness*, Comm. Algebra, 30 (2002), 3687-3702.
- [12] R. Takahashi, Y. Yoshino, and T. Yoshizawa, Local cohomology based on a nonclosed support dened by a pair of ideals, J. Pure Appl. Algebra, 213(4)(2009), 582-600.
- [13] S. Yassemi, Generalized section functors, J. Pure Appl. Algebra, 95(1)(1994), 103-119.
- [14] Y. Yoshino and T. Yoshizawa, Abstract local cohomology functors, Math. J. Okayama Univ., 53(2011), 129-154.

Feysal Hassani

Department of Mathematics, Payame Noor University,

Tehran, Iran

email: $feysal.hassani.pnu@gmail.com\ \mathcal{E}$ hassani@pnu.ac.ir

Bahman Jalali

Department of Mathematics, Payame Noor University,

Tehran, Iran

email: bn.jalali@gmail.com