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Abstract. Pseudo-analysis uses for the generalization of the classical analysis,
where instead of the field of the numbers a semiring is defined on a real interval
[a, b] ⊂ [−∞,∞] with pseudo-addition ⊕ and with pseudo-multiplication �. Thus
it would be an interesting topic to generalize an inequality from the from work of
the classical analysis as special cases. In this paper we prove generalizations of the
Bushell-Okrasinski’s type inequality for pseudo-integrals.
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1. Introduction

Not long ago, H. Román-Flores et al. analyzed an interesting type of geometric
inequalities for the Sugeno integrals with some applications to convex geometry
in [12]. More precisely, a Prékopa-Leindler type inequality for fuzzy integrals was
proven, and subsequently used for the characterization of some convexity properties
of fuzzy measures.

In this paper, we prove Bushell-Okrasiaski inequality at two decreasing and in-
creasing cases for two classes of pseudo-integrals. One of them, classes with pseudo-
integrals where pseudo-operations are defined via a monotone and continuous gen-
erator function. The other one concerns the pseudo-integrals based on a semiring
with an idempotent addition and a pseudo-multiplication generator.

The classical Bushell-Okrasinski [4] is a convolution type inequality. More pre-
cisely, ∫ x

0
(x− t)s−1g(t)sdt ≤

( ∫ x

0
g(t)

)s
, 0 ≤ x ≤ b, (1)

holds for a continuous and increasing function g : [0, 1] → [0,∞) and s ≥ 1, b ≤ 1.
This inequality was used by Bushell and Okrasinski [4] in the study of solutions of
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Volterra integral equations (also see [7]). Later on Walter and Weckesser [16] study
some extensions of (1) and finally, after the change of variable t = xs, Malamud [6]
analyze the B-O inequality (1) in the following new form:

s

∫ 1

0
(1− t)s−1g(t)sdt ≤

( ∫ x

0
g(t)

)s
.

H. Román-Flores et al [11] proved Bushell-Okrasinski type inequality for the Sugeno
integrals at two cases in the following way:

Theorem 1. (Fuzzy B-O inequality: decreasing case). Let g : [0, 1] → [0,∞) be a
continuous and decreasing function. Then

s−
∫ 1

0
(1− t)s−1g(t)sdt ≥

(
−
∫ 1

0
g(t)dt

)s
,

holds for all s ≥ 2.

The following theorem establish an analogous result for the increasing case.

Theorem 2. (Fuzzy B-O inequality: increasing case). Let g : [0, 1] → [0,∞) be a
continuous and increasing function. Then

s−
∫ 1

0
ts−1g(t)sdt ≥

(
−
∫ 1

0
g(t)dt

)s
,

holds for all s ≥ 2.

2. Preliminaries

2.1. Pseudo-integrals

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of
[−∞,∞]. The full order on [a, b] will be denoted by �. A binary operation ⊕
on [a, b] is pseudo-addition if it is commutative, non-decreasing(with respect to �),
associative and with a zero (neutral) element denoted by 0. Let [a, b]+ = {x|x ∈
[a, b],0 � x}. A binary operation � on [a, b] is Pseudo-multiplication if it is commu-
tative, positively non-decreasing, i.e., x � y implies x� z � y � z for all z ∈ [a, b]+,
associative and with a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b], 1� x = x. We
assume also 0� x = 0 and that � is distributive over ⊕, i.e.,

x� (y ⊕ z) = (x� y)⊕ (x� z).
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The structure ([a, b],⊕,�) is a semiring ([1, 2, 3, 5, 9, 15]). In this paper we will
consider semirings with following continuous operations:
Case I. The pseudo-addition is idempotent operation and the pseudo-multiplication
is not.

• (a) x⊕ y = sup(x, y), � is arbitrary not idempotent pseudo-multiplication on
the interval [a, b]. We have 0 = a and the idempotent operation sup induces a
full order in the following way: x � y if and only if sup(x, y) = y.

• (b) x⊕ y = inf(x, y), � is arbitrary not idempotent pseudo-multiplication on
the interval [a, b]. We have 0 = b and the the idempotent operation inf induces
a full order in the following way: x � y if and only if inf(x, y) = y.

Case II. The pseudo-operations are defined by a monotone and continuous function
g : [a, b]→ [0,∞] (additive generator of ⊕), i.e., pseudo-operations are given with

x⊕ y = g−1(g(x) + g(y)) and x� y = g−1(g(x).g(y)).

If the zero element for the pseudo-addition is a, we will consider increasing genera-
tors.Then g(a) = 0 and g(b) =∞. If the zero element for the pseudo-addition is b,
we will consider decreasing generators. Then g(b) = 0 and g(a) =∞.
If the generator g is increasing (respectively decreasing), the operation ⊕ induce the
usual order (respectively opposite to the usual order) on the interval [a, b] in the
following way: x � y if and only if g(x) � g(y).
Case III. Both operation are idempotent. We have

• (a) x ⊕ y = sup(x, y), x � y = inf(x, y), on the interval [a, b]. We have 0 = a
and 1 = b. The idempotent operation sup induces a usual order (x ≺ y if and
only if sup(x, y) = y).

• (b) x ⊕ y = inf(x, y), x � y = sup(x, y), on the interval [a, b]. We have 0 = b
and 1 = a. The idempotent operation inf induces an order opposite to the
usual order( x � y if and only if inf(x, y) = y).

2.2. Explicit forms of special Pseudo-integrals

We shall consider the semiring ([a, b],⊕,�) for three (with completely different be-
haviour) cases, namely I(a), II, and III(a). Observe that the cases I(b) and III(b) are
linked to the cases I(a) and III(a) by duality. First case is when pseudo-operations
are generated by a monotone and continuous function g : [a, b] → [0,∞], case then
the pseudo-integral for a measurable function f : X → [a, b] is given by,∫ ⊕

X
f � dm = g−1(

∫
X

(gof)d(gom)), (2)
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Where the integral applied on the right side is the standard Lebesgue integral. In
spacial case, when X = [c, d], A = B(X) and m = g−1oλ, λ the standard Lebesgue
measure on [c, d], then we use notation∫ ⊕

[c,d]
f(x)dx =

∫ ⊕
X
f � dm.

By(2), ∫ ⊕
[c,d]

f(x)dx = g−1
( ∫ d

c
g(f(x))dx

)
,

i.e., we have recovered the g-integral, (see[8, 9]).
Second case is when the semiring is of the form ([a, b], sup,�), case I(a) and III(a).
We will consider complete sup-measure m only and A = 2x, i.e., for any system
(Ai)i ∈ I of measurable sets,

m( ∪
i∈I
Ai) = sup

i∈I
m(Ai)

Recall that if X is countable (especially, if X is finite) then any σ-sup-measure
m is complete and, moreover, m(A) = supx∈A ψ(X), where ψ : X → [a, b] is a
density function given by ψ(x) = m({x}). Then the pseudo-integral for a function
f : X → [a, b] is given by ∫ ⊕

X
f � dm = sup

x∈X
(f(x)� ψ(x)),

where function ψ defines sup-measure m.

Theorem 3. Let m be a sup-measure on ([0,∞],B([0,∞])), where B([0,∞]) is the
Borel σ-algebra on [0,∞], m(A) = esssupµ(ψ(x)|x ∈ A), where ψ : [0,∞] → [0,∞]
is a continuous density. Then for any pseudo-addition ⊕ with a generator g there
exists a family {mλ} of ⊕λ-measure on ([0,∞[,B), where ⊕λ is generated by gλ (the
function g of the power λ), λ ∈]0,∞[, such that limλ→∞mλ = m.

For any continuous function f : [0,∞] → [0,∞] the integral
∫ ⊕

f � dm can be
obtained as a limit of g-integrals, [3, 10].

Theorem 4. Let ([0,∞], sup,�) be a semiring with � generated by some increasing
generator g, i.e., we have x � y = g−1(g(x)g(y)) for every x, y ∈ [a, b]. Let m
be the same as in Theorem 3. Then there exists a family {mλ} of ⊕λ-measure,
where ⊕λ is generated by gλ, λ ∈]0,∞[, such that for every continuous function
f : [0,∞]→ [0,∞]∫ sup

f � dm = lim
λ→∞

∫ ⊕λ
f � dmλ = lim

λ→∞
(gλ)−1

( ∫
gλ(f(x))dx

)
.
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Now we recall generalization of the Jensen inequality for pseudo-integral that
proved by E. Pap et al. on [?].

Theorem 5. Let Φ : [a, b] → [a, b] be a convex and nondecreasing function. If a
generator g : [a, b] → [a, b] of the pseudo-addition ⊕ and the pseudo-multiplication
� is a convex and increasing function, then for any measurable function f : [0, 1]→
[a, b] we have

Φ
( ∫ ⊕

[0,1]
f(x)dx

)
≤
∫ ⊕
[0,1]

Φ(f(x))dx.

Theorem 6. Let Φ : [a, b]→ [a, b] be a convex and nondecreasing function, and the
pseudo-multiplication � is represented by a convex and increasing generator g. Let
m be the same as in Theorem 3. Then for any continuous function f : [0, 1]→ [a, b]
we have

Φ
( ∫ sup

[0,1]
f � dm

)
≤
∫ sup

[0,1]
Φ(f)� dm.

The following Theorem shows that the Chebyshev’s inequality for pseudo-integrals
that is proved in [1].

Theorem 7. Let u, v : [0, 1]→ [a, b] be two measurable functions and let a generator
g : [a, b] → [0,∞) of the pseudo-addition ⊕ and the pseudo-multiplication � be an
increasing function. If u and v are comonotone functions, then the inequality∫ ⊕

[0,1]
(u� v)dx ≥

( ∫ ⊕
[0,1]

udx
)
�
( ∫ ⊕

[0,1]
vdx

)
,

hold and the reserve inequality holds whenever u and v are countermonotone func-
tions.

3. Main results

In this section, we prove two Bushell-Okrasiaski inequalities for pseudo-integrals.

Theorem 8. (Pseudo Bushell-Okrasiaski inequality: decreasing case) Let f : [0, 1]→
]a, b[ be a continuous and decreasing function. If a generator g :]a, b[→]a, b[ of the
pseudo-addition ⊕ and the pseudo-multiplication � is a convex and increasing func-
tion, then ∫ ⊕

[0,1]
(1− t)s−1 � fs(t)dt ≥ 1

s
�
( ∫ ⊕

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.
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Proof. By the definition of pseudo-integral and pseudo-operations we have∫ ⊕
[0,1]

(1− t)s−1 � fs(t)dt = g−1
( ∫ 1

0
g
[
(1− t)s−1 � fs(t)

]
dt
)

= g−1
( ∫ 1

0
g
[
g−1(g((1− t)s−1)g(fs(t))

]
dt
)

= g−1
( ∫ 1

0
g((1− t)s−1)g(fs(t))dt

)
.

By classic Chebyshev’s integral inequality ([14]), we have;

g−1
( ∫ 1

0

g((1− t)s−1)g(fs(t))dt
)
≥ g−1

[( ∫ 1

0

g((1− t)s−1)dt
( ∫ 1

0

g(fs(t))dt
)]

= g−1
[
gg−1

( ∫ 1

0

g((1− t)s−1)dt
)
gg−1

( ∫ 1

0

g(fs(t))dt
)]

= g−1
[
g
( ∫ ⊕

[0,1]

(1− t)s−1dt
)
g
( ∫ ⊕

[0,1]

fs(t)dt
)]

=
( ∫ ⊕

[0,1]

(1− t)s−1dt
)
�
( ∫ ⊕

[0,1]

fs(t)dt
)
.

By using the Theorem 5,∫ ⊕
[0,1]

(1− t)s−1 � fs(t)dt ≥
( ∫ ⊕

[0,1]
(1− t)s−1dt

)
�
( ∫ ⊕

[0,1]
f(t)dt

)s
, (3)

in the other hand by using the classic Jensen inequality ([13]), we can show that∫ ⊕
[0,1]

(1− t)s−1dt = g−1
( ∫ 1

0
g((1− t)s−1)dt

)
≥ g−1

(
g

∫ 1

0
(1− t)s−1dt

)
=

∫ 1

0
(1− t)s−1dt =

1

s
,

so by (3) and (4) we obtain that:∫ ⊕
[0,1]

(1− t)s−1 � fs(t)dt ≥ 1

s
�
( ∫ ⊕

[0,1]
f(t)dt

)s
.

Thereby, the theorem is proved.

Example 1. Let g(x) = ex. The corresponding pseudo-operations are x ⊕ y =
ln(ex + ey) and x� y = x+ y, the Theorem 8 reduces on the following inequality,

ln
( ∫ 1

0
e(1−t)

s−1+fs(t)dt
)
≥ 1

s
+
(

ln(

∫ 1

0
ef(t)dt)

)s
.
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Theorem 9. (Pseudo Bushell-Okrasiaski inequality: increasing case) Let f : [0, 1]→
]a, b[ be a continuous and increasing function. If a generator g :]a, b[→]a, b[ of the
pseudo-addition ⊕ and the pseudo-multiplication � is a convex and increasing func-
tion, then ∫ ⊕

[0,1]
ts−1 � fs(t)dt ≥ 1

s
�
( ∫ ⊕

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.

Proof. The proof is similar to Theorem 8.

Theorem 10. (Pseudo Bushell-Okrasiaski inequality: decreasing case) Let f : [0, 1]→
]a, b[ be a continuous and decreasing function, and � is represented by a convex and
increasing multiplication generator g and m be the same as in Theorem 3, then∫ sup

[0,1]
(1− t)s−1 � fs(t)� dm ≥ 1

s
�
( ∫ sup

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.

Proof. By Theorem 4 we have:∫ sup

[0,1]
(1− t)s−1 � fs(t)� dm = lim

λ→∞

∫ ⊕λ
[0,1]

(1− t)s−1 � fs(t)� dmλ

= lim
λ→∞

(gλ)−1
( ∫ 1

0
gλ((1− t)s−1 � fs(t))dt

)
.

Using the Theorem 7 so we have

∫ sup

[0,1]
(1 − t)

s−1 � f
s
(t) � dm ≥ lim

λ→∞

[
(g
λ
)
−1( ∫ 1

0
g
λ
((1 − t)

s−1
)dt
)
� (g

λ
)
−1( ∫ 1

0
g
λ
(f
s
(t))dt

)]
=
[

lim
λ→∞

(g
λ
)
−1
∫ 1

0
g
λ
((1 − t)

s−1
)dt
)
�
(

lim
λ→∞

(g
λ
)
−1
∫ 1

0
g
λ
((f

s
(t))dt

]
=
( ∫ sup

[0,1]
(1 − t)

s−1 � dm
)
�
( ∫ sup

[0,1]
f
s
(t) � dm

)
.

Applying the Theorem 6, we obtain that:∫ sup

[0,1]
(1− t)s−1 � fs(t)� dm ≥

( ∫ sup

[0,1]
(1− t)s−1 � dm

)
�
( ∫ sup

[0,1]
f(t)� dm

)s
. (4)
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Also we have:∫ sup

[0,1]
(1− t)s−1 � dm = lim

λ→∞

( ∫ ⊕λ
[0,1]

(1− t)s−1 � dmλ

)
= lim

λ→∞
(gλ)−1

( ∫ 1

0
gλ((1− t)s−1)dt

)
≥ lim

λ→∞
(gλ)−1

(
gλ
∫ 1

0
((1− t)s−1)dt

)
= lim

λ→∞

∫ 1

0
((1− t)s−1)dt =

1

s
(5)

from (5) and (6) we have;∫ sup

[0,1]
(1− t)s−1 � fs(t)� dm ≥ 1

s
�
( ∫ sup

[0,1]
f(t)dt

)s
.

Example 2. Let gλ = eλx and ψ(x) be from Theorem 3, then

x�λ y = x+ y and lim
λ→∞

( 1

λ
ln(eλx + eλy)

)
= max(x, y).

Therefore B-O type inequality from Theorem 10 reduces on

sup
x∈[0,1]

[(
(1− x)s−1 + fs(x)

)
+ ψ(x)

]
≥ 1

s
+
[
sup
x∈[0,1]

(
f(x) + ψ(x)

)]s
.

Theorem 11. (Pseudo Bushell-Okrasiaski inequality: increasing case) Let f : [0, 1]→
]a, b[ be a continuous and increasing function, and � is represented by a convex and
increasing multiplication generator g and m be the same as in Theorem 3, then∫ sup

[0,1]
ts−1 � f s(t)� dm ≥ 1

s
�
( ∫ sup

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.

Proof. The proof is similar to Theorem 10.

Note that third important case ⊕ =max and � =min has been studied in [11]
and the Pseudo-integrals in such a case yields the Sugeno integral.
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