No. 48/2016 pp. 1-12 doi: 10.17114/j.aua.2016.48.01 # SOME OPERATORS IN IDEAL TOPOLOGICAL SPACES VIA COZERO SETS # Ahmad Al-Omari ABSTRACT. An ideal on a set X is a nonempty collection of subsets of X with heredity property which is also closed finite unions. The concept of ideal topological spaces via cozero sets was introduced by Al-Omari [1]. In this paper, we introduce and study an operator $\Phi: \mathcal{P}(X) \to \tau$ defined as follows for every $A \in X$, $\Phi(A) = \{x \in X : \text{there exists a cozero set } U \text{ containing } x \text{ such that } U - A \in \mathcal{I}\}$ and observes that $\Phi(A) = X - (X - A)_z$. We construct a topology τ_z^* for X by using the cozero sets and an ideal \mathcal{I} on X. Moreover, we obtain some characterizations of $\Phi(A)$. 2010 Mathematics Subject Classification: 54A05, 54C10. Keywords:ideal topological space, Kuratowski closure operator, zero set, cozero set, $\Phi\text{-}\mathrm{operator}$ ## 1. Introduction and Preliminaries The notion of ideal topological spaces was first studied by Kuratowski [7] and Vaidyanathaswamy [11]. Compatibility of the topology τ with an ideal \mathcal{I} was first defined by Njåstad [9]. In 1990, Jankovic and Hamlett [4, 5] investigated further properties of ideal topological spaces. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following properties: - 1. $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$. - 2. $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$ is called the local function of A with respect to \mathcal{I} and τ (see [4, 7]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generating by the base $\beta(\mathcal{I}, \tau) = \{U - J : U \in \tau \text{ and } J \in \mathcal{I}\}$. It is known in [4] that $\beta(\mathcal{I}, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^* . Recall that A is said to be *-dense in itself (resp. τ^* -closed, *-perfect) if $A \subseteq A^*$ (resp. $A^* \subseteq A$, $A = A^*$). For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*) , respectively. A subset H of a topological space (X,τ) is called a cozero set if there is a continuous real-valued function g on X such that $H = \{x \in X : g(x) \neq 0\}$. The complement of a cozero set is called a zero set. Recently papers [2, 3, 6, 10] have introduced some new classes of functions via cozero sets. Since the intersection of two cozero sets is a cozero set, the collection of all cozero subsets of (X,τ) is a base for a topology τ_z on X, called the complete regularization of τ . It is clear that $\tau_z \subseteq \tau$ in general. Furthermore, the space (X,τ) is completely regular if and only if $\tau_z = \tau$. In general for any topological space $\tau_z \subseteq \tau$, we note that (X,τ_z) is completely regular. We set $Int_z(A) = \bigcup \{U : U \subseteq A, U \text{ is a cozero set } \}$ and $Cl_z(A) = \bigcap \{F : A \subseteq F, F \text{ is a zero set } \}.$ **Proposition 1.1.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space and A be a cozero set then $Int_z(A) = A$ and if A is zero set then $Cl_z(A) = A$. Conversely $Int_z(A) = A$ dose not imply A is cozero set and $Cl_z(A) = A$ dose not imply that A is zero set. **Lemma 1.2.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then $x \in Cl_z(A)$ if and only if every cozero set U_x containing $x, U_x \cap A \neq \emptyset$. Proof. Let $x \in Cl_z(A)$. Supposed that $U_x \cap A = \emptyset$, where U_x is a cozero set containing x. Then $A \subseteq X - U_x$ and $X - U_x$ is a zero set containing A. Therefore, $x \in X - U_x$ and this a contradiction. Conversely supposed that $U_x \cap A \neq \emptyset$ for every cozero set U_x containing x. Suppose that $x \notin Cl_z(A)$. Then there exists a zero set F such that F and F and F and F are fore, F and F are fore, F such that F are fore, F and are fore, F and F are fore, F are fore, F and F are forest formula are forest formula F and F are forest formula F are forest formula F and F are forest forest formula F and F are forest **Definition 1.3.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following set: $A_z(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \mathcal{CZ}(x)\}$, where $\mathcal{CZ}(x)$ is the set of all cozero set in X containing x. In case there is no confusion $A_z(\mathcal{I}, \tau)$ is briefly denoted by A_z and is called the z-local function of A with respect to \mathcal{I} and τ . **Lemma 1.4.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space and A, B any subsets of X. Then the following properties hold: - 1. $(\emptyset)_z = \emptyset$. - $2. (A_z)_z \subseteq A_z.$ - 3. $A_z \cup B_z = (A \cup B)_z$. **Theorem 1.5.** [1] Let (X, τ) be a topological space, \mathcal{I} and \mathcal{J} be ideals on X, and let A and B be subsets of X. Then the following properties hold: - 1. If $A \subseteq B$, then $A_z \subseteq B_z$. - 2. If $\mathcal{I} \subseteq \mathcal{J}$, then $A_z(\mathcal{I}) \supseteq A_z(\mathcal{J})$. - 3. $A_z = Cl_z(A_z) \subseteq Cl_z(A)$. - 4. If $A \subseteq A_z$, then $A_z = Cl_z(A_z) = Cl_z(A)$. - 5. If $A \in \mathcal{I}$, then $A_z = \emptyset$. **Corollary 1.6.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space and A, I subsets of X with $I \in \mathcal{I}$. Then $(A \cup I)_z = A_z = (A - I)_z$. **Remark 1.7.** In [1] Al-Omari obtained that $Cl_z(A) = A \cup A_z$ is a Kuratowski closure operator. We will denote by τ_z^* the topology generated by Cl_z , that is, $\tau_z^* = \{U \subseteq X : Cl_z(X - U) = X - U\}.$ **Theorem 1.8.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\beta(\mathcal{CZ}, \mathcal{I}) = \{V - I : V \text{ is a cozero set of } (X, \tau), I \in \mathcal{I}\}$ is a basis for τ_z^* . **Theorem 1.9.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space, then the following properties are equivalent: 1. $$\mathcal{CZ} \cap \mathcal{I} = \{\emptyset\};$$ - 2. If $I \in \mathcal{I}$, then $Int_z(I) = \{\emptyset\}$; - 3. For every cozero set $G, G \subseteq G_z$; - 4. $X = X_z$. **Lemma 1.10.** Let (X, τ, \mathcal{I}) be an ideal topological space. If A is cozero set then $\mathcal{CZ} \cap \mathcal{I} = \{\emptyset\}$ if and only if $A_z = Cl_z(A)$. Proof. Let $\mathcal{CZ} \cap \mathcal{I} = \{\emptyset\}$. Let A be a nonempty cozero sets then by Theorem 1.5 we have $A_z \subseteq Cl_z(A)$. Let $x \in Cl_z(A)$, then for all cozero set U_x containing x we have $U_x \cap A \neq \emptyset$. Again $U_x \cap A$ is a nonempty cozero set, so $U_x \cap A \notin \mathcal{I}$, since $\mathcal{CZ} \cap \mathcal{I} = \{\emptyset\}$. Hence $x \in A_z$. Therefore, $A_z = Cl_z(A)$. Conversely for A cozero set we have $A_z = Cl_z(A)$. Then $X = X_z$ and this implies that $\mathcal{CZ} \cap \mathcal{I} = \{\emptyset\}$ by Theorem 1.9. ### 2. Φ-OPERATOR IN IDEAL TOPOLOGICAL SPACES **Definition 2.1.** Let (X, τ, \mathcal{I}) be an ideal topological space. An operator $\Phi : \mathcal{P}(X) \to \tau$ is defined as follows for every $A \in X$, $\Phi(A) = \{x \in X : \text{there exists a cozer set } U \text{ containing } x \text{ such that } U - A \in \mathcal{I}\}$ and observes that $\Phi(A) = X - (X - A)_z$. Several basic facts concerning the behavior of the operator Φ are included in the following theorem. **Theorem 2.2.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties hold: - 1. If $A \subseteq B$, then $\Phi(A) \subseteq \Phi(B)$. - 2. If $A, B \in \mathcal{P}(X)$, then $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$. - 3. If $U \in \tau_z^*$, then $U \subseteq \Phi(U)$. - 4. If $A \subseteq X$, then $\Phi(A) \subseteq \Phi(\Phi(A))$. - 5. If $A \subseteq X$, then $\Phi(A) = \Phi(\Phi(A))$ if and only if $(X A)_z = ((X A)_z)_z$. - 6. If $A \in \mathcal{I}$, then $\Phi(A) = X X_z$. - 7. If $A \subseteq X$, then $A \cap \Phi(A) = Int_z(A)$. - 8. If $A \subseteq X$, $I \in \mathcal{I}$, then $\Phi(A I) = \Phi(A)$. - 9. If $A \subseteq X$, $I \in \mathcal{I}$, then $\Phi(A \cup I) = \Phi(A)$. - 10. If $(A B) \cup (B A) \in \mathcal{I}$, then $\Phi(A) = \Phi(B)$. *Proof.* (1) This follows from Theorem 1.5 (1). - (2) It follows from (1) that $\Phi(A \cap B) \subseteq \Phi(A)$ and $\Phi(A \cap B) \subseteq \Phi(B)$. Hence $\Phi(A \cap B) \subseteq \Phi(A) \cap \Phi(B)$. Now let $x \in \Phi(A) \cap \Phi(B)$. There exist $U, V \in \mathcal{CZ}(x)$ such that $U A \in \mathcal{I}$ and $V B \in \mathcal{I}$. Let $G = U \cap V \in \mathcal{CZ}(x)$ and we have $G A \in \mathcal{I}$ and $G B \in \mathcal{I}$ by heredity. Thus $G (A \cap B) = (G A) \cup (G B) \in \mathcal{I}$ by additivity, and hence $x \in \Phi(A \cap B)$. We have shown $\Phi(A) \cap \Phi(B) \subseteq \Phi(A \cap B)$ and the proof is complete. - (3) If $U \in \tau_z^*$, then X U is τ_z^* -closed which implies $(X U)_z \subseteq X U$ and hence $U \subseteq X (X U)_z = \Phi(U)$. - (4) This follows from (3). - (5) This follows from the facts: - 1. $\Phi(A) = X (X A)_z$. 2. $$\Phi(\Phi(A)) = X - [X - (X - (X - A)_z)]_z = X - ((X - A)_z)_z$$. - (6) By Corollary 1.6 we obtain that $(X A)_z = X_z$ if $A \in \mathcal{I}$. - (7) If $x \in A \cap \Phi(A)$, then $x \in A$ and there exists a cozero set U_x containing such that $U_x A \in \mathcal{I}$. Then by Theorem 1.8, $U_x (U_x A)$ is an τ_z^* -open neighborhood of x and $x \in Int_z(A)$. On the other hand, if $x \in Int_z(A)$, there exists a basic τ_z^* -open neighborhood $V_x I$ of x, where V_x is a cozero set and $I \in \mathcal{I}$, such that $x \in V_x I \subseteq A$ which implies $V_x A \subseteq I$ and hence $V_x A \in \mathcal{I}$. Hence $x \in A \cap \Phi(A)$. - (8) This follows from Corollary 1.6 and $\Phi(A I) = X [X (A I)]_z = X [(X A) \cup I]_z = X (X A)_z = \Phi(A)$. - (9) This follows from Corollary 1.6 and $\Phi(A \cup I) = X [X (A \cup I)]_* = X [(X A) I]_z = X (X A)_z = \Phi(A)$. - (10) Assume $(A B) \cup (B A) \in \mathcal{I}$. Let A B = I and B A = J. Observe that $I, J \in \mathcal{I}$ by heredity. Also observe that $B = (A I) \cup J$. Thus $\Phi(A) = \Phi(A I) = \Phi[(A I) \cup J] = \Phi(B)$ by (8) and (9). Corollary 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space. Then - 1. $U \subseteq \Phi(U)$ for every cozero set set U. - 2. $U \subseteq Cl_z(\Phi(U))$ for every cozero set set U. - 3. $U \cap A \subseteq Cl_z(\Phi(U \cap A))$ if $A \subseteq Cl_z(\Phi(A))$ and U is a cozero set. *Proof.* (1). We know that $\Phi(U) = X - (X - U)_z$. Now $(X - U)_z \subseteq Cl_z(X - U) = X - U$, since X - U is zero set. Therefore, $U = X - (X - U) \subseteq X - (X - U)_z = \Phi(U)$. - (2). If follows from (1). - (3). Let U be cozero set and $A \subseteq Cl_z(\Phi(A))$. By Theorem 2.2 and (1), we have $$U \cap A \subseteq U \cap Cl_z(\Phi(A))$$ $$\subseteq Cl_z(U \cap \Phi(A))$$ $$\subseteq Cl_z(\Phi(U) \cap \Phi(A))$$ $$= Cl_z(\Phi(U \cap A)).$$ **Theorem 2.4.** Let (X, τ, \mathcal{I}) be an ideal topological space. and $A \subseteq X$. Then the following properties hold: - 1. $\Phi(A) = \bigcup \{U : U \text{ is cozero set and } U A \in \mathcal{I}\}.$ - 2. $\Phi(A) \supseteq \bigcup \{U : U \text{is cozero set and } (U A) \cup (A U) \in \mathcal{I}\}.$ *Proof.* (1) This follows immediately from the definition of Φ -operator. (2) Since \mathcal{I} is heredity, it is obvious that $\cup \{U : U \text{ is cozero set and } (U - A) \cup (A - U) \in \mathcal{I}\} \subseteq \cup \{U : U \text{ is cozero set and } U - A \in \mathcal{I}\} = \Phi(A)$ for every $A \subset X$. **Theorem 2.5.** Let (X, τ, \mathcal{I}) be an ideal topological space. If $\sigma = \{A \subseteq X : A \subseteq \Phi(A)\}$. Then σ is a topology for X and $\sigma = \tau_z^*$. Proof. Let $\sigma = \{A \subseteq X : A \subseteq \Phi(A)\}$. First, we show that σ is a topology. Observe that $\phi \subseteq \Phi(\phi)$ and $X \subseteq \Phi(X) = X$, and thus ϕ and $X \in \sigma$. Now if $A, B \in \sigma$, then $A \cap B \subseteq \Phi(A) \cap \Phi(B) = \Phi(A \cap B)$ which implies that $A \cap B \in \sigma$. If $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \sigma$, then $A_{\alpha} \subseteq \Phi(A_{\alpha}) \subseteq \Phi(\cup A_{\alpha})$ for every α and hence $\cup A_{\alpha} \subseteq \Phi(\cup A_{\alpha})$. This shows that σ is a topology. Now if $U \in \tau_z^*$ and $x \in U$, then by Theorem 1.8 there exist a cozero set V containing X and $I \in \mathcal{I}$ such that $X \in V - I \subseteq U$. Clearly $V - U \subseteq I$ so that $V - U \in \mathcal{I}$ by heredity and hence $x \in \Phi(U)$. Thus $U \subseteq \Phi(U)$ and we have shown $\tau_z^* \subseteq \sigma$. Now let $A \in \sigma$, then we have $A \subseteq \Phi(A)$, that is, $A \subseteq X - (X - A)_z$ and $(X - A)_z \subseteq X - A$. This shows that X - A is τ_z^* -closed and hence $A \in \tau_z^*$. Thus $\sigma \subseteq \tau_z^*$ and hence $\sigma = \tau_z^*$. **Definition 2.6.** [1] Let (X, τ, \mathcal{I}) be an ideal topological space. We say τ is z-compatible with the ideal \mathcal{I} , denoted $\tau \sim_z \mathcal{I}$, if the following holds for every $A \subseteq X$: For every $x \in A$ and cozero set U with $x \in U$ and $U \cap A \in \mathcal{I}$, $A \in \mathcal{I}$. **Theorem 2.7.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim_z \mathcal{I}$ if and only if $\Phi(A) - A \in \mathcal{I}$ for every $A \subseteq X$. Proof. Necessity. Assume $\tau \sim_z \mathcal{I}$ and let $A \subseteq X$. Observe that $x \in \Phi(A) - A \in \mathcal{I}$ if and only if $x \notin A$ and $x \notin (X - A)_z$ if and only if $x \notin A$ and there exists a cozero set U_x containing x such that $U_x - A \in \mathcal{I}$. Now, for each $x \in \Phi(A) - A$ and a cozero set U_x containing x, $U_x \cap (\Phi(A) - A) \in \mathcal{I}$ by heredity and hence $\Phi(A) - A \in \mathcal{I}$ by assumption that $\tau \sim_z \mathcal{I}$. Sufficiency. Let $A \subseteq X$ and assume that for each $x \in A$ there exists a cozero set U_x containing x such that $U_x \cap A \in \mathcal{I}$. Observe that $\Phi(X - A) - (X - A) = \{x : \text{there exists a cozero set } U_x \text{ containing } x \text{ such that } x \in U_x \cap A \in \mathcal{I}\}$. Thus we have $A \subseteq \Phi(X - A) - (X - A) \in \mathcal{I}$ and hence $A \in \mathcal{I}$ by heredity of \mathcal{I} . Hence $\tau \sim_z \mathcal{I}$. **Proposition 2.8.** Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_z \mathcal{I}$, $A \subseteq X$. If N is a nonempty cozero subset of $A_z \cap \Phi(A)$, then $N - A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$. *Proof.* If $N \subseteq A_z \cap \Phi(A)$, then $N - A \subseteq \Phi(A) - A \in \mathcal{I}$ by Theorem 2.7 and hence $N - A \in \mathcal{I}$ by heredity. Since $N \in \mathcal{CZ} - \{\phi\}$ and $N \subseteq A_z$, we have $N \cap A \notin \mathcal{I}$ by the definition of A_z . As a consequence of the above theorem, we have the following. Corollary 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_z \mathcal{I}$. Then $\Phi(\Phi(A)) = \Phi(A)$ for every $A \subseteq X$. *Proof.* $\Phi(A) \subseteq \Phi(\Phi(A))$ follows from Theorem 2.2 (5). Since $\tau \sim_z \mathcal{I}$, it follows from Theorem 2.7 that $\Phi(A) \subseteq A \cup I$ for some $I \in \mathcal{I}$ and hence $\Phi(\Phi(A)) = \Phi(A)$ by Theorem 2.2 (10). **Theorem 2.10.** Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_z \mathcal{I}$. Then $\Phi(A) = \bigcup \{\Phi(U) : U \text{ is a cozero set and } \Phi(U) - A \in \mathcal{I}\}.$ Proof. Let $\Psi(A) = \bigcup \{\Phi(U) : U \text{ is a cozero set and } \Phi(U) - A \in \mathcal{I}\}$. Clearly, $\Psi(A) \subseteq \Phi(A)$. Now let $x \in \Phi(A)$. Then there exists a cozero set U containing x such that $U - A \in \mathcal{I}$. By Corollary 2.3, $U \subseteq \Phi(U)$ and $\Phi(U) - A \subseteq [\Phi(U) - U] \cup [U - A]$. By Theorem 2.7, $\Phi(U) - U \in \mathcal{I}$ and hence $\Phi(U) - A \in \mathcal{I}$. Hence $X \in \Psi(A)$ and $\Psi(A) \supseteq \Phi(A)$. Consequently, we obtain $\Psi(A) = \Phi(A)$. In [8], Newcomb defines $A = B \pmod{\mathcal{I}}$ if $(A - B) \cup (B - A) \in \mathcal{I}$ and observes that $= [\mod{\mathcal{I}}]$ is an equivalence relation. By Theorem 2.2 (11), we have that if $A = B \pmod{\mathcal{I}}$, then $\Phi(A) = \Phi(B)$. **Definition 2.11.** Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called a z-Baire set with respect to τ and \mathcal{I} , denoted $A \in \mathcal{B}_z(X, \tau, \mathcal{I})$, if there exists a cozero set U such that $A = U \text{ [mod } \mathcal{I}]$. **Lemma 2.12.** Let (X, τ, \mathcal{I}) be an ideal topological space. with $\tau \sim_z \mathcal{I}$. If U, V are cozero set and $\Phi(U) = \Phi(V)$, then $U = V \text{ [mod } \mathcal{I}\text{]}$. *Proof.* Since U is a cozero set, we have $U \subseteq \Phi(U)$ and hence $U - V \subseteq \Phi(U) - V = \Phi(V) - V \in \mathcal{I}$ by Theorem 2.7. Similarly $V - U \in \mathcal{I}$. Now $(U - V) \cup (V - U) \in \mathcal{I}$ by additivity. Hence $U = V \text{ [mod } \mathcal{I}]$. **Theorem 2.13.** Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_z \mathcal{I}$. If $A, B \in \mathcal{B}_z(X, \tau, \mathcal{I})$ and $\Phi(A) = \Phi(B)$, then $A = B \text{ [mod } \mathcal{I}]$. *Proof.* Let U, V be a cozero set such that $A = U \pmod{\mathcal{I}}$ and $B = V \pmod{\mathcal{I}}$. Now $\Phi(A) = \Phi(U)$ and $\Phi(B) = \Phi(V)$ by Theorem 2.2(11). Since $\Phi(A) = \Phi(U)$ implies that $\Phi(U) = \Phi(V)$ and hence $U = V \pmod{\mathcal{I}}$ by Lemma 2.12. Hence $A = B \pmod{\mathcal{I}}$ by transitivity. **Proposition 2.14.** Let (X, τ, \mathcal{I}) be an ideal topological space. - 1. If $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) \mathcal{I}$, then there exists a nonempty cozero set A such that $B = A \text{ [mod } \mathcal{I}]$. - 2. If $\mathcal{CZ} \cap \mathcal{I} = \phi$, then $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) \mathcal{I}$ if and only if there exists a nonempty cozero set A such that $B = A \text{ [mod } \mathcal{I}\text{]}$. *Proof.* (1) Assume $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I}$, then $B \in \mathcal{B}_z(X, \tau, \mathcal{I})$. Now if there does not exist a nonempty cozero set A such that $B = A \text{ [mod } \mathcal{I}]$, we have $B = \phi \text{ [mod } \mathcal{I}]$. This implies that $B \in \mathcal{I}$ which is a contradiction. (2) Assume there exists a nonempty cozero set A such that $B = A \pmod{\mathcal{I}}$. Then $A = (B - J) \cup I$, where J = B - A, $I = A - B \in \mathcal{I}$. If $B \in \mathcal{I}$, then $A \in \mathcal{I}$ by heredity and additivity, which contradicts that $\mathcal{CZ} \cap \mathcal{I} = \phi$. **Proposition 2.15.** Let (X, τ, \mathcal{I}) be an ideal topological space with $\mathcal{CZ} \cap \mathcal{I} = \phi$. If $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I}$, then $\Phi(B) \cap Int_z(B_z) \neq \phi$. *Proof.* Assume $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I}$, then by Proposition 2.14(1), there exists a nonempty cozero set A such that $B = A \pmod{\mathcal{I}}$. This implies that $\phi \neq A \subseteq A_z = ((B-J) \cup I)_z = B_z$, where J = B - A, $I = A - B \in \mathcal{I}$ by Theorem 1.9 and Corollary 1.6. Also $\phi \neq A \subseteq \Phi(A) = \Phi(B)$ by Theorem 2.2 (11), so that $A \subseteq \Phi(B) \cap Int_z(B_z)$. Given an ideal topological space (X, τ, \mathcal{I}) , let $\mathcal{Z}(X, \tau, \mathcal{I})$ denote $\{A \subseteq X : \text{there exists } B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I} \text{ such that } B \subseteq A\}$. **Proposition 2.16.** Let (X, τ, \mathcal{I}) be an ideal topological space with $\mathcal{CZ} \cap \mathcal{I} = \phi$. The following properties are equivalent: - 1. $A \in \mathcal{Z}(X, \tau, \mathcal{I});$ - 2. $\Phi(A) \cap Int_z(A_z) \neq \phi$; - 3. $\Phi(A) \cap A_z \neq \phi$; - 4. $\Phi(A) \neq \phi$; - 5. $Int_z(A) \neq \phi$; - 6. There exists a nonempty cozero set N such that $N-A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$. *Proof.* (1) \Rightarrow (2): Let $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A$. Then $Int_z(B_z) \subseteq Int_z(A_z)$ and $\Phi(B) \subseteq \Phi(A)$ and hence $Int_z(B_z) \cap \Phi(B) \subseteq Int_z(A_z) \cap \Phi(A)$. By Proposition 2.15, we have $\Phi(A) \cap Int_z(A_z) \neq \phi$. - $(2) \Rightarrow (3)$: The proof is obvious. - $(3) \Rightarrow (4)$: The proof is obvious. - $(4) \Rightarrow (5)$: If $\Phi(A) \neq \phi$, then there exists a nonempty cozero set U such that $U A \in \mathcal{I}$. Since $U \notin \mathcal{I}$ and $U = (U A) \cup (U \cap A)$, we have $U \cap A \notin \mathcal{I}$. By Theorem 2.2, $\phi \neq (U \cap A) \subseteq \Phi(U) \cap A = \Phi((U A) \cup (U \cap A)) \cap A = \Phi(U \cap A) \cap A \subseteq \Phi(A) \cap A = Int_z(A)$. Hence $Int_z(A) \neq \phi$. - (5) \Rightarrow (6): If $Int_z(A) \neq \phi$, then by Theorem 1.8 there exists a nonempty cozero set N and $I \in \mathcal{I}$ such that $\phi \neq N I \subseteq A$. We have $N A \in \mathcal{I}$, $N = (N A) \cup (N \cap A)$ and $N \notin \mathcal{I}$. This implies that $N \cap A \notin \mathcal{I}$. - (6) \Rightarrow (1): Let $B = N \cap A \notin \mathcal{I}$ with a nonempty cozero set N and $N A \in \mathcal{I}$. Then $B \in \mathcal{B}_z(X, \tau, \mathcal{I}) - \mathcal{I}$ since $B \notin \mathcal{I}$ and $(B - N) \cup (N - B) = N - A \in \mathcal{I}$. **Theorem 2.17.** Let (X, τ, \mathcal{I}) be an ideal topological space, where $\mathcal{CZ} \cap \mathcal{I} = \phi$. Then for $A \subseteq X$, $\Phi(A) \subseteq A_z$. Proof. Suppose $x \in \Phi(A)$ and $x \notin A_z$. Then there exists a cozero set U_x containing x such that $U_x \cap A \in \mathcal{I}$. Since $x \in \Phi(A)$, by Theorem 2.4 $x \in \bigcup \{U : U \text{ is a cozero set and } U - A \in \mathcal{I}\}$ and there exists a cozero set V such that $x \in V$ and $V - A \in \mathcal{I}$. Now we have $U_x \cap V$ is a cozero set, $U_x \cap V \cap A \in \mathcal{I}$ and $(U_x \cap V) - A \in \mathcal{I}$ by heredity. Hence by finite additivity we have $(U_x \cap V \cap A) \cup (U_x \cap V - A) = (U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V)$ is a cozero set, this is contrary to $\mathcal{CZ} \cap \mathcal{I} = \phi$. Therefore, $x \in A_z$. This implies that $\Phi(A) \subseteq A_z$. Corollary 2.18. Let (X, τ, \mathcal{I}) be an ideal topological space, where $\mathcal{CZ} \cap \mathcal{I} = \phi$. Then for $A \subseteq X$, $\Phi(A) \subseteq Cl_z(A_z)$. **Theorem 2.19.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent: - 1. $\mathcal{CZ} \cap \mathcal{I} = \phi$; - 2. $\Phi(\phi) = \phi$; - 3. If $A \subseteq X$ is zero set, then $\Phi(A) A = \phi$; - 4. If $I \in \mathcal{I}$, then $\Phi(I) = \phi$. *Proof.* (1) \Rightarrow (2) Since $\mathcal{CZ} \cap \mathcal{I} = \phi$, by Theorem 2.4 we have $\Phi(\phi) = \bigcup \{U : U \text{ is cozero set and } U \in \mathcal{I}\} = \phi$. - (2) \Rightarrow (3) Suppose $x \in \Phi(A) A$, then there exists a cozero set U_x containing x such that $x \in U_x A \in \mathcal{I}$ and $U_x A \in \mathcal{CZ}$. But $U_x A \in \{U \in \mathcal{CZ} : U \in \mathcal{I}\} = \Phi(\phi)$ which implies that $\Phi(\phi) \neq \phi$. Hence $\Phi(A) A = \phi$. - (3) \Rightarrow (4) Let $I \in \mathcal{I}$ and since ϕ is zero set, then $\Phi(I) = \Phi(I \cup \phi) = \Phi(\phi) = \phi$. - (4) \Rightarrow (1) Suppose $A \in \mathcal{CZ} \cap \mathcal{I}$, then $A \in \mathcal{I}$ and by (4) $\Phi(A) = \phi$. Since $A \in \mathcal{CZ}$, by Corollary 2.3 we have $A \subseteq \Phi(A) = \phi$. Hence $\mathcal{CZ} \cap \mathcal{I} = \phi$. **Definition 2.20.** A subset A in an ideal topological space (X, τ, \mathcal{I}) is said to be z-dense if $A_z = X$. The collection of all z-dense in (X, τ, \mathcal{I}) is denoted by z- $D(X, \tau)$. The collection of all dense sets in (X, τ) is denoted by $D(X, \tau)$. Now we show that the collection of dense sets in a topological space (X, τ_z^*) and the collection of z-dense sets in ideal topological space (X, τ, \mathcal{I}) are equal if $\mathcal{CZ} \cap \mathcal{I} = \phi$. **Theorem 2.21.** Let (X, τ, \mathcal{I}) be an ideal topological space. If $\mathcal{CZ} \cap \mathcal{I} = \phi$, then $z\text{-}D(X, \tau) = D(X, \tau_z^*)$. *Proof.* Let $D \in z\text{-}D(X,\tau)$. Then $Cl_z(D) = D \cup D_z = X$, i.e. $D \in D(X,\tau_z^*)$. Therefore, $z\text{-}D(X,\tau) \subseteq D(X,\tau_z^*)$. Conversely, let $D \in D(X, \tau_z^*)$. Then $Cl_z(D) = D \cup D_z = X$. We prove that $D_z = X$. Let $x \in X$ such that $x \notin D_z$. Therefore there exists a cozero set $U \neq \phi$ such that $U \cap D \in \mathcal{I}$. Since $U \notin \mathcal{I}$, $U \cap (X - D) \notin \mathcal{I}$ and hence $U \cap (X - D) \neq \phi$. Let $x_0 \in U \cap (X - D)$. Then $x_0 \notin D$ and also $x_0 \notin D_z$. Because $x_0 \in D_z$ implies that $U \cap D \notin \mathcal{I}$ which is contrary to $U \cap D \in \mathcal{I}$. Thus $x_0 \notin D \cup D_z = Cl_z(D) = X$. This is a contradiction. Therefore, we obtain $D \in z$ - $D(X, \tau)$. Therefore, $D(X, \tau_z^*) \subseteq z$ - $D(X, \tau)$. Hence z- $D(X, \tau) = D(X, \tau_z^*)$. **Theorem 2.22.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then for $x \in X$, $X - \{x\}$ is z-dense if and only if $\Phi(\{x\}) = \phi$. *Proof.* The proof follows from the definition of z-dense sets, since $\Phi(\{x\}) = X - (X - \{x\})_z = \phi$ if and only if $X = (X - \{x\})_z$. **Proposition 2.23.** Let (X, τ, \mathcal{I}) be an ideal topological space. with $\mathcal{CZ} \cap \mathcal{I} = \phi$. Then $\Phi(A) \neq \phi$ if and only if A contains a nonempty τ_z^* -interior. Proof. Let $\Phi(A) \neq \phi$. By Theorem 2.4 (1), $\Phi(A) = \bigcup \{U : U \text{ is cozero set and } U - A \in \mathcal{I} \}$ and there exists a nonempty set a cozero set U such that $U - A \in \mathcal{I}$. Let U - A = P, where $P \in \mathcal{I}$. Now $U - P \subseteq A$. By Theorem 1.8, $U - P \in \tau_z^*$ and A contains a nonempty τ_z^* -interior. Conversely, suppose that A contains a nonempty τ_z^* -interior. Hence there exists a cozero set U and $P \in \mathcal{I}$ such that $U - P \subseteq A$. So $U - A \subseteq P$. Let $H = U - A \subseteq P$, then $H \in \mathcal{I}$. Hence $\cup \{U : U \text{ is cozero set and } U - A \in \mathcal{I}\} = \Phi(A) \neq \phi$. **Proposition 2.24.** Let (X, τ, \mathcal{I}) be an ideal topological space. Let $x \in X$. Then $\{x\} \subseteq Cl_z(\Phi(\{x\}))$ if and only if $\{x\}$ is τ_z^* -open in X. *Proof.* Let $\{x\} \subseteq Cl_z(\Phi(\{x\}))$ then $\Phi(\{x\} \neq \emptyset)$. By Proposition 2.23, $\{x\}$ contains a nonempty τ_z^* -interior. Therefore $\{x\}$ is τ_z^* -open in X. Conversely suppose that $\{x\}$ is τ_z^* -open in X, implies that by Theorem 2.2 $\{x\} \subseteq \Phi(\{x\})$ and hence $\{x\} \subseteq Cl_z(\Phi(\{x\}))$. ### References - [1] A. Al-Omari, On ideal topological spaces via cozero sets, Questions and Answers in General Topology 34 (2) (2016), 83–91. - [2] S. Bayhan and I. L. Reilly, On some variants of compactness, Hacettepe Journal of Mathematics and Statistics 43 (6) (2014), 891–898. - [3] S. Bayhan, A. Kanibir, A. McCluskey, and I. L. Reilly, On almost z-supercontinuity, Filomat 27(6) (2013), 965-969. - [4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310. - [5] T. R. Hamlett and D. Jankovic, Ideals in topology spaces and the set operator Φ, Boll. Un. Mat. Ital. (7), 4-B (1990), 863-874. - [6] J. K. Kohli, D. Singh and R. Kumar, Generalizations of z-supercontinuous functions and D_{δ} -supercontinuous functions, Appl. Gen. Topology 9 (2008), 239-251. - [7] K. Kuratowski, Topology I, Warszawa, 1933. - [8] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967. - [9] O. Njåstad, Remark on topologies defined by local properties, Avh. Norske Vid. Akad. Oslo I(N. S), 8 (1966), 1-16. - [10] M. K. Singal and S. B. Niemse, z-continuous mappings, Math. Student 66 (1997), 193-210. - [11] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960. Ahmad Al-Omari Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan email: omarimutah1@yahoo.com