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Abstract. Inspired by the work of Srivastava and Patel [Applications of differen-
tial subordination to certain subclasses of meromorphically multivalent functions,
J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 88, 15 pp.], in the present
manuscript, using the principle of differential subordination, certain interesting re-
sults such as subordination properties, coefficient estimates, radius constants and
inclusion relationship are discussed. Also the relevant connections of the various
results presented in this manuscript with those obtained in earlier works have been
pointed out.
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1. Introduction

Let Σm,p denote the set of all analytic and p−valent functions of the form

f(z) = z−p +

∞∑
k=m

akz
k (m > −p, p ∈ N) (1)

in the punctured unit disk U∗ := {z : z ∈ C and 0 < |z| < 1}. We define the
Hadamard product of functions f , given by (1), and g given by

g(z) = z−p +
∞∑
k=m

bkz
k,

by

(f ∗ g)(z) = z−p +

∞∑
k=m

akbkz
k.
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For a function f ∈ Σm,p, given by (1) and φ defined by

φ(z) = z−p +
∞∑
k=m

(
1

k + p+ 1

)α
zk (α ∈ R),

we define the differential operator Tα,nm,p(λ, µ) by the following way:

Tα,0m,p(λ, µ) = f(z) ∗ φ(z),

Tα,1m,p(λ, µ) = λµ
(zp+1f(z) ∗ φ(z))′′

zp−1
+(λ−µ)

(zp+1f(z) ∗ φ(z))′

zp
+(1−λ+µ)(f(z)∗φ(z)) (2)

and in general

Tα,nm,p(λ, µ)f(z) = Tα,1m,p(λ, µ)(Tα,n−1m,p (λ, µ)f(z)), (3)

where 0 ≤ µ ≤ λ and m ∈ N0 = N ∪ {0}. From (2) and (3), it can be verified that

Tα,nm,p(λ, µ)f(z) = z−p +
∞∑
k=m

Φk(λ, µ, n, α, p)akz
k, (4)

where

Φk(λ, µ, n, α, p) =
[1 + (k + p)(λ− µ+ λµ(k + p+ 1))]n

[k + p+ 1]α
. (5)

From (4) it is clear that the operator Tα,nm,p(λ, µ), by means of convolution, can be
written as

Tα,nm,p(λ, µ)f(z) = (f ∗ h)(z),

where

h(z) = z−p +
∞∑
k=m

Φk(λ, µ, n, α, p)z
k. (6)

1. For α = 0, the operator Tα,nm,p(λ, µ) defined (4) is the operator Dn
λµp defined by

Orhan et al.[9].

2. The operator Tα,0m,p(λ, µ) is the one parameter family of integral operator

Pαp (z) =
1

zp+1Γα

∫ z

0

(
log

z

t

)α−1
tα−1f(t)dt

= z−p +
∞∑
k=m

(
1

k + p+ 1

)α
zk

introduced by Aqlan [3] (see also [2]).
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3. The differential operator T 0,n
m,p(1, 0) = Dn was introduced and studied by Sri-

vatava and Patel [10].

4. For m = 0, λ = 1, µ = 0 and α = 0 the operator T 0,n
0,p (1, 0) was introduce by

Liu and Srivastava [4].

5. For p = 1,m = 0, α = 0, λ = 1, µ = 0 the operator T 0,n
0,1 (1, 0) was considered

earlier by Uralegaddi and Somamatha [11].

6. A special case of the operator Tα,nm,p(λ, µ), when m = 0, α = 0, λ = 1, µ = 0, p ∈
N was considered by Aouf and Hossen [1].

The recent paper of Mostafa and Aouf [8] and that of Noor and Riaz [?] are also a
useful reference in this direction.

From the definition of Tα,nm,p(λ, µ)f(z) it can be easily verified that

λz(Tα,nm,p(λ, µ)f(z))′ = Tα−1,nm,p (λ, µ)f(z)− (p+ 1)Tα,nm,p(λ, µ)f(z) (7)

µz(Tα,nm,p(0, µ)f(z))′ = Tα,n+1
m,p (0, µ)f(z) (8)

λz(Tα,nm,p(λ, 0)f(z))′ = Tα,n+1
m,p (λ, 0)f(z)− (λp+ 1)Tα,nm,p(λ, 0)f(z) (9)

Definition 1.1. Let Σα,λ,µ,n
m,p (A,B) be the class of functions f ∈ Σp,m which satisfy

the following differential subordination:

− zp+1(Tα,nm,p(λ, µ)f(z))′

p
≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1, z ∈ U) (10)

In view of the differential subordination (10) can be written as∣∣∣∣zp+1(Tα,nm,p(λ, µ)f(z))′ + p

B(Tα,nm,p(λ, µ)f(z))′ + pA

∣∣∣∣ < 1 (z ∈ U). (11)

For convenience, let Σα,λ,µ,n
m,p (1− 2η/p,−1) =: Σα,λ,µ,n

m,p (η) (0 ≤ η < p).

Definition 1.2. Let Σα,λ,µ,n
m,p (η) be the class of functions f ∈ Σp,m satisfying

−Re(Tα,nm,p(λ, µ)f(z)) > η.

Let Σ0,p =: Σp and Σα,λ,µ,n
0,p (A,B) =: Σα,λ,µ,n

p (A,B).

The following existing results: Let P (γ) be the class of functions p(z) of the form
p(z) = 1 + b1z + b2z

2 + b3z
3 + · · · , which are analytic in U and satisfy Re(p(z)) >

γ, (0 ≤ γ < 1, z ∈ U).
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Lemma 1.3. [6, 7] Let the function h(z) be analytic and convex (univalent) in U
with h(0) = 1. Suppose also that the function p given by

p(z) = 1 + cp+mz
p+m + cp+m+1z

p+m+1 + · · · (12)

is analytic in U. If

p(z) +
zp′(z)

γ
≺ h(z) (Re(γ) ≥ 0, γ 6= 0, z ∈ U), (13)

then

p(z) ≺ q(z) =
γ

p+m
z
− γ
p+m

∫ z

0
t
− γ
p+mh(t)dt

and q(z) is the best dominant of (13).

For real or complex number a, b and c (c 6= 0,−1,−2,−3, · · · ), the Gauss hyper-
geometric function [12] is defined by

2F1(a, b; c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .

Lemma 1.4. [12] For real or complex parameters a, b and c (c 6= 0,−1,−2,−3, · · · ),∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt =

Γ(b)Γ(c− b)
Γ(c)

2F1(a, b; c; z) (Re(c) > Re(b) > 0);

(14)

2F1(a, b; c; z) = (1− z)−a 2F1(a, c− b; c;
z

1− z
) (15)

(b+ 1) 2F1(1, b; b+ 1; z) = (b+ 1) + bz 2F1(1, b+ 1; b+ 2; z) (16)

and

2F1(a, b; c; z) = 2F1(b, a; c; z). (17)

2. Main Results

Note that throughout this section, unless otherwise mentioned specifically, the pa-
rameters A,B, P, λ, δ and γ are constrained as follows:

−1 ≤ B < A ≤ 1, n, p ∈ N, α ∈ R, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ λ,≤ δ ≤ 1 and 0 ≤ η < p.
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Theorem 2.1. Let γ = 1+p(1−λ)
δλ and the function f given by (1) satisfy the follow-

ing differential subordination

−z
p+1((1− δ)(1 + p(1− λ))[Tα,nm,p(λ, µ)f(z)]′ + δ[Tα−1,nm,p (λ, µ)f(z)]′)

p
≺ 1 +Az

1 +Bz
,

then

− zp+1(Tα,nm,p(λ, µ)f(z))′

p
≺ Q∗(z) ≺ 1 +Az

1 +Bz
, (18)

where

Q∗(z) =

{
A
B + (1− A

B )(1 +Bz)−1 2F1(1, 1; γ
p+m + 1; Bz

1+Bz ), B 6= 0;

1 +
(

γ
p+m+γ

)
Az, B=0

is the best dominant of (18). Furthermore

− Re

(
zp+1(Tα,nm,p(λ, µ)f(z))′

p

)
> ρ, (19)

where

ρ =

{
A
B + (1− A

B )(1−B)−1 2F1(1, 1; γ
p+m + 1; B

B−1), B 6= 0;

1− γA
p+m+γ , B=0.

The inequality in (19) is the best possible.

Proof. Define the function ϕ by

ϕ(z) = −z
p+1(Tα,nm,p(λ, µ)f(z))′

p
. (20)

Then it can be easily seen that ϕ(z) is of the form (12) and is analytic in U. Using
the identity (7) in (20) and differentiating, we obtain

− 1

1 + p(1− λ)

zp+1

p
(Tα−1,nm,p (λ, µ)f(z))′ = ϕ(z) +

λ

1 + p(1− λ)
zϕ′(z). (21)

From (20) and (21), we have

− zp+1((1− δ)(1 + p(1− λ))[Tα,nm,p(λ, µ)f(z)]′ + δ[Tα−1,nm,p (λ, µ)f(z)]′)

p

= ϕ(z) +
δλzϕ′(z)

1 + p(1− λ)
≺ 1 +Az

1 +Bz
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Using Lemma 1.3 for γ = (1 + p(1 − λ))/(δλ) accompanied by change of variables
and using identities (14), (15), (16) and (17), we deduce that

− zp+1(Tα,nm,p(λ, µ)f(z))′

p
≺ Q∗(z)

=
γ

p+m
z
− γ
p+m

∫ z

0
t

γ
p+m

−1
(

1 +At

1 +Bt

)
dt

=

{
A
B + (1− A

B )(1 +Bz)−1 2F1(1, 1; γ
p+m + 1; Bz

1+Bz ), B 6= 0;

1 +
(

γ
p+m+γ

)
Az, B=0

This completes the proof of the claim (18). The assertion (19) follows from (18)
which can be seen as follows. To prove the assertion (19) is sharp, it is sufficient to
prove that

inf
|z|<1
{Re(Q∗(z))} = Q∗(−1).

It is known that for |z| ≤ r < 1,

Re

(
1 +Az

1 +Bz

)
≥ 1−Ar

1−Br
(|z| ≤ r < 1).

Setting g(s, z) = 1+Asz
1+Bsz and dν(s) = γ

p+m t
γ

p+m
−1
ds (0 ≤ s ≤ 1), with positive

measure on the closed interval [0, 1], we have

Q∗(z) =

∫ 1

0
g(s, z)dν(s),

therefore

Q∗(z) =

∫ 1

0
g(s, z)dν(s)

Re(Q∗(z)) ≥
∫ 1

0

1−Asr
1−Bsr

dν(s) = Q∗(−r) (|z| ≤ r < 1). (22)

The assertion (19) follows from inequality (22) by letting r → 1−. The result is the
best possible because Q∗(z) is the best dominant of (18). Setting δ = 1 and m = 0,
we deduce the following inclusion property from Theorem 2.1:

Corollary 2.2. Let f ∈ Σp. Then

Σα−1,λ,µ,n
p (A,B) ⊂ Σα,λ,µ,n

p (1− 2%,−1) ⊂ Σα,λ,µ,n
p (A,B),
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where

% =
A

B
+

(
1− A

B

)
(1−B)−1 2F1

(
1, 1;

γ

p
+ 1;

B

B − 1

)
and γ = 1+p(1−λ)

λ . The result is best possible.

Remark 2.3. Corollary 2.2 generalizes the result [10, Corollary 1]. In fact when
λ = 1, µ = 0 and α = 0, the above Corollary 2.2 reduces to the result [10, Corollary
1] proved by Srivastava and Patel.

Theorem 2.4. Let 0 ≤ η < p and f ∈ Σα,λ,µ,n
p (η), then

− Re[zp+1((1− δ)[Tα,nm,p(λ, µ)f(z)]′ + δ[Tα−1,nm,p (λ, µ)f(z)]′)]

> η[δ(1 + p(1− λ)) + (1− δ)] (|z| < R),

where

R =

(√
λ2δ2(p+m)2 + [δ(1 + p(1− λ)) + (1− δ)]2 − λδ(p+m)

δ(1 + p(1− λ)) + (1− δ)

) 1
p+m

. (23)

The result is best possible.

Proof. Let
− zp+m(Tα,nm,p(λ, µ)f(z))′ = η + (p− η)u(z). (24)

Then u(z) is of the form (12) and has positive real part in the unit disk U. Using
the identity (14) in (24) and differentiating, we have

−zp+m(Tα−1,nm,p (λ, µ)f(z))′ = η[p(1−η)+1]+(p−η)[p(1−η)+1]u(z)+(p−η)zu′(z). (25)

From (24) and (25), we have

−
[zp+1((1− δ)[Tα,nm,p(λ, µ)f(z)]

′ + δ[Tα−1,n
m,p (λ, µ)f(z)]′)] + η[(1− δ)(1 + p(1− λ)) + δ]

[δ(1 + p(1− λ)) + (1− δ)](p− η)

= u(z) +
zu′(z)

δ(1 + p(1− λ)) + (1− δ)
(26)

It is well known that [5]:

|zu′(z)|
Re{u(z)}

≤ 2(p+m)rp+m

1− r2(p+m)
(|z| = r < 1),

using this in (26), we get

− Re

{
[zp+1((1− δ)[Tα,nm,p(λ, µ)f(z)]

′ + δ[Tα−1,n
m,p (λ, µ)f(z)]′)] + η[δ(1 + p(1− λ)) + (1− δ)]

[δ(1 + p(1− λ)) + (1− δ)](p− η)

}
≥ Re(u(z))

(
1− (p+m)rp+m

(1− r2(p+m))[δ(1 + p(1− λ)) + (1− δ)]

)
. (27)
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It is easy to see that the right hand side of (27) is positive if r < R, where R is given
by (23). We now show that the value of R is best possible for that let us consider
the function defined by

−zp+m(Tα,nm,p(λ, µ)f(z))′ = η + (p− η)
1 + zp+m

1− zp+m
.

Note that

− [zp+1((1− δ)[Tα,nm,p(λ, µ)f(z)]′ + δ[Tα−1,nm,p (λ, µ)f(z)]′)] + η[δ(1 + p(1− λ)) + (1− δ)]
[δ(1 + p(1− λ)) + (1− δ)](p− η)

=
[δ(1 + p(1− λ)) + (1− δ)]− [δ(1 + p(1− λ)) + (1− δ)]z2(p+m)

[(1− δ)(1 + p(1− λ)) + δ](1− z)2(p+m)
= 0,

for z = R. exp{ iπ
p+m}. The proof is complete at this juncture.

Remark 2.5. Theorem 2.4 generalizes [10, Theorem 2]. In fact when λ = 1, µ = 0
and α = 0, the above Theorem 2.4 reduces to the result [10, Theorem 2] proved by
Srivastava and Patel.

Theorem 2.6. A function f ∈ Σp,m of the form (1) is in the class Σα,λ,µ,n
m,p (A,B) if

and only if
∞∑
k=m

ϕk(λ, µ, n, α, p)|ak| ≤
p(A−B)

(1−B)
, (28)

where ϕk(λ, µ, n, p) is as defined in (5).

Proof. Let the inequality (28) holds true. Then, for z ∈ ∂U : {z : z ∈ C and |z| < 1} ,
from (1) and (28), we deduce that∣∣∣∣ zP+1(Tα,nm,p(λ, µ)f(z))′

B(Tα,nm,p(λ, µ)f(z))′ + pA

∣∣∣∣ ≤ ∑∞
k=m ϕk(λ, µ, n, α, p)k|ak|

p(A−B) +B
∑∞

k=0 ϕk(λ, µ, n, α, p)k|ak|
< 1.

An application of maximum modulus theorem completes the proof of the sufficient
condition. Conversely suppose f be given by (1) and that Σα,λ,µ,n

m,p (A,B). Then from
(1) and (11), we have∣∣∣∣ zP+1(Tα,nm,p(λ, µ)f(z))′

B(Tα,nm,p(λ, µ)f(z))′ + pA

∣∣∣∣ ≤ ∣∣∣∣ ∑∞
k=m ϕk(λ, µ, n, α, p)k|akzk+p

p(A−B) +B
∑∞

k=0 ϕk(λ, µ, n, α, p)kakz
k+p

∣∣∣∣
< 1.
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Since Re(z) ≤ z, z ∈ C, it follows that

Re

{ ∑∞
k=m ϕk(λ, µ, n, α, p)kakz

k+p

p(A−B) +B
∑∞

k=0 ϕk(λ, µ, n, α, p)kakz
k+p

}
< 1. (29)

Letting z → 1− through the real axis in the above inequality (29) we have the
inequality (28).

From the above Theorem 2.6, we deduce the following result:

Corollary 2.7. If the function f ∈ Σp,m given by (1) is in the class Σα,λ,µ,n
m,p (A,B),

then

|ak| ≤
p(A−B)

(1−B)ϕk(λ, µ, n, α, p)
(k > −p).

The result is sharp for the function defined by

f(z) = z−p +
p(A−B)

(1−B)ϕk(λ, µ, n, α, p)
zk

For the function f ∈ Σp,m given by (1), the integral operator

Fc,p : Σp,m → Σp,m

is defined by

Fc,p(z) =
c

zc+p

∫ z

0
tc+p−1f(t)dt (30)

= z−p +

∞∑
k=m

(
c

k + p+ c

)
akz

k, c > 0. (31)

From (31) it is clear that Fc,p ∈ Σp,m. From (30), after a simple computation, we
obtain that

λz(Fc,p(f)(z))′ = cf(z)− (c+ p)Fc,p(f)(z). (32)

Taking convolution with h(z) = z−p +
∑∞

k=m ϕk(λ, µ, n, α, p)z
k, given by (6), on

both sides of (32) and using the fact that (f ∗ g)′(z) = f(z) ∗ zg′(z), it is easy to
verify that

λz(Tα,nm,p(λ, µ)Fc,p(f)(z))′ = cTα,nm,p(λ, µ)f(z)− (c+ p)Tα,nm,p(λ, µ)Fc,p(f)(z) (33)

Theorem 2.8. Let the function f given by (1) is in the class Σα,λ,µ,n
m,p (A,B) and

the function Fc,p be defined by (30). Then

− zp+m(Tα,nm,p(λ, µ)Fc,p(f)(z))′

p
≺ Q∗(z) ≺ 1 +Az

1 +Bz
, (34)
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where

Q∗(z) =

{
A
B + (1− A

B )(1 +Bz)−1 2F1(1, 1; c
p+m + 1; Bz

1+Bz ), B 6= 0;

1 +
(

Ac
p+m+c

)
Az, B=0

is the best dominant of (34). Furthermore

− Re

{
zp+1(Tα,nm,p(λ, µ)Fc,p(f)(z))′

p

}
> ρ, (35)

where

ρ =

{
A
B + (1− A

B )(1−B)−1 2F1(1, 1; c
p+m + 1; B

B−1), B 6= 0;

1− cA
p+m+c , B=0.

The value of ρ in inequality (35) is the best possible.

Proof. Define the function ϕ by

ϕ(z) = −z
p+1(Tα,nm,p(λ, µ)Fc,p(f)(z))′

p
, (36)

then ϕ(z) is analytic in U. Using the identity (33) in (36) and then differentiation
once, we have

− zp+1(Tα,nm,p(λ, µ)(f)(z))′

p
= ϕ(z) +

zϕ′(z)

c
. (37)

Now an application of Lemma 1.3, similar to that in the proof of Theorem 2.1,
completes the proof.

Remark 2.9. The above Theorem 2.8 gives a generalization to the result [10, The-
orem 3]. In fact when λ = 1, µ = 0 and α = 0 it reduces to [10, Theorem 3].

Theorem 2.10. Let the function Fc,p be defined by (30) satisfies

zp
{

(1− δ)Tα,nm,p(λ, µ)Fc,p(f)(z) + δTα,nm,p(λ, µ)Fc,p(f)(z)
}
≺ 1 +Az

1 +Bz
, (38)

then
− Re

{
δzpTα,nm,p(λ, µ)Fc,p(f)(z)

}
> ρ, (39)

where

ρ =

{
A
B + (1− A

B )(1−B)−1 2F1(1, 1; c
δ(p+m) + 1; B

B−1), B 6= 0;

1− cA
δ(p+m)+c , B=0.

The value of ρ in inequality (39) is the best possible.
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Proof. Let us define the function ϕ by

ϕ(z) = −zpTα,nm,p(λ, µ)Fc,p(f)(z), (40)

then ϕ(z) is and analytic in U. Differentiating (40) and using the identity (40), we
obtain

zpTα,nm,p(λ, µ)(f)(z) = ϕ(z) +
zϕ′(z)

c
. (41)

From (40) and (41), have

zp
{

(1− δ)Tα,nm,p(λ, µ)Fc,p(f)(z) + δTα,nm,p(λ, µ)Fc,p(f)(z)
}

= ϕ(z) +
δ

c
zϕ′(z).

Now an application of Lemma 1.3, similar to that in the proof of Theorem 2.1,
completes the proof.

References

[1] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike
functions, Tsukuba J. Math. 17 (1993), no. 2, 481–486.

[2] M. K. Aouf and T. M. Seoudy, Subordination and superordination of a certain
integral operator on meromorphic functions, Comput. Math. Appl. 59 (2010), no. 12,
3669–3678.

[3] E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators applied
to meromorphic p-valent functions, J. Nat. Geom. 24 (2003), no. 1-2, 111–120.

[4] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent func-
tions associated with a certain linear operator, Math. Comput. Modelling 39 (2004),
no. 1, 35–44.

[5] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc.
Amer. Math. Soc. 14 (1963), 514–520.

[6] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent func-
tions, Michigan Math. J. 28 (1981), no. 2, 157–172.

[7] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and
Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

[8] A. O. Mostafa and M. K. Aouf, On convolution properties for some classes of
meromorphic functions associated with linear operator, Bull. Iranian Math. Soc. 41
(2015), no. 2, 325–332.
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