No. 47/2016 pp. 133-145

doi: 10.17114/j.aua.2016.47.10

# FEKETE-SZEGÖ TYPE COEFFICIENT INEQUALITIES FOR A NEW SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING THE Q-DERIVATIVE OPERATOR

### S. Bulut

ABSTRACT. We introduce a new subclass of analytic functions of complex order involving the q-derivative operator defined in the open unit disc. For this class, several Fekete-Szegö type coefficient inequalities are derived. Various known special cases of our results are also pointed out.

2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic function, Univalent function, Coefficient inequalities, Fekete-Szegö problem, Subordination, Hadamard product (or convolution), q-derivative operator.

## 1. Introduction and definitions

Let  $\mathcal{A}$  denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

which are analytic in the unit disk

$$\mathbb{U} = \left\{ z \in \mathbb{C} : |z| < 1 \right\}.$$

Also let S denote the subclass of A consisting of univalent functions in U. Fekete and Szegö [8] proved a noticeable result that the estimate

$$|a_3 - \mu a_2^2| \le \begin{cases} -4\mu + 3 &, & \mu \le 0\\ 1 + 2\exp\left(\frac{-2\mu}{1-\mu}\right) &, & 0 \le \mu \le 1\\ 4\mu - 3 &, & \mu \ge 1 \end{cases}$$
 (2)

holds for  $f \in \mathcal{S}$ . The result is sharp in the sense that for each  $\mu$  there is a function in the class under consideration for which equality holds.

The coefficient functional

$$\phi_{\mu}(f) = a_3 - \mu a_2^2 = \frac{1}{6} \left( f'''(0) - \frac{3\mu}{2} (f''(0))^2 \right)$$

on  $f \in \mathcal{A}$  represents various geometric quantities as well as in the sense that this behaves well with respect to the rotation, namely

$$\phi_{\mu}\left(e^{-i\theta}f\left(e^{i\theta}z\right)\right) = e^{2i\theta}\phi_{\mu}\left(f\right) \quad (\theta \in \mathbb{R}).$$

In fact, other than the simplest case when

$$\phi_0(f) = a_3,$$

we have several important ones. For example,

$$\phi_1(f) = a_3 - a_2^2$$

represents  $S_{f}\left(0\right)/6$ , where  $S_{f}$  denotes the Schwarzian derivative

$$S_f(z) = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2.$$

Moreover, the first two non-trivial coefficients of the k-th root transform

$$\left(f(z^k)\right)^{\frac{1}{k}} = z + c_{k+1}z^{k+1} + c_{2k+1}z^{2k+1} + \cdots$$

of f with the power series (1), are written by

$$c_{k+1} = \frac{a_2}{k}$$

and

$$c_{2k+1} = \frac{a_3}{k} + \frac{(k-1)a_2^2}{2k^2},$$

so that

$$a_3 - \mu a_2^2 = k \left( c_{2k+1} - \delta c_{k+1}^2 \right),$$

where

$$\delta = \mu k + \frac{k-1}{2}.$$

Thus it is quite natural to ask about inequalities for  $\phi_{\mu}$  corresponding to subclasses of S. This is called Fekete-Szegö problem. Actually, many authors have considered this problem for typical classes of univalent functions (see, for instance [1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15]).

For two functions f and g, analytic in  $\mathbb{U}$ , we say that the function f(z) is subordinate to g(z) in  $\mathbb{U}$ , and write

$$f(z) \prec g(z) \quad (z \in \mathbb{U}),$$

if there exists a Schwarz function w(z), analytic in  $\mathbb{U}$ , with

$$w(0) = 0$$
 and  $|w(z)| < 1$   $(z \in \mathbb{U})$ ,

such that

$$f(z) = g(w(z)) \quad (z \in \mathbb{U}).$$

In particular, if the function g is univalent in  $\mathbb{U}$ , the above subordination is equivalent to

$$f(0) = g(0)$$
 and  $f(\mathbb{U}) \subset g(\mathbb{U})$ .

Quantum calculus is ordinary classical calculus without the notion of limits. It defines q-calculus and h-calculus. Here h ostensibly stands for Planck's constant, while q stands for quantum. Recently, the area of q-calculus has attracted the serious attention of researchers. This great interest is due to its application in various branches of mathematics and physics. The application of q-calculus was initiated by Jackson [9, 10]. He was the first to develop q-integral and q-derivative in a systematic way. Later, geometrical interpretation of q-analysis has been recognized through studies on quantum groups. It also suggests a relation between integrable systems and q-analysis. A comprehensive study on applications of q-calculus in operator theory may be found in [3].

For a function  $f \in \mathcal{A}$  given by (1) and 0 < q < 1, the q-derivative of function f is defined by (see [9, 10])

$$D_q f(z) = \frac{f(qz) - f(z)}{(q-1)z} \qquad (z \neq 0),$$
(3)

 $D_{q}f\left(0\right)=f^{\prime}\left(0\right)$  and  $D_{q}^{2}f\left(z\right)=D_{q}\left(D_{q}f\left(z\right)\right).$  From (3) , we deduce that

$$D_q f(z) = 1 + \sum_{k=2}^{\infty} [k]_q a_k z^{k-1},$$
(4)

where

$$[k]_q = \frac{1 - q^k}{1 - q}. (5)$$

As  $q \to 1^-$ ,  $[k]_q \to k$ . For a function  $g(z) = z^k$ , we get

$$D_q\left(z^k\right) = [k]_q \, z^{k-1},$$

$$\lim_{q \to 1^{-}} \left( D_q \left( z^k \right) \right) = k z^{k-1} = g' \left( z \right),$$

where g' is the ordinary derivative.

We denote by  $\mathcal{P}$  the class of all functions  $\varphi$  which are analytic and univalent in  $\mathbb{U}$  and for which  $\varphi(\mathbb{U})$  is convex with

$$\varphi(0) = 1$$
 and  $\Re \{\varphi(z)\} > 0$   $(z \in \mathbb{U})$ .

By making use of the q-derivative of a function  $f \in \mathcal{A}$  and the principle of subordination, we introduce the following subclass.

**Definition 1.** A function  $f \in \mathcal{A}$  is said to be in the class  $\mathcal{M}_{q,b}^{\lambda}(\varphi)$   $(0 \le \lambda \le 1, b \in \mathbb{C} \setminus \{0\}, \varphi \in \mathcal{P})$  if it satisfies the following subordination condition:

$$1 + \frac{1}{b} \left( \frac{z D_q \mathcal{F}_{\lambda} (z)}{\mathcal{F}_{\lambda} (z)} - 1 \right) \prec \varphi (z) \qquad (z \in \mathbb{U}),$$

where  $\mathcal{F}_{\lambda}(z) = \lambda z D_q f(z) + (1 - \lambda) f(z)$ .

**Remark 1.** (i) If we set  $\lambda = 0$  in Definition 1, then we have the class

$$\mathcal{M}_{q,b}^{0}\left(\varphi\right)=\mathcal{S}_{q,b}\left(\varphi\right)$$

which consists of functions satisfying

$$1 + \frac{1}{b} \left( \frac{z D_q f(z)}{f(z)} - 1 \right) \prec \varphi(z) \qquad (z \in \mathbb{U}).$$

(ii) If we set  $\lambda = 1$  in Definition 1, then we have the class

$$\mathcal{M}_{q,b}^{1}\left(\varphi\right)=\mathcal{C}_{q,b}\left(\varphi\right)$$

which consists of functions satisfying

$$1 + \frac{1}{b} \left( \frac{D_q(zD_qf(z))}{D_qf(z)} - 1 \right) \prec \varphi(z) \qquad (z \in \mathbb{U}).$$

The classes  $\mathcal{S}_{q,b}\left(\varphi\right)$  and  $\mathcal{C}_{q,b}\left(\varphi\right)$  was introduced and studied by Seoudy and Aouf [16].

Remark 2. We also get

$$\lim_{q \to 1^{-}} \mathcal{M}_{q,b}^{\lambda}\left(\varphi\right) = \mathcal{M}_{b}^{\lambda}\left(\varphi\right)$$

which consists of functions satisfying

$$1 + \frac{1}{b} \left( \frac{zf'(z) + \lambda z^2 f''(z)}{\lambda z f'(z) + (1 - \lambda) f(z)} - 1 \right) \prec \varphi(z) \qquad (z \in \mathbb{U}).$$

We shall require the following lemmas.

**Lemma 1.** [17] Let  $p \in \mathcal{P}$  with  $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ . Then for any complex number  $\nu$ 

$$\left| c_2 - \nu c_1^2 \right| \le 2 \max \left\{ 1, \left| 2\nu - 1 \right| \right\},$$

and the result is sharp for the functions given by

$$p(z) = \frac{1+z^2}{1-z^2}$$
 and  $p(z) = \frac{1+z}{1-z}$ .

**Lemma 2.** [15] If  $p \in \mathcal{P}$  with  $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ , then

$$|c_2 - \nu c_1^2| \le \begin{cases} -4\nu + 2 &, \nu \le 0\\ 2 &, 0 \le \nu \le 1\\ 4\nu - 2 &, \nu \ge 1 \end{cases}$$

When  $\nu < 0$  or  $\nu > 1$ , equality holds true if and only if p(z) is  $\frac{1+z}{1-z}$  or one of its rotations. If  $0 < \nu < 1$ , then equality holds true if and only if p(z) is  $\frac{1+z^2}{1-z^2}$  or one of its rotations. If  $\nu = 0$ , then the equality holds true if and only if

$$p\left(z\right) = \left(\frac{1}{2} + \frac{1}{2}\eta\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}\eta\right)\frac{1-z}{1+z} \quad \left(0 \leq \eta \leq 1\right)$$

or one of its rotations. If  $\nu = 1$ , then the equality holds true if and only if p(z) is the reciprocal of one of the functions such that the equality holds true in the case when  $\nu = 0$ .

Although the above upper bound is sharp, in the case when  $0 < \nu < 1$ , it can be further improved as follows:

$$|c_2 - \nu c_1^2| + \nu |c_1|^2 \le 2$$
  $\left(0 \le \nu \le \frac{1}{2}\right)$ 

and

$$|c_2 - \nu c_1^2| + (1 - \nu) |c_1|^2 \le 2$$
  $\left(\frac{1}{2} \le \nu \le 1\right)$ .

# 2. Fekete-Szegő Problem for the Function Class $\mathcal{M}_{a,b}^{\lambda}(\varphi)$

Unless otherwise mentioned, we assume throughout this paper that the function  $0 \le \lambda \le 1, 0 < q < 1, b \in \mathbb{C} \setminus \{0\}, \varphi \in \mathcal{P}, [k]_q$  is given by (5) and  $z \in \mathbb{U}$ .

**Theorem 3.** Let  $\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$  with  $B_1 \neq 0$ . If f(z) given by (1) belongs to the function class  $\mathcal{M}_{q,b}^{\lambda}(\varphi)$ , then for any complex number  $\mu$ 

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{|B_{1}b|}{\left([3]_{q} - 1\right)\left(1 - \lambda + [3]_{q}\lambda\right)} \times \max\left\{1, \left|\frac{B_{2}}{B_{1}} + \frac{B_{1}b}{[2]_{q} - 1}\left(1 - \frac{\left([3]_{q} - 1\right)\left(1 - \lambda + [3]_{q}\lambda\right)}{\left([2]_{q} - 1\right)\left(1 - \lambda + [2]_{q}\lambda\right)^{2}}\mu\right)\right|\right\}.$$
(6)

The result is sharp.

*Proof.* If  $f \in \mathcal{M}_{q,b}^{\lambda}(\varphi)$ , then we have

$$h(z) \prec \varphi(z)$$
,

where

$$h(z) = 1 + \frac{1}{b} \left( \frac{z D_q \mathcal{F}_{\lambda}(z)}{\mathcal{F}_{\lambda}(z)} - 1 \right) = 1 + h_1 z + h_2 z^2 + \cdots$$
 (7)

with  $\mathcal{F}_{\lambda}\left(z\right)=\lambda zD_{q}f\left(z\right)+\left(1-\lambda\right)f\left(z\right)$ . From (7), we have

$$h_1 = \frac{1}{b} ([2]_q - 1) (1 - \lambda + [2]_q \lambda) a_2,$$
 (8)

$$h_2 = \frac{1}{b} \left( [3]_q - 1 \right) \left( 1 - \lambda + [3]_q \lambda \right) a_3 - \left( [2]_q - 1 \right) \left( 1 - \lambda + [2]_q \lambda \right)^2 a_2^2. \tag{9}$$

Since  $\varphi\left(z\right)$  is univalent and  $h\left(z\right)\prec\varphi\left(z\right),$  the function

$$p_1(z) = \frac{1 + \varphi^{-1}(h(z))}{1 - \varphi^{-1}(h(z))} = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$$

is analytic and has a positive real part in U. Also we have

$$h(z) = \varphi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right)$$

$$= 1 + \frac{B_1c_1}{2}z + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2c_1^2}{4}\right]z^2 + \cdots.$$
 (10)

Thus by (7) - (10) we get

$$a_2 = \frac{B_1 c_1 b}{2([2]_q - 1)(1 - \lambda + [2]_q \lambda)}, \tag{11}$$

$$a_3 = \frac{B_1 b}{2\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} \left[c_2 - \frac{1}{2}\left(1 - \frac{B_2}{B_1} - \frac{B_1 b}{[2]_q - 1}\right)c_1^2\right]. \quad (12)$$

Taking into account (11) and (12), we obtain

$$a_3 - \mu a_2^2 = \frac{B_1 b}{2([3]_q - 1)(1 - \lambda + [3]_q \lambda)} (c_2 - \delta c_1^2), \qquad (13)$$

where

$$\delta = \frac{1}{2} \left[ 1 - \frac{B_2}{B_1} - \frac{B_1 b}{[2]_q - 1} \left( 1 - \frac{\left( [3]_q - 1 \right) \left( 1 - \lambda + [3]_q \lambda \right)}{\left( [2]_q - 1 \right) \left( 1 - \lambda + [2]_q \lambda \right)^2} \mu \right) \right]. \tag{14}$$

Our result now follows by an application of Lemma 1. The result is sharp for the functions

$$1 + \frac{1}{b} \left( \frac{z D_q \mathcal{F}_{\lambda} \left( z \right)}{\mathcal{F}_{\lambda} \left( z \right)} - 1 \right) = \varphi \left( z^2 \right) \quad \text{and} \quad 1 + \frac{1}{b} \left( \frac{z D_q \mathcal{F}_{\lambda} \left( z \right)}{\mathcal{F}_{\lambda} \left( z \right)} - 1 \right) = \varphi \left( z \right).$$

This completes the proof of Theorem 3.

**Corollary 4.** Taking  $\lambda = 0$  and  $\lambda = 1$  in Theorem 3, we get [16, Theorem 1] and [16, Theorem 2], respectively.

Taking  $q \to 1^-$  in Theorem 3, we obtain the following result for the functions belonging to the class  $\mathcal{M}_b^{\lambda}(\varphi)$ .

Corollary 5. Let  $\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$  with  $B_1 \neq 0$ . If f(z) given by (1) belongs to the function class  $\mathcal{M}_b^{\lambda}(\varphi)$ , then for any complex number  $\mu$ 

$$|a_3 - \mu a_2^2| \le \frac{|B_1 b|}{2(1+2\lambda)} \times \max\left\{1, \left| \frac{B_2}{B_1} + \left(1 - \frac{2(1+2\lambda)}{(1+\lambda)^2} \mu\right) B_1 b \right| \right\}.$$

The result is sharp.

**Corollary 6.** Taking  $\lambda = 0$  and  $\lambda = 1$  in Theorem 5, we get [16, Corollary 1] and [16, Corollary 2], respectively.

**Theorem 7.** Let  $\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$  with  $B_1 > 0$  and  $B_2 \ge 0$ . If f(z) given by (1) belongs to the function class  $\mathcal{M}_{a,b}^{\lambda}(\varphi)$  with b > 0, then

$$\left|a_3 - \mu a_2^2\right| \le$$

$$\begin{cases} \frac{B_2 b}{\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} + \frac{B_1^2 b^2}{\left([2]_q - 1\right)} \left[\frac{1}{\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} - \frac{\mu}{\left([2]_q - 1\right)\left(1 - \lambda + [2]_q \lambda\right)^2}\right] &, \quad \mu \leq \sigma_1 \\ \frac{B_1 b}{\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} &, \quad \sigma_1 \leq \mu \leq \sigma_2 &, \\ -\frac{B_2 b}{\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} - \frac{B_1^2 b^2}{\left([2]_q - 1\right)} \left[\frac{1}{\left([3]_q - 1\right)\left(1 - \lambda + [3]_q \lambda\right)} - \frac{\mu}{\left([2]_q - 1\right)\left(1 - \lambda + [2]_q \lambda\right)^2}\right] &, \quad \mu \geq \sigma_2 \end{cases}$$

where

$$\sigma_{1} = \frac{\left([2]_{q} - 1\right)\left(1 - \lambda + [2]_{q}\lambda\right)^{2}\left[B_{1}^{2}b + \left([2]_{q} - 1\right)(B_{2} - B_{1})\right]}{\left([3]_{q} - 1\right)\left(1 - \lambda + [3]_{q}\lambda\right)B_{1}^{2}b}, \quad (15)$$

$$\sigma_2 = \frac{\left( [2]_q - 1 \right) \left( 1 - \lambda + [2]_q \lambda \right)^2 \left[ B_1^2 b + \left( [2]_q - 1 \right) (B_2 + B_1) \right]}{\left( [3]_q - 1 \right) \left( 1 - \lambda + [3]_q \lambda \right) B_1^2 b}, \quad (16)$$

$$\sigma_{3} = \frac{\left( [2]_{q} - 1 \right) \left( 1 - \lambda + [2]_{q} \lambda \right)^{2} \left[ B_{1}^{2} b + \left( [2]_{q} - 1 \right) B_{2} \right]}{\left( [3]_{q} - 1 \right) \left( 1 - \lambda + [3]_{q} \lambda \right) B_{1}^{2} b}.$$
(17)

If  $\sigma_1 \leq \mu \leq \sigma_3$ , then

$$\begin{aligned} & \left| a_{3} - \mu a_{2}^{2} \right| \\ & + \frac{\left( \left[ 2 \right]_{q} - 1 \right)^{2} \left( 1 - \lambda + \left[ 2 \right]_{q} \lambda \right)^{2}}{\left( \left[ 3 \right]_{q} - 1 \right) \left( 1 - \lambda + \left[ 3 \right]_{q} \lambda \right) B_{1}^{2} b} \\ & \times \left\{ B_{1} - B_{2} - \frac{B_{1}^{2} b}{\left( \left[ 2 \right]_{q} - 1 \right)} \left( 1 - \frac{\left( \left[ 3 \right]_{q} - 1 \right) \left( 1 - \lambda + \left[ 3 \right]_{q} \lambda \right)}{\left( \left[ 2 \right]_{q} - 1 \right) \left( 1 - \lambda + \left[ 2 \right]_{q} \lambda \right)^{2}} \mu \right) \right\} \left| a_{2} \right|^{2} \\ & \leq \frac{B_{1} b}{\left( \left[ 3 \right]_{q} - 1 \right) \left( 1 - \lambda + \left[ 3 \right]_{q} \lambda \right)}. \end{aligned}$$

Furthermore, if  $\sigma_3 \leq \mu \leq \sigma_2$ , then

$$|a_{3} - \mu a_{2}^{2}| + \frac{\left([2]_{q} - 1\right)^{2} \left(1 - \lambda + [2]_{q} \lambda\right)^{2}}{\left([3]_{q} - 1\right) \left(1 - \lambda + [3]_{q} \lambda\right) B_{1}^{2} b} \times \left\{ B_{1} + B_{2} + \frac{B_{1}^{2} b}{\left([2]_{q} - 1\right)} \left(1 - \frac{\left([3]_{q} - 1\right) \left(1 - \lambda + [3]_{q} \lambda\right)}{\left([2]_{q} - 1\right) \left(1 - \lambda + [2]_{q} \lambda\right)^{2}} \mu \right) \right\} |a_{2}|^{2}$$

$$\leq \frac{B_{1} b}{\left([3]_{q} - 1\right) \left(1 - \lambda + [3]_{q} \lambda\right)}.$$

Each of these results is sharp.

*Proof.* Applying Lemma 2 to (13) and (14), we can get our results. On the other hand, using (13) for the values of  $\sigma_1 \leq \mu \leq \sigma_3$ , we have

$$|a_{3} - \mu a_{2}^{2}| + (\mu - \sigma_{1}) |a_{2}|^{2} = \frac{B_{1}b}{2([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)} |c_{2} - \delta c_{1}^{2}|$$

$$+ (\mu - \sigma_{1}) \frac{B_{1}^{2}b^{2} |c_{1}|^{2}}{4([2]_{q} - 1)^{2}(1 - \lambda + [2]_{q}\lambda)^{2}}$$

$$= \frac{B_{1}b}{2([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)} \{|c_{2} - \delta c_{1}^{2}| + \delta |c_{1}|^{2}\}$$

$$\leq \frac{B_{1}b}{([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)}.$$

Similarly, for the values of  $\sigma_3 \leq \mu \leq \sigma_2$ , we get

$$|a_{3} - \mu a_{2}^{2}| + (\sigma_{2} - \mu) |a_{2}|^{2} = \frac{B_{1}b}{2([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)} |c_{2} - \delta c_{1}^{2}|$$

$$+ (\sigma_{2} - \mu) \frac{B_{1}^{2}b^{2} |c_{1}|^{2}}{4([2]_{q} - 1)^{2}(1 - \lambda + [2]_{q}\lambda)^{2}}$$

$$= \frac{B_{1}b}{2([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)} \{|c_{2} - \delta c_{1}^{2}| + (1 - \delta) |c_{1}|^{2}\}$$

$$\leq \frac{B_{1}b}{([3]_{q} - 1)(1 - \lambda + [3]_{q}\lambda)}.$$

To show that the bounds asserted by Theorem 7 are sharp, we define the following functions:

$$K_{\varphi_n}(z) \qquad (n=2,3,\ldots),$$

with

$$K_{\varphi_n}(0) = 0 = K'_{\varphi_n}(0) - 1,$$

by

$$1 + \frac{1}{b} \left( \frac{z D_q K_{\varphi_n}(z)}{K_{\varphi_n}(z)} - 1 \right) = \varphi \left( z^{n-1} \right),$$

and the functions  $F_{\eta}(z)$  and  $G_{\eta}(z)$   $(0 \le \eta \le 1)$ , with

$$F_{\eta}(0) = 0 = F'_{\eta}(0) - 1$$
 and  $G_{\eta}(0) = 0 = G'_{\eta}(0) - 1$ ,

by

$$1 + \frac{1}{b} \left( \frac{z D_q F_{\eta} \left( z \right)}{F_{\eta} \left( z \right)} - 1 \right) = \varphi \left( \frac{z \left( z + \eta \right)}{1 + \eta z} \right)$$

and

$$1 + \frac{1}{b} \left( \frac{z D_q G_{\eta}(z)}{G_{\eta}(z)} - 1 \right) = \varphi \left( -\frac{z (z + \eta)}{1 + \eta z} \right),$$

respectively. Then, clearly, the functions  $K_{\varphi_n}, F_{\eta}, G_{\eta} \in \mathcal{M}_{q,b}^{\lambda}(\varphi)$ . If  $\mu < \sigma_1$  or  $\mu > \sigma_2$ , then the equality in Theorem 7 holds true if and only if f is  $K_{\varphi_2}$  or one of its rotations. When  $\sigma_1 < \mu < \sigma_2$ , then the equality holds true if and only if f is  $K_{\varphi_3}$  or one of its rotations. If  $\mu = \sigma_1$ , then the equality holds true if and only if f is  $F_{\eta}$  or one of its rotations. If  $\mu = \sigma_2$ , then the equality holds true if and only if f is  $G_{\eta}$  or one of its rotations.

**Corollary 8.** Taking  $\lambda = 0$  and  $\lambda = 1$  in Theorem 7, we get [16, Theorem 3] and [16, Theorem 4], respectively.

Taking  $q \to 1^-$  in Theorem 7, we obtain the following result for the functions belonging to the class  $\mathcal{M}_b^{\lambda}(\varphi)$ .

**Corollary 9.** Let  $\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$  with  $B_1 > 0$  and  $B_2 \ge 0$ . If f(z) given by (1) belongs to the function class  $\mathcal{M}_b^{\lambda}(\varphi)$  with b > 0, then

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{B_2 b}{2(1+2\lambda)} + \left[\frac{1}{2(1+2\lambda)} - \frac{\mu}{(1+\lambda)^2}\right] B_1^2 b^2 &, \quad \mu \le \sigma_1 \\ \frac{B_1 b}{2(1+2\lambda)} &, \quad \sigma_1 \le \mu \le \sigma_2 \\ -\frac{B_2 b}{2(1+2\lambda)} - \left[\frac{1}{2(1+2\lambda)} - \frac{\mu}{(1+\lambda)^2}\right] B_1^2 b^2 &, \quad \mu \ge \sigma_2 \end{cases}$$

where

$$\sigma_{1} = \frac{(1+\lambda)^{2} \left[B_{1}^{2}b + B_{2} - B_{1}\right]}{2(1+2\lambda) B_{1}^{2}b},$$

$$\sigma_{2} = \frac{(1+\lambda)^{2} \left[B_{1}^{2}b + B_{2} + B_{1}\right]}{2(1+2\lambda) B_{1}^{2}b},$$

$$\sigma_{3} = \frac{(1+\lambda)^{2} \left[B_{1}^{2}b + B_{2}\right]}{2(1+2\lambda) B_{1}^{2}b}.$$

If  $\sigma_1 \leq \mu \leq \sigma_3$ , then

$$|a_3 - \mu a_2^2| + \frac{(1+\lambda)^2}{2(1+2\lambda)B_1^2b} \left\{ B_1 - B_2 - \left(1 - \frac{2(1+2\lambda)}{(1+\lambda)^2}\mu\right)B_1^2b \right\} |a_2|^2$$

$$\leq \frac{B_1b}{2(1+2\lambda)}.$$

Furthermore, if  $\sigma_3 \leq \mu \leq \sigma_2$ , then

$$\left| a_3 - \mu a_2^2 \right| + \frac{(1+\lambda)^2}{2(1+2\lambda)B_1^2 b} \left\{ B_1 + B_2 + \left( 1 - \frac{2(1+2\lambda)}{(1+\lambda)^2} \mu \right) B_1^2 b \right\} \left| a_2 \right|^2$$

$$\leq \frac{B_1 b}{2(1+2\lambda)}.$$

Each of these results is sharp.

**Corollary 10.** Taking  $\lambda = 0$  and  $\lambda = 1$  in Theorem 9, we get [16, Corollary 3] and [16, Corollary 4], respectively.

### References

- [1] H.R. Abdel-Gawad, D.K. Thomas, The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (1992), 345-349.
- [2] H.S. Al-Amiri, Certain generalization of prestarlike functions, J. Aust. Math. Soc. 28 (1979), 325-334.
- [3] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
- [4] J.H. Choi, Y.Ch. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59, 3 (2007), 707-727.
- [5] A. Chonweerayoot, D.K. Thomas, W. Upakarnitikaset, On the Fekete-Szegö theorem for close-to-convex functions, Publ. Inst. Math. (Beograd) (N.S.) 66 (1992), 18-26.
- [6] M. Darus, D.K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japonica 44 (1996), 507-511.
- [7] M. Darus, D.K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japonica 47 (1998), 125-132.
- [8] M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
- [9] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
- [10] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb. 46 (1908), 253-281.
- [11] S. Kanas, A. Lecko, On the Fekete-Szegö problem and the domain convexity for a certain class of univalent functions, Folia Sci. Univ. Tech. Resov. 73 (1990), 49-58.
- [12] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
- [13] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
- [14] R.R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), 947-950.
- [15] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
- [16] T.M. Seoudy, M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10, 1 (2016), 135-145.
- [17] V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2004), 171-180.

Serap Bulut Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, Kocaeli, Turkey email: serap.bulut@kocaeli.edu.tr