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1. Introduction

The study of α-open sets was initiated by Njastad [6]. In [2], Ibrahim introduced
αγ-open sets in topological spaces and these αγ-open sets were used to define three
new separation axioms called αγT0, αγT1 and αγT2. Another set of new separation
axioms, α-Ti, i = 0, 1 were characterized by Maki et al. [5] in 1993. The aim of this
paper is to introduce and study some new separation axioms by means operations
defined on α-open sets in topological spaces.

2. Preliminaries

Throughout the present paper, for a nonempty setX, (X, τ) always denote a topolog-
ical space on which no separation axioms are assumed unless explicitly stated. The
closure and interior of A ⊆ X will be denoted by Cl(A) and Int(A), respectively. A
subset A of a topological space (X, τ) is said to be α-open [6] if A ⊆ Int(Cl(Int(A))).
The complement of an α-open set is said to be α-closed. The intersection of all α-
closed sets containing A is called the α-closure of A and is denoted by αCl(A). The
family of all α-open sets in a topological space (X, τ) is denoted by αO(X, τ). An
operation γ : αO(X, τ) → P (X) [2] is a mapping satisfying the condition, V ⊆ V γ

for each V ∈ αO(X, τ). We call the mapping γ an operation on αO(X, τ). A subset
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A of X is called an αγ-open set [2] if for each point x ∈ A, there exists an α-open set
U of X containing x such that Uγ ⊆ A. The complement of an αγ-open set is said
to be αγ-closed. We denote the set of all αγ-open (resp., αγ-closed) sets of (X, τ)
by αO(X, τ)γ (resp., αC(X, τ)γ). The αγ-closure [2] of a subset A of X with an
operation γ on αO(X) is denoted by αγCl(A) and is defined to be the intersection
of all αγ-closed sets containing A. A point x ∈ X is in αClγ-closure [2] of a set
A ⊆ X, if Uγ ∩A 6= φ for each α-open set U containing x. The αClγ-closure of A is
denoted by αClγ(A). An operation γ on αO(X, τ) is said to be α-regular [2] if for
every α-open sets U and V of each x ∈ X, there exists an α-open set W of x such
that W γ ⊆ Uγ ∩ V γ . An operation γ on αO(X, τ) is said to be α-open [2] if for
every α-open set U of x ∈ X, there exists an αγ-open set V of X such that x ∈ V
and V ⊆ Uγ .

Let (X, τ) be any topological space and γ be an operation defined on αO(X).
We recall the following results from [3].

Theorem 2.1. For each x ∈ X, either {x} is αγ-closed or X \ {x} is α-γ-g.closed
in (X, τ).

Theorem 2.2. If a subset A of X is α-γ-g.closed, then αClγ(A)\A does not contain
any non-empty αγ-closed set.

Theorem 2.3. Let A be any subset of a topological space (X, τ) . If A is αγ-g.closed
in X, then A is α-γ-g.closed.

Proposition 2.4. For any two distinct points x and y in a topological space X,
the following statements are equivalent:

1. αγker({x}) 6= αγker({y});

2. αγCl({x}) 6= αγCl({y}).

Proposition 2.5. Let x ∈ X, we have y ∈ αγker({x}) if and only if x ∈ αγCl({y}).

Proposition 2.6. Let A be a subset of X. Then, αγker(A) = {x ∈ X: αγCl({x})∩
A 6= φ}.

3. α-γ-Ti spaces, where i = 0, 1/2, 1, 2

In this section, we introduce some new separation axioms using the notions of op-
eration and α-open sets, also we give some characterization of these types of spaces
and study the relationships between them and other well known spaces.
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Definition 3.1. A topological space (X, τ) with an operation γ on αO(X) is said
to be:

1. An α-γ-T0 space if for any two distinct points x, y ∈ X, there exists an α-open
set U such that either x ∈ U and y /∈ Uγ or y ∈ U and x /∈ Uγ .

2. An αγT0 [2] (resp., α-T0 [5]) space if for any two distinct points x, y ∈ X, there
exists an αγ-open (resp., α-open) set U such that either x ∈ U and y /∈ U or
y ∈ U and x /∈ U .

3. An α-γ-T1 space if for any two distinct points x, y ∈ X, there exist two α-open
sets U and V containing x and y, respectively, such that y /∈ Uγ and x /∈ V γ .

4. An αγT1 [2] (resp., α-T1 [5]) space if for any two distinct points x, y ∈ X,
there exist two αγ-open (resp., α-open) sets U and V containing x and y,
respectively, such that y /∈ U and x /∈ V .

5. An α-γ-T2 space if for any two distinct points x, y ∈ X, there exist two α-open
sets U and V containing x and y, respectively, such that Uγ ∩ V γ = φ.

6. An αγT2 [2] (resp., α-T2 [4]) space if for any two distinct points x, y ∈ X,
there exist two αγ-open (resp., α-open) sets U and V containing x and y,
respectively, such that U ∩ V = φ.

7. An α-γ-T1/2 space if every α-γ-g.closed set of (X, τ) is αγ-closed.

8. An α-T1/2 space [1] if every (α,α)-g-closed set(X, τ) is α-closed.

Theorem 3.2. Suppose that γ : αO(X) → P (X) is α-open. A topological space
(X, τ) is α-γ-T0 if and only if for every pair x, y ∈ X with x 6= y, αClγ({x}) 6=
αClγ({y}).

Proof. Necessity: Let x and y be any two distinct points of an α-γ-T0 space (X, τ).
Then, by definition, we assume that there exists an α-open set U such that x ∈ U
and y /∈ Uγ . It follows from assumption that there exists an αγ-open set S such
that x ∈ S and S ⊆ Uγ . Hence, y ∈ X \Uγ ⊆ X \S. Because X \S is an αγ-closed
set, we obtain that αClγ({y}) ⊆ X \ S and so αClγ({x}) 6= αClγ({y}).

Sufficiency: Suppose that x 6= y for any x, y ∈ X. Then, we have that αClγ({x}) 6=
αClγ({y}). Thus, there exists z ∈ αClγ({x}) but z /∈ αClγ({y}). If x ∈ αClγ({y}),
then we get αClγ({x}) ⊆ αClγ({y}). This implies that z ∈ αClγ({y}). This contra-
diction shows that x /∈ αClγ({y}), by ([2], Definition 2.20), there exists an α-open
set W such that x ∈W and W γ ∩ {y} = φ. Consequently, we have that x ∈W and
y /∈W γ . Hence, (X, τ) is an α-γ-T0.
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Theorem 3.3. Suppose that γ : αO(X) → P (X) is α-open. A topological space
(X, τ) is α-γ-T0 if and only if (X, τ) is αγT0.

Proof. It is obvious that, for any subset A of (X, τ), αγCl(A) = αClγ(A) holds
under the assumption that γ is α-open ([2], Theorem 2.26 (2)). On the other hand,
we have Theorem 3.2 and ([2], Theorem 3.9). Consequently, we obtain this proof by
using these three facts.

Theorem 3.4. Let (X, τ) be a topological space and γ an operation on αO(X).
Then, the following properties are equivalent:

1. A space X is α-γ-T1/2;

2. For each x ∈ X, {x} is αγ-closed or αγ-open.

Proof. (1) ⇒ (2): Suppose {x} is not αγ-closed in (X, τ). Then, X \ {x} is α-γ-
g.closed by Theorem 2.1. Since (X, τ) is an α-γ-T1/2 space, then X \{x} is αγ-closed
and so {x} is αγ-open.

(2)⇒ (1): Let F be an α-γ-g.closed set in (X, τ). We shall prove that αClγ(F ) =
F . It is sufficient to show that αClγ(F ) ⊆ F . Assume that there exists a point x
such that x ∈ αClγ(F ) \ F . Then by assumption, {x} is αγ-closed or αγ-open.

Case 1. {x} is an αγ-closed set, for this case, we have an αγ-closed set {x} such
that {x} ⊆ αClγ(F ) \ F . This is a contradiction to Theorem 2.2.

Case 2. {x} is an αγ-open set, we have x ∈ αγCl(F ). Since {x} is αγ-open, it
implies that {x} ∩ F 6= φ by ([2], Theorem 2.23). This is a contradiction. Thus, we
have αClγ(F ) = F and this is shows that F is αγ-closed.

Theorem 3.5. Let (X, τ) be a topological space and γ an operation on αO(X).
Then, the following properties are equivalent:

1. (X, τ) is α-γ-T1/2;

2. For each x ∈ X, {x} is αγ-closed or αγ-open;

3. (X, τ) is αγ-T1/2.

Proof. Follows from ([2], Theorem 3.2) and Theorem 3.4.

Theorem 3.6. Let (X, τ) be a topological space and γ an operation on αO(X).
Then, the following properties are equivalent:

1. (X, τ) is α-γ-T1;

2. For every point x ∈ X, {x} is an αγ-closed set;
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3. (X, τ) is αγT1.

Proof. (1)⇒ (2): Let x ∈ X be a point. For each point y ∈ X \ {x}, there exists an
α-open set Vy such that y ∈ Vy and x /∈ V γ

y . Then X \ {x} = ∪{V γ
y : y ∈ X \ {x}}.

It is shown that X \ {x} is αγ-open in (X, τ).
(2)⇒ (3): This follows from ([2], Theorem 3.10).
(3) ⇒ (1): It is shown that if x ∈ U , where U is αγ-open, then there exists

an α-open set V such that x ∈ V ⊆ V γ ⊆ U . Using (3), we have that (X, τ) is
α-γ-T1.

Proposition 3.7. The following statements are equivalent for a topological space
(X, τ) with an operation γ on αO(X):

1. X is α-γ-T2;

2. Let x ∈ X. For each y 6= x, there exists an α-open set U containing x such
that y /∈ αClγ(Uγ);

3. For each x ∈ X, ∩{αClγ(Uγ) : U ∈ αO(X) and x ∈ U} = {x}.

Proof. (1) ⇒ (2): Since X is α-γ-T2, there exist α-open set U containing x and
α-open set W containing y such that Uγ ∩W γ = φ, implies that y /∈ αClγ(Uγ).

(2) ⇒ (3): If possible for some y 6= x, we have y ∈ αClγ(Uγ) for every α-open
set U containing x, which then contradicts (2).

(3) ⇒ (1): Let x, y ∈ X and x 6= y. Then there exists α-open set U containing
x such that y /∈ αClγ(Uγ), implies that Uγ ∩ W γ = φ for some α-open set W
containing y.

Theorem 3.8. Let X be an α-γ-T2 space and V γ be αγ-open for each V ∈ αO(X).
Then, the following properties hold.

1. For any two distinct points a, b ∈ X, there are αγ-closed sets C1 and C2 such
that a ∈ C1 and b /∈ C1 and a /∈ C2, b ∈ C2 and X = C1 ∪ C2.

2. For every point a of X, {a} = ∩Ca, where Ca is an αγ-closed set containing
α-open set U which contains a.

Proof. 1. Since X is α-γ-T2 space, then for any a, b ∈ X, there exist α-open sets
U and V such that a ∈ U , b ∈ V and Uγ ∩ V γ = φ. Therefore, Uγ ⊆ X \ V γ

and V γ ⊆ X \ Uγ . Hence a ∈ X \ V γ . Put X \ V γ = C1. This gives a ∈ C1

and b /∈ C1. Also b ∈ X \Uγ . Put X \Uγ = C2. Therefore b ∈ C2 and a /∈ C2.
Moreover C1 ∪ C2 = (X \ Uγ) ∪ (X \ V γ) = X.
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2. Since X is α-γ-T2 space, therefore for any a, b, a 6= b, there exist α-open sets
U and V such that a ∈ U, b ∈ V and Uγ ∩ V γ = φ. This gives Uγ ⊆ X \ V γ .
Since X \ V γ is αγ-closed and Uγ ⊆ X \ V γ = Ca, αγ-closed containing a
and does not contain b. Since b is an arbitrary point of X different from a,
b /∈ ∩Ca. Thus a is the only point which is in every αγ-closed containing a,
that is, {a} = ∩Ca.

Theorem 3.9. For a topological space (X, τ) and γ an operation on αO(X), the
following properties hold.

1. Every αγTi space is α-γ-Ti, where i ∈ {2, 0}.

2. Every α-γ-T2 space is α-γ-T1.

3. Every α-γ-T1 space is α-γ-T1/2.

4. Every α-γ-T1 space is αγ-T1/2.

5. Every α-γ-T1/2 space is αγT0.

6. Every γ-Ti space is α-γ-Ti, where i ∈ {2, 1, 1/2, 0}.

7. Every α-γ-Ti space is α-Ti, where i ∈ {2, 1, 1/2, 0}.

Proof. (1), (2): The proofs are obvious by Definition 3.1.
(3): This follows from Theorems 3.6 and 3.4.
(4): This follows from Theorems 3.6 and 3.5.
(5): This follows from Theorem 3.4 and Definition 3.1 (2).
(6): For any open set U of (X, τ), we have U ∈ αO(X, τ) holds. Thus, the proofs

of (6) for i ∈ {2, 1, 0} are obvious from ([7], Definitions 4.1, 4.2, 4.3) and Definition
3.1. The proof for i = 1/2, is obtained by ([7], Proposition 4.10 (i)), ([2], Theorem
2.8) and Theorem 3.4.

(7): The proof is obvious by Definition 3.1 and ([2], Definition 2.1).

Remark 3.10. From Theorems 3.5, 3.6 and 3.9, we obtain the following diagram
of implications:

αγT1

))TTT
TTTT

TTTT
TTTT

TTTT
γ-T2 //

��

γ-T1 // //

��

γ-T1/2

��

// γ-T0

��

αγT1/2

ttiiii
iiii

iiii
iiii

ii

��
αγT2 //

OO

α-γ-T2 //

��

α-γ-T1

iiTTTTTTTTTTTTTTTTTTT
//

��

α-γ-T1/2

��

44iiiiiiiiiiiiiiiiii
α-γ-T0

��

αγT0oo

α-T2 // α-T1 // α-T1/2 // α-T0,
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where A→ B represents that A implies B.

Example 3.11. The converse of Theorem 3.9 (1) for i = 0 is not true in general.
Consider X = {a, b, c} and τ = {φ,X, {a}, {b}, {a, b}} be a topology on X. For each
A ∈ αO(X) we define γ on αO(X) by

Aγ =


{a, c} if A = {a},
{a, b} if A = {b},
{a, b} if A = {a, b},
X if A = X,
φ if A = φ.

Then, X is not αγT0. Indeed, for every αγ-open set Va containing a, we have b ∈ Va,
for every αγ-open set Vb containing b, we have a ∈ Vb. By Definition 3.1 (2) the
space X is not αγT0. Moreover, the space X is α-γ-T0.

Example 3.12. The converse of Theorem 3.9 (2) is not true in general. Consider
X = {a, b, c} with the discrete topology τ on X. For each A ∈ αO(X) we define γ
on αO(X) by

Aγ =

{
A if A = {a, b} or {a, c} or {b, c},
X otherwise.

Then, it is shown directly that each singleton is αγ-closed in (X, τ). By Theorem
3.6, X is α-γ-T1. But, we can show that Uγ ∩ V γ 6= φ holds for any α-open sets U
and V . This implies X is not α-γ-T2.

Example 3.13. The converse of Theorem 3.9 (3) and (4) are not true in general.
Consider X = {a, b, c} and τ = {φ,X, {a}, {a, b}, {a, c}} be a topology on X. For
each A ∈ αO(X) we define γ on αO(X) by Aγ = A. Then, it is shown directly that
each singleton is αγ-closed or αγ-open in (X, τ). By Theorem 3.5, X is both α-γ-
T1/2 and αγ-T1/2. However, by Theorem 3.6, X is not α-γ-T1, in fact, a singleton
{a} is not αγ-closed.

Example 3.14. The converse of Theorem 3.9 (5) is not true in general. Consider
X = {a, b, c} and τ = {φ,X, {a}, {a, b}} be a topology on X. For each A ∈ αO(X)
we define γ on αO(X) by

Aγ =

{
A if A = {a} or {a, b},
X otherwise.

Then, X is not α-γ-T1/2 because a singleton {b} is neither αγ-open nor αγ-closed.
It is shown directly that X is αγT0.
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Example 3.15. Some converses of Theorem 3.9 (6) are not true in general. Consider
X = {a, b, c} and τ = {φ,X, {c}} be a topology on X. For each A ∈ αO(X), we
define γ on αO(X) by Aγ = A. Then, X is α-γ-Ti but it is not γ-Ti for i = 0, 1/2.

Example 3.16. The converse of Theorem 3.9 (7) is not true in general. Consider
X = {a, b, c} with the discrete topology τ on X. For each A ∈ αO(X) we define γ
on αO(X) by Aγ = A. Then, X is α-Ti but it is not α-γ-Ti for i = 0, 1/2, 1, 2.

Proposition 3.17. If (X, τ) is αγD0, then αγT0.

Proof. Suppose that X is αγD0. Then for each distinct pair x, y ∈ X, at least one
of x, y, say x, belongs to an αγD-set G but y /∈ G. Let G = U1 \ U2 where U1 6= X
and U1, U2 ∈ αO(X, τ)γ . Then x ∈ U1, and for y /∈ G we have two cases: (a) y /∈ U1,
(b) y ∈ U1 and y ∈ U2.
In case (a), x ∈ U1 but y /∈ U1.
In case (b), y ∈ U2 but x /∈ U2.
Thus in both the cases, we obtain that X is αγT0.

Proposition 3.18. If (X, τ) is αγD0, then α-γ-T0.

Proof. Follows from Proposition 3.17 and Theorem 3.9 (1).

Corollary 3.19. If (X, τ) is αγD1, then it is α-γ-T0.

Proof. Follows from ([2], Remark 3.7 (3)) and Proposition 3.18.

Proposition 3.20. Let (X, τ) be an α-γ-T1/2 topological space and γ be an α-
regular operation on αO(X). If αγker({x}) 6= X for a point x ∈ X, then {x} is an
αγD-set of (X, τ).

Proof. Since αγker({x}) 6= X for a point x ∈ X, then there exists a subset U ∈
αO(X, τ)γ such that {x} ⊆ U and U 6= X. Using Proposition 3.4, for the point x,
we have {x} is αγ-open or αγ-closed in (X, τ). When the singleton {x} is αγ-open,
{x} is an αγD-set of (X, τ). When the singleton {x} is αγ-closed, then X \ {x} is
αγ-open in (X, τ). Put U1 = U and U2 = U ∩ (X \ {x}). Then, {x} = U1 \ U2,
U1 ∈ αO(X, τ)γ and U1 6= X. It follows from the hypothesis that U2 ∈ αO(X, τ)γ
and so {x} is an αγD-set.

Proposition 3.21. For an α-γ-T1/2 topological space (X, τ) with at least two
points, (X, τ) is an αγD1 space if and only if αγker({x}) 6= X holds for every
point x ∈ X.
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Proof. Necessity: Let x ∈ X. For a point y 6= x, there exists an αγD-set U such
that x ∈ U and y /∈ U . Say U = U1 \ U2, where Ui ∈ αO(X, τ)γ for each i ∈ {1, 2}
and U1 6= X. Thus, for the point x, we have an αγ-open set U1 such that {x} ⊆ U1

and U1 6= X. Hence, αγker({x}) 6= X.
Sufficiency: Let x and y be a pair of distinct points of X. We prove that there

exist αγD-sets A and B containing x and y, respectively, such that y /∈ A and x /∈ B.
Using Proposition 3.4, we can take the subsets A and B for the following four cases
for two points x and y.
Case1. {x} is αγ-open and {y} is αγ-closed in (X, τ). Since αγker({y}) 6= X, then
there exists an αγ-open set V such that y ∈ V and V 6= X. Put A = {x} and
B = {y}. Since B = V \ (X \ {y}), then V is an αγ-open set with V 6= X and
X \ {y} is αγ-open, and B is a required αγD-set containing y such that x /∈ B.
Obviously, A is a required αγD-set containing x such that y /∈ A.
Case 2. {x} is αγ-closed and {y} is αγ-open in (X, τ). The proof is similar to Case
1.
Case 3. {x} and {y} are αγ-open in (X, τ). Put A = {x} and B = {y}.
Case 4. {x} and {y} are αγ-closed in (X, τ). Put A = X \ {y} and B = X \ {x}.
For each case of the above, the subsetsA andB are the required αγD-sets. Therefore,
(X, τ) is an αγ-D1 space.

Definition 3.22. A point x ∈ X which has only X as the αγ-neighbourhood is
called an αγ-neat point.

Proposition 3.23. For an αγT0 topological space (X, τ), the following are equiv-
alent:

1. (X, τ) is αγD1;

2. (X, τ) has no αγ-neat point.

Proof. (1) ⇒ (2): Since (X, τ) is αγD1, then each point x of X is contained in an
αγD-set A = U \ V and thus in U . By definition U 6= X. This implies that x is not
an αγ-neat point.

(2) ⇒ (1): If X is αγT0, then for each distinct pair of points x, y ∈ X, at least
one of them, x (say) has an αγ-neighbourhood U containing x and not y. Thus, U
which is different from X is an αγD-set. If X has no αγ-neat point, then y is not an
αγ-neat point. This means that there exists an αγ-neighbourhood V of y such that
V 6= X. Thus, y ∈ V \ U but not x and V \ U is an αγD-set. Hence, X is αγD1.

Corollary 3.24. An αγT0 space X is not αγD1 if and only if there is a unique
αγ-neat point in X.
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Proof. We only prove the uniqueness of the αγ-neat point. If x and y are two αγ-
neat points in X, then since X is αγT0, at least one of x and y, say x, has an
αγ-neighbourhood U containing x but not y. Hence U 6= X. Therefore x is not an
αγ-neat point which is a contradiction.

Definition 3.25. A topological space (X, τ) with an operation γ on αO(X), is said
to be αγ-symmetric if for x and y in X, x ∈ αγCl({y}) implies y ∈ αγCl({x}).

Proposition 3.26. If (X, τ) is a topological space with an operation γ on αO(X),
then the following are equivalent:

1. X is an αγ-symmetric space;

2. {x} is αγ-g.closed, for each x ∈ X.

Proof. (1) ⇒ (2): Assume that {x} ⊆ U ∈ αO(X)γ , but αγCl({x}) 6⊆ U . Then
αγCl({x}) ∩X \ U 6= φ. Now, we take y ∈ αγCl({x}) ∩X \ U , then by hypothesis
x ∈ αγCl({y}) ⊆ X \ U and x /∈ U , which is a contradiction. Therefore {x} is
αγ-g.closed, for each x ∈ X.

(2) ⇒ (1): Assume that x ∈ αγCl({y}), but y /∈ αγCl({x}). Then {y} ⊆
X \αγCl({x}) and hence αγCl({y}) ⊆ X \αγCl({x}). Therefore x ∈ X \αγCl({x}),
which is a contradiction and hence y ∈ αγCl({x}).

Proposition 3.27. If a topological space (X, τ) is αγ-symmetric, then {x} is α-γ-
g.closed, for each x ∈ X.

Proof. Follows from Theorem 2.3 and Proposition 3.26.

Corollary 3.28. If a topological space (X, τ) with an operation γ on αO(X) is an
α-γ-T1 space, then it is αγ-symmetric.

Proof. Since every singleton is αγ-closed according to Theorem 3.6, we have it is
αγ-g.closed. Then by Proposition 3.26, (X, τ) is αγ-symmetric.

Corollary 3.29. For a topological space (X, τ) with an operation γ on αO(X), the
following statements are equivalent:

1. (X, τ) is αγ-symmetric and αγT0;

2. (X, τ) is α-γ-T1.

Proof. By Theorem 3.6, Corollary 3.28 and ([2], Remark 3.7 (1)), it suffices to prove
only (1)⇒ (2):

Let x 6= y and as (X, τ) is αγT0, we may assume that x ∈ U ⊆ X \ {y} for
some U ∈ αO(X)γ . Then x /∈ αγCl({y}) and hence y /∈ αγCl({x}). There exists an
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αγ-open set V such that y ∈ V ⊆ X \ {x} and thus by Theorem 3.6, X is an α-γ-T1
space.

Proposition 3.30. If (X, τ) is an αγ-symmetric space with an operation γ on
αO(X), then the following statements are equivalent:

1. (X, τ) is an αγT0 space;

2. (X, τ) is an αγT 1
2

space;

3. (X, τ) is an α-γ-T1 space.

Proof. (1)⇔ (3) : Obvious from Corollary 3.29.
(3) ⇒ (2) and (2) ⇒ (1): Directly from Theorem 3.5 and Theorem 3.9 (4) and

(5).

Corollary 3.31. For an αγ-symmetric space (X, τ), the following are equivalent:

1. (X, τ) is αγT0;

2. (X, τ) is αγD1;

3. (X, τ) is α-γ-T1.

Proof. (1)⇒ (3). Follows from Corollary 3.29.
(3) ⇒ (2) ⇒ (1): Follows from Theorem 3.6, ([2], Remark 3.7 (2) and (3)) and

Proposition 3.17.

Definition 3.32. A topological space (X, τ) with an operation γ on αO(X), is said
to be αγR0 if U is an αγ-open set and x ∈ U then αγCl({x}) ⊆ U .

Proposition 3.33. For a topological space (X, τ) with an operation γ on αO(X),
the following properties are equivalent:

1. (X, τ) is αγR0;

2. For any F ∈ αC(X)γ , x /∈ F implies F ⊆ U and x /∈ U for some U ∈ αO(X)γ ;

3. For any F ∈ αC(X)γ , x /∈ F implies F ∩ αγCl({x}) = φ;

4. For any distinct points x and y of X, either αγCl({x}) = αγCl({y}) or
αγCl({x}) ∩ αγCl({y}) = φ.
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Proof. (1) ⇒ (2): Let F ∈ αC(X)γ and x /∈ F . Then by (1), αγCl({x}) ⊆ X \ F .
Set U = X \ αγCl({x}), then U is an αγ-open set such that F ⊆ U and x /∈ U .

(2) ⇒ (3): Let F ∈ αC(X)γ and x /∈ F . There exists U ∈ αO(X)γ such that
F ⊆ U and x /∈ U . Since U ∈ αO(X)γ , U ∩αγCl({x}) = φ and F ∩αγCl({x}) = φ.

(3) ⇒ (4): Suppose that αγCl({x}) 6= αγCl({y}) for distinct points x, y ∈ X.
There exists z ∈ αγCl({x}) such that z /∈ αγCl({y}) (or z ∈ αγCl({y}) such that
z /∈ αγCl({x})). There exists V ∈ αO(X)γ such that y /∈ V and z ∈ V , hence x ∈ V .
Therefore, we have x /∈ αγCl({y}). By (3), we obtain αγCl({x}) ∩ αγCl({y}) = φ.

(4) ⇒ (1): Let V ∈ αO(X)γ and x ∈ V . For each y /∈ V , x 6= y and
x /∈ αγCl({y}). This shows that αγCl({x}) 6= αγCl({y}). By (4), αγCl({x}) ∩
αγCl({y}) = φ for each y ∈ X \V and hence αγCl({x})∩ (

⋃
y∈X\V αγCl({y})) = φ.

On other hand, since V ∈ αO(X)γ and y ∈ X \ V , we have αγCl({y}) ⊆ X \ V and
hence X \ V =

⋃
y∈X\V αγCl({y}). Therefore, we obtain (X \ V ) ∩ αγCl({x}) = φ

and αγCl({x}) ⊆ V . This shows that (X, τ) is an αγR0 space.

Proposition 3.34. A topological space (X, τ) with an operation γ on αO(X) is
α-γ-T1 if and only if (X, τ) is αγT0 and αγR0.

Proof. Necessity: Let U be any αγ-open set of (X, τ) and x ∈ U . Then by Propo-
sition 3.6, we have αγCl({x}) ⊆ U and so by Proposition 3.9 , it is clear that X is
αγT0 and an αγR0 space.

Sufficiency: Let x and y be any distinct points of X. Since X is αγT0, there
exists an αγ-open set U such that x ∈ U and y /∈ U . As x ∈ U implies that
αγCl({x}) ⊆ U . Since y /∈ U , so y /∈ αγCl({x}). Hence y ∈ V = X \ αγCl({x})
and it is clear that x /∈ V . Hence it follows that there exist αγ-open sets U and V
containing x and y respectively, such that y /∈ U and x /∈ V . Therefore, by Theorem
3.6 implies that X is α-γ-T1.

Proposition 3.35. For a topological space (X, τ) with an operation γ on αO(X),
the following properties are equivalent:

1. (X, τ) is αγR0;

2. x ∈ αγCl({y}) if and only if y ∈ αγCl({x}), for any points x and y in X.

Proof. (1) ⇒ (2): Assume that X is αγR0. Let x ∈ αγCl({y}) and V be any αγ-
open set such that y ∈ V . Now by hypothesis, x ∈ V . Therefore, every αγ-open set
which contain y contains x. Hence, y ∈ αγCl({x}).

(2)⇒ (1): Let U be an αγ-open set and x ∈ U . If y /∈ U , then x /∈ αγCl({y}) and
hence y /∈ αγCl({x}). This implies that αγCl({x}) ⊆ U . Hence (X, τ) is αγR0.

Remark 3.36. From Definition 3.25 and Proposition 3.35, the notions of αγ-
symmetric and αγR0 are equivalent.
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Proposition 3.37. A topological space (X, τ) with an operation γ on αO(X)
is αγR0 if and only if for every x and y in X, αγCl({x}) 6= αγCl({y}) implies
αγCl({x}) ∩ αγCl({y}) = φ.

Proof. Necessity: Suppose that (X, τ) is αγR0 and x, y ∈ X such that αγCl({x}) 6=
αγCl({y}). Then, there exists z ∈ αγCl({x}) such that z /∈ αγCl({y}) (or z ∈
αγCl({y}) such that z /∈ αγCl({x})). There exists V ∈ αO(X)γ such that y /∈ V and
z ∈ V , hence x ∈ V . Therefore, we have x /∈ αγCl({y}). Thus x ∈ [X \αγCl({y})] ∈
αO(X)γ , which implies αγCl({x}) ⊆ [X \αγCl({y})] and αγCl({x})∩αγCl({y}) =
φ.

Sufficiency: Let V ∈ αO(X)γ and x ∈ V . We show that αγCl({x}) ⊆ V .
Let y /∈ V , that is y ∈ X \ V . Then x 6= y and x /∈ αγCl({y}). This shows
that αγCl({x}) 6= αγCl({y}). By assumption, αγCl({x}) ∩ αγCl({y}) = φ. Hence
y /∈ αγCl({x}) and therefore αγCl({x}) ⊆ V .

Proposition 3.38. A topological space (X, τ) with an operation γ on αO(X) is
αγR0 if and only if for any points x and y in X, αγker({x}) 6= αγker({y}) implies
αγker({x}) ∩ αγker({y}) = φ.

Proof. Suppose that (X, τ) is an αγR0 space. Thus by Proposition 2.4, for any points
x and y in X if αγker({x}) 6= αγker({y}) then αγCl({x}) 6= αγCl({y}). Now we
prove that αγker({x})∩αγker({y}) = φ. Assume that z ∈ αγker({x})∩αγker({y}).
By z ∈ αγker({x}) and Proposition 2.5, it follows that x ∈ αγCl({z}). Since
x ∈ αγCl({x}), by Proposition 3.33, αγCl({x}) = αγCl({z}). Similarly, we have
αγCl({y}) = αγCl({z}) = αγCl({x}). This is a contradiction. Therefore, we have
αγker({x}) ∩ αγker({y}) = φ.

Conversely, let (X, τ) be a topological space such that for any points x and y in
X, αγker({x}) 6= αγker({y}) implies αγker({x})∩αγker({y}) = φ. If αγCl({x}) 6=
αγCl({y}), then by Proposition 2.4, αγker({x}) 6= αγker({y}). Hence, αγker({x})∩
αγker({y}) = φ which implies αγCl({x}) ∩ αγCl({y}) = φ. Because z ∈ αγCl({x})
implies that x ∈ αγker({z}) and therefore αγker({x})∩αγker({z}) 6= φ. By hypoth-
esis, we have αγker({x}) = αγker({z}). Then z ∈ αγCl({x}) ∩ αγCl({y}) implies
that αγker({x}) = αγker({z}) = αγker({y}). This is a contradiction. Therefore,
αγCl({x}) ∩ αγCl({y}) = φ and by Proposition 3.33, (X, τ) is an αγR0 space.

Proposition 3.39. For a topological space (X, τ) with an operation γ on αO(X),
the following properties are equivalent:

1. (X, τ) is αγR0;

2. For any non-empty set A and G ∈ αO(X)γ such that A ∩G 6= φ, there exists
F ∈ αC(X)γ such that A ∩ F 6= φ and F ⊆ G;
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3. For any G ∈ αO(X)γ , we have G = ∪{F ∈ αC(X)γ : F ⊆ G};

4. For any F ∈ αC(X)γ , we have F = ∩{G ∈ αO(X)γ : F ⊆ G};

5. For every x ∈ X, αγCl({x}) ⊆ αγker({x}).

Proof. (1) ⇒ (2): Let A be a non-empty subset of X and G ∈ αO(X)γ such
that A ∩ G 6= φ. There exists x ∈ A ∩ G. Since x ∈ G ∈ αO(X)γ implies that
αγCl({x}) ⊆ G. Set F = αγCl({x}), then F ∈ αC(X)γ , F ⊆ G and A ∩ F 6= φ.

(2)⇒ (3): Let G ∈ αO(X)γ , then G ⊇ ∪{F ∈ αC(X)γ : F ⊆ G}. Let x be any
point of G. There exists F ∈ αC(X)γ such that x ∈ F and F ⊆ G. Therefore, we
have x ∈ F ⊆ ∪{F ∈ αC(X)γ : F ⊆ G} and hence G = ∪{F ∈ αC(X)γ : F ⊆ G}.

(3)⇒ (4): Obvious.
(4) ⇒ (5): Let x be any point of X and y /∈ αγker({x}). There exists V ∈

αO(X)γ such that x ∈ V and y /∈ V , hence αγCl({y}) ∩ V = φ. By (4), (∩{G ∈
αO(X)γ : αγCl({y}) ⊆ G}) ∩ V = φ and there exists G ∈ αO(X)γ such that
x /∈ G and αγCl({y}) ⊆ G. Therefore αγCl({x}) ∩ G = φ and y /∈ αγCl({x}).
Consequently, we obtain αγCl({x}) ⊆ αγker({x}).

(5) ⇒ (1): Let G ∈ αO(X)γ and x ∈ G. Let y ∈ αγker({x}), then x ∈
αγCl({y}) and y ∈ G. This implies that αγker({x}) ⊆ G. Therefore, we obtain
x ∈ αγCl({x}) ⊆ αγker({x}) ⊆ G. This shows that X is an αγR0 space.

Corollary 3.40. For a topological space (X, τ) with an operation γ on αO(X), the
following properties are equivalent:

1. (X, τ) is αγR0;

2. αγCl({x}) = αγker({x}) for all x ∈ X.

Proof. (1)⇒ (2): Suppose thatX is an αγR0 space. By Proposition 3.39, αγCl({x}) ⊆
αγker({x}) for each x ∈ X. Let y ∈ αγker({x}), then x ∈ αγCl({y}) and by
Proposition 3.33, αγCl({x}) = αγCl({y}). Therefore, y ∈ αγCl({x}) and hence
αγker({x}) ⊆ αγCl({x}). This shows that αγCl({x}) = αγker({x}).

(2)⇒ (1): Follows from Proposition 3.39.

Proposition 3.41. For a topological space (X, τ) with an operation γ on αO(X),
the following properties are equivalent:

1. (X, τ) is αγR0;

2. If F is αγ-closed, then F = αγker(F );

3. If F is αγ-closed and x ∈ F , then αγker({x}) ⊆ F ;
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4. If x ∈ X, then αγker({x}) ⊆ αγCl({x}).

Proof. (1)⇒ (2): Let F be an αγ-closed and x /∈ F . Thus (X \F ) is an αγ-open set
containing x. Since (X, τ) is αγR0, αγCl({x}) ⊆ (X \F ). Thus αγCl({x})∩F = φ
and by Proposition 2.6, x /∈ αγker(F ). Therefore αγker(F ) = F .

(2) ⇒ (3): In general, A ⊆ B implies αγker(A) ⊆ αγker(B). Therefore, it
follows from (2), that αγker({x}) ⊆ αγker(F ) = F .

(3)⇒ (4): Since x ∈ αγCl({x}) and αγCl({x}) is αγ-closed, by (3), αγker({x}) ⊆
αγCl({x}).

(4) ⇒ (1): We show the implication by using Proposition 3.35. Let x ∈
αγCl({y}). Then by Proposition 2.5, y ∈ αγker({x}). Since x ∈ αγCl({x}) and
αγCl({x}) is αγ-closed, by (4), we obtain y ∈ αγker({x}) ⊆ αγCl({x}). There-
fore x ∈ αγCl({y}) implies y ∈ αγCl({x}). The converse is obvious and (X, τ) is
αγR0.

Definition 3.42. A topological space (X, τ) with an operation γ on αO(X), is said
to be αγR1 if for x, y in X with αγCl({x}) 6= αγCl({y}), there exist disjoint αγ-open
sets U and V such that αγCl({x}) ⊆ U and αγCl({y}) ⊆ V .

Proposition 3.43. A topological space (X, τ) with an operation γ on αO(X) is
αγR1 if it is αγT2.

Proof. Let x and y be any points of X such that αγCl({x}) 6= αγCl({y}). By ([2],
Remark 3.7 (1)), every αγT2 space is αγT1. Therefore, by Theorem 3.6, αγCl({x}) =
{x}, αγCl({y}) = {y} and hence {x} 6= {y}. Since (X, τ) is αγT2, there exist disjoint
αγ-open sets U and V such that αγCl({x}) = {x} ⊆ U and αγCl({y}) = {y} ⊆ V .
This shows that (X, τ) is αγR1.

Proposition 3.44. For a topological space (X, τ) with an operation γ on αO(X),
the following are equivalent:

1. (X, τ) is αγT2;

2. (X, τ) is αγR1 and αγT1;

3. (X, τ) is αγR1 and αγT0.

Proof. Straightforward.

Proposition 3.45. For a topological space (X, τ) with an operation γ on αO(X),
the following statements are equivalent:

1. (X, τ) is αγR1;
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2. If x, y ∈ X such that αγCl({x}) 6= αγCl({y}), then there exist αγ-closed sets
F1 and F2 such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2 and X = F1 ∪ F2.

Proof. Obvious.

Proposition 3.46. If (X, τ) is αγR1, then (X, τ) is αγR0.

Proof. Let U be αγ-open such that x ∈ U . If y /∈ U , since x /∈ αγCl({y}), we have
αγCl({x}) 6= αγCl({y}). So, there exists an αγ-open set V such that αγCl({y}) ⊆ V
and x /∈ V , which implies y /∈ αγCl({x}). Hence αγCl({x}) ⊆ U . Therefore, (X, τ)
is αγR0.

Remark 3.47. The converse of the above proposition need not be ture in general
as shown in the following example.

Example 3.48. Consider X = {1, 2, 3} with the discrete topology τ on X. Define
an operation γ on αO(X) by

Aγ =

{
A if A = {1, 2} or {1, 3} or {2, 3}
X otherwise.

Then, X is an αγR0 space but not αγR1.

Corollary 3.49. A topological space (X, τ) with an operation γ on αO(X) is αγR1

if and only if for x, y ∈ X, αγker({x}) 6= αγker({y}), there exist disjoint αγ-open
sets U and V such that αγCl({x}) ⊆ U and αγCl({y}) ⊆ V .

Proof. Follows from Proposition 2.4.

Proposition 3.50. A topological space (X, τ) is αγR1 if and only if x ∈ X \
αγCl({y}) implies that x and y have disjoint αγ-open neighbourhoods.

Proof. Necessity: Let x ∈ X \ αγCl({y}). Then αγCl({x}) 6= αγCl({y}), so, x and
y have disjoint αγ-open neighbourhoods.

Sufficiency: Firstly, we show that (X, τ) is αγR0. Let U be an αγ-open set and
x ∈ U . Suppose that y /∈ U . Then, αγCl({y}) ∩ U = φ and x /∈ αγCl({y}). There
exist αγ-open sets Ux and Uy such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = φ. Hence,
αγCl({x}) ⊆ αγCl(Ux) and αγCl({x}) ∩ Uy ⊆ αγCl(Ux) ∩ Uy = φ. Therefore,
y /∈ αγCl({x}). Consequently, αγCl({x}) ⊆ U and (X, τ) is αγR0. Next, we show
that (X, τ) is αγR1. Suppose that αγCl({x}) 6= αγCl({y}). Then, we can assume
that there exists z ∈ αγCl({x}) such that z /∈ αγCl({y}). There exist αγ-open sets
Vz and Vy such that z ∈ Vz, y ∈ Vy and Vz ∩ Vy = φ. Since z ∈ αγCl({x}), x ∈ Vz.
Since (X, τ) is αγR0, we obtain αγCl({x}) ⊆ Vz, αγCl({y}) ⊆ Vy and Vz ∩ Vy = φ.
This shows that (X, τ) is αγR1.
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