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1. Introduction

Let Ap (p is a fixed integer ≥ 1) denote the class of functions f of the form

f(z) = zp + ap+1z
p+1 + · · · (1.1)

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, ...} . Let S be the
subclass of A1 = A, consisting of univalent functions. The Hankel determinant of f
for q ≥ 1 and n ≥ 1 was defined by Pommerenke [12] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (1.2)

This determinant has been considered by several authors in the literature. One can
easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then further
generalized the estimate |a3−µa22| with µ real and f ∈ S. Further sharp bounds for
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the functional |a2a4 − a23| represents the Hankel determinant in the case of q = 2
and n = 2, known as the second Hankel determinant (functional), given by

H2(2) =
a2 a3
a3 a4

= a2a4 − a23, (1.3)

were obtained, for various subclasses of univalent and multivalent functions. Noonan
et.al [9] was studied determined growth rate of second Hankel determinant of an a
really mean p−valent function. For our discussion in this paper, we consider the
Hankel determinant in the case of q = 3 and n = p, denoted by H3(p), given by

H3(p) =
ap ap+1 ap+2

ap+1 ap+2 ap+3

ap+2 ap+3 ap+4

. (1.4)

For f ∈ Ap, ap = 1, so that, we have

H3(p) = ap+2

(
ap+1ap+3 − a2p+2

)
− ap+3

(
ap+3 − ap+1ap+2

)
+ ap+4

(
ap+2 − a2p+1

)
and by applying triangle inequality, we obtain

|H3(p)| ≤ |ap+2||ap+1ap+3 − a2p+2|+ |ap+3||ap+1ap+2 − ap+3|+ |ap+4||ap+2 − a2p+1|.
(1.5)

The sharp upper bound to the second Hankel functional, H2(2), for the subclass
RT of S consisting of functions whose derivative has a real part, studied by Mac
Gregor [8] was obtained by Janteng et al. [6]. For f ∈ RTp, the sharp upper

bound to H3(p) was obtained by Vamshee Krishna et al. [14]. For f ∈ R̃Tp,

| ap+1ap+3 − a2p+2| ≤
[

2p
(p+2)

]2
was obtained by Venkateswarlu et al. [16]. DVK et

al. [15] was obtained | ap+1ap+3 − a2p+2| ≤
[

2p
(p+2)

]2
for f ∈ R̃Tp.

Motivated by the result obtained by Babalola [2] in finding the sharp upper
bound to the Hankel determinant in this paper, we obtain an upper bound to the
functional |ap+1ap+2− ap+3| and hence for |H3(p)|, for the function f given in (1.1),

belonging to the class R̃Tp, defined as follows.

Definition 1. A function f ∈ Ap is said to be function whose reciprocal derivative
has a positive real part (also called reciprocal of bounded turning functions), denoted

by f ∈ R̃Tp, if and only if

Re

[
pzp−1

f ′(z)

]
> 0, ∀ z ∈ E. (1.6)

For choice if p = 1, we obtain R̃T1 = R̃T . Some preliminary lemmas required for
proving our result are as follows:

90



B. Venkateswarlu, D. Vamshee Krishna, N. Rani – Third Hankel determinant . . .

2. Preliminary Results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... =

[
1 +

∞∑
n=1

cnz
n

]
, (2.1)

which are regular in the open unit disc E and satisfy Re{p(z)} > 0 for any z ∈ E.
Here p(z) is called the Caratheòdory function [3].

Lemma 1. [11, 13] If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function 1+z

1−z .

Lemma 2. [5] The power series for p(z) = 1 +
∞∑
n=1

cnz
n given in (2.1) converges in

the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3, · · ·

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
m∑
k=1

ρkP0(e
itkz), ρk > 0, tk real and tk 6= tj , for k 6= j, where P0(z) =

(
1+z
1−z

)
; in this

case Dn > 0 for n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2, for
n = 2, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,

which is equivalent to

2c2 = c21 + x(4− c21), for some x, |x| ≤ 1. (2.2)

For n = 3,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

≥ 0.
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and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)

From the relations (2.2) and (2.3), after simplifying, we get

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z,
for some real value of z, with |z| ≤ 1. (2.4)

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [7] and used by several authors in the literature.

3. Main Result

Theorem 1. If f(z) ∈ R̃Tp then

| ap+1ap+2 − ap+3| ≤

[ √
2p(p2 + 3p+ 6)

3
2

3
√

3(p+ 1)(p+ 2)(p+ 3)

]
.

Proof. For f(z) = zp +
∞∑

n=p+1
anz

n ∈ R̃T p, there exists an analytic function p ∈ P

in the open unit disc E with p(0) = 1 and Re{p(z)} > 0 such that

pzp−1

f ′(z)
= p(z) ⇔ pzp−1 = p(z)f ′(z). (3.1)

Using the series representations for f ′(z) and p(z) in (3.1), we have

pzp−1 =
(

1 +
∞∑
n=1

cnz
n
)(
pzp−1 +

∞∑
n=p+1

nanz
n−1
)
.

Upon simplification, we obtain

0 = {c1p+ (p+ 1)ap+1} zp + {c2p+ c1(p+ 1)ap+1 + (p+ 2)ap+2} zp+1

+ {c3p+ c2(p+ 1)ap+1 + c1(p+ 2)ap+2 + (p+ 3)ap+3} zp+2

+ {c4p+ c3(p+ 1)ap+1 + c2(p+ 2)ap+2 + c1(p+ 3)ap+3 + (p+ 4)ap+4} zp+3 + · · · .
(3.2)
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Equating the coefficients of like powers of zp, zp+1, zp+2 and zp+3 respectively in
(3.2), we can now write

ap+1 =
−pc1

(p+ 1)
; ap+2 =

p

p+ 2
(c21 − c2); ap+3 =

−p
p+ 3

(c3 − 2c1c2 + c31);

ap+4 =
−p
p+ 4

(3c2c
2
1 − 2c3c1 − c41 − c22 + c4). (3.3)

Substituting the values of ap+1, ap+2 and ap+3 from (3.3) in the functional

| ap+1ap+2 − ap+3 | for the function f ∈ R̃Tp, after simplifying, we get

| ap+1ap+2−ap+3| =
p

(p+ 1)(p+ 2)(p+ 3)

∣∣∣ 2c31−c1c2(p2+3p+4)+c3(p+1)(p+2)
∣∣∣.

(3.4)
Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2 on the right-hand side of (3.4), we have

| 2c31 − c1c2(p2 + 3p+ 4) + c3(p+ 1)(p+ 2)| =
∣∣∣ 2c31 −

c1(p
2 + 3p+ 4)

2
{c21 + x(4− c21)}

+
(p+ 1)(p+ 2)

4
{c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}

∣∣∣.
Using the fact | z |< 1, after simplifying, we get

4| 2c31 − c1c2(p2 + 3p+ 4) + c3(p+ 1)(p+ 2)| ≤
∣∣∣8c31 − 2c1{c21 + x(4− c21)}(p2 + 3p+ 4)

+ (p+ 1)(p+ 2){c31 + 2c1(4− c21)x+ 2(4− c21)− x2(4− c21)(c1 − 2)}
∣∣∣. (3.5)

Since c1 = c ∈ [0, 2], using the result (c1 + a) ≥ (c1 − a), where a ≥ 0, applying
triangle inequality and replacing |x| by µ on the right-hand side of (3.5), we have

4| 2c31 − c1c2(p2 + 3p+ 4) + c3(p+ 1)(p+ 2)| ≤
∣∣∣c3(p2 + 3p− 2)

+ 2(4− c2)(p+ 1)(p+ 2) + 4c(4− c2)µ+ (c− 2)(4− c2)µ2(p+ 1)(p+ 2)
∣∣∣

= F (c, µ) , 0 ≤ µ =| x |≤ 1 and 0 ≤ c ≤ 2. (3.6)

We next maximize the function F (c, µ) on the closed region [0, 2] × [0, 1]. Differen-
tiating F (c, µ) given in (3.6) partially with respect to µ, we obtain

∂F

∂µ
= 2
[
µ(c− 2)(p+ 1)(p+ 2) + 2c

]
(4− c2) > 0. (3.7)

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.7), we observe that ∂F
∂µ > 0.

Therefore, F (c, µ) becomes an increasing function of µ and hence it cannot have
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a maximum value at any point in the interior of the closed region [0, 2] × [0, 1].
Moreover, for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

G(c) = − 8c3 + 4c(p2 + 3p+ 6) (3.8)

G′(c) = − 24c2 + 4(p2 + 3p+ 6) (3.9)

G′′(c) = − 48c. (3.10)

For optimum value of G(c), consider G′(c) = 0. From (3.9), we get

c2 =
p2 + 3p+ 6

6
.

Using the obtained value of c =
√

p2+3p+6
6 in (3.10), then

G′′(c) = − 48

√
p2 + 3p+ 6

6
< 0, for p ∈ N.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

p2+3p+6
6 .

Substituting the value of c in the expression (3.8), upon simplification, we obtain
the maximum value of G(c) as

Gmax = 16
[p2 + 3p+ 6

6

] 3
2
. (3.11)

From the expressions (3.6) and (3.11), we obtain

| 2c31 − c1c2(p2 + 3p+ 4) + c3(p+ 1)(p+ 2)| ≤ 4
[p2 + 3p+ 6

6

] 3
2
. (3.12)

Simplifying the relations (3.4) and (3.12), we obtain

| ap+1ap+2 − ap+3| ≤

[ √
2p(p2 + 3p+ 6)

3
2

3
√

3(p+ 1)(p+ 2)(p+ 3)

]
. (3.13)

This completes the proof of our Theorem.
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Remark 1. For the choice of p = 1, from (3.13), we obtain |a2a3 − a4| ≤ 1
6

(
5
3

) 3
2 ,

obtained by Babalola [2] and Venkateswarlu et al. [16]. From this we conclude
that, for p = 1, the sharp upper bound to the |ap+1ap+2 − ap+3| of a function
whose derivative has a positive real part for p−valent function and a function whose
reciprocal derivative has a positive real part for p−valent function is the same.

The following theorem is a straight forward verification on applying the same
procedure as described in Theorem 1 and the result is sharp for the values c1 =
0, c2 = 2 and x = 1.

Theorem 2. If f ∈ R̃Tp then | ap+2 − a2p+1| ≤
[

2p
p+2

]
.

Using the fact that |cn|, n ∈ N = {1, 2, 3, · · · }, with the help of c2 and c3
values given in (2.2) and (2.4) respectively together with the values in (3.3), we
obtain |ak| ≤ 2p

k , where k ∈ {p+ 1, p+ 2, p+ 3, · · · }.

Substituting the results of Theorems 1, 2, |ak| ≤ 2p
k where

k ∈ {p+ 1, p+ 2, p+ 3, · · · } and | ap+1ap+3−a2p+2| ≤
[

2p
(p+2)

]2
in (1.5), we obtain

the following corollary.

Corollary 3. If f(z) ∈ R̃Tp then

| H3(p)| ≤
2p2

p+ 2

[
4p

(p+ 2)2
+

√
2(p2 + 3p+ 6)

3
2

3
√

3(p+ 1)(p+ 3)2
+

2

p+ 4

]
. (3.14)

Remark 2. For the choice p = 1, from the expressions (3.14), we obtain |H3(1)| ≤
0.7422. These inequalities are sharp and coincide with the results of Babalola [2]
and Venkateswarlu et al. [16]. From this we conclude that, for p = 1, the sharp
upper bound to the third Hankel determinant of a function whose derivative has a
positive real part for p−valent function and a function whose reciprocal derivative
has a positive real part for p−valent function is the same.

References

[1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays.
Math. Sci. Soc. (second series), 26(1), (2003), 63 - 71.

[2] K. O. Babalola, On H3(1) Hankel determinant for some classes of Uni-valent
Functions, Inequ. Theory and Appl. , 6, (2010), 1-7.

[3] P. L. Duren, Univalent functions, vol. 259 of Grundlehren der Mathematischen
Wissenschaften, Springer, New York, USA, (1983).

95



B. Venkateswarlu, D. Vamshee Krishna, N. Rani – Third Hankel determinant . . .

[4] A. W. Goodman, Univalent functions Vol. I and Vol. II, Mariner publishing
Comp. Inc. , Tampa, Florida, (1983).
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