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ABSTRACT. In this paper, we introduced (e,) — S—manifold and give some
examples about (e,) — S—manifold. Moreover, we studied real hypersurfaces of an
(€a) — S— manifold.
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1. INTRODUCTION

In 1963, Yano [10] introduced the notion of f-structure on a C* m-dimensional
manifold M, as a non-vanishing tensor field ¢ of type (1,1) on M which satisfies
©> + ¢ = 0 and has constant rank r. It is known that r is even, say r = 2n.
Moreover, T'M splits into two complementary subbundles Im¢y and ker ¢ and the
restriction of ¢ to Imp determines a complex structure on such subbundle. It is
also known that the existence of an f-structure on M is equivalent to a reduction
of the structure group to U(n) x O(s) [2], where s = m — 2n. In 1970, Goldberg
and Yano [7] introduced globally frame f-manifolds. A wide class of globally frame
f-manifolds was introduced in [2] by Blair according to the following definition: a
metric f-structure is said to be a K-structure if the fundamental 2—form ®, defined
usually as ®(X,Y) = g(X, ¢Y), for any vector fields X and Y on M, is closed and
the normality condition holds, that is, [¢,¢] + 2> i dn' @ & = 0, where [p, ¢
denotes the Nijenhuis torsion of ¢. In /9], let M a (2n + s)—dimensional metric
f—manifold. If there exists 2-form ® such that n' A ... An* A ®" # 0 on M then
M is called an almost s—contact metric manifold. An almost s—contact metric
manifold M is called almost S—manifold if & = dn®, 1 < a < s. A normal almost
S—manifold M is called S—manifold. The S-manifolds have been studied by several
authors (see, for instance, [3, 4, 8]).

In [1] Bejancu and Duggal show the existence of (¢€)-almost contact metric struc-
tures and give examples of (€)-Sasakian manifold. They introduced (e)-Sasakian
manifolds which enclose the class of usual Sasakian manifolds. They investigated the
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induced structures on real hypersurfaces of an indefinite Kaehler manifold and stud-
ied some particular classes of such structures. In [6], Duggal introduced Lorentzian
globally framed manifolds.

In this paper, we introduced (e,) — S-manifolds which enclose the class of usual
S—manifolds. It has to be noted that in the definition of an (e,) — S—manifold it
is essential that the causal characters of the all characteristic vector fields of the
structure is preserved. We give some examples of (e,) — S-structures on R2"*s,
In the framework of Riemannian geometry, (€,) — S-manifolds represent a natural
generalization of (€, )-Sasakian manifolds. In addition, we studied real hypersurfaces
of (€4) — S—manifolds.

2. (€a)ALMOST S-MANIFOLDS

Let differentiable manifold M be a (2n + s) —dimensional manifold with an f-
structure of rank 2n. If there are s global vector fields &,,a € {1,...,s} and the
1-forms on M satisfying the following conditions

PP =—T+Y "0 1" () =03, 1<a,B<s (2.1)
a=1
then M is said to have a framed f—structure (¢,&q,1q), and M is called a framed
manifold or framed f—manifold. Tt follows that

n*op=0, ¢()=01<a<s. (2.2)

Let (M,¢,€0,M0,9) be a (2n+ s)-dimensional framed manifold and a semi-
Riemannian metric ¢ on M with index v,0 < v < (2n+s) . Then (¢,&n, N, 9)
is called an indefinite metric f—structure and (M, ¢, &q, Mo, g) is called an indefinite
metric f—manifold, if ¢ is skew-symmetric with respect to; that is;

ge(X),Y)+g(X,0(Y))=0

for any X,Y € I'(T'M).
We now, g semi-Riemannian metric on M with index , 0 < v < (2n + s) . That

satisfies
S

9l (X), 0 (V) = g(X,Y) = > ean® (X) 0™ (Y) (2.3)
a=1
n* (X) = €ag (X, &) (2.4)
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for each, X,Y € I'(TM) and any « € {1, ..., s} where ¢, = £1 according to whether
&, are space-like or time-like and

€a = ¢ (Sou éoz) (2'5)

[5]. This follows as a consequence of the fact that on M we many consider an
orthonormal frame {F1, ..., E,, o(F1), ..., p(Fn), &1, ..., &} with E; € T'(£) and such
that g(E;, E;) = g(p(Es), ¢(E;)), where L={X e I'(TM),n*(X) =0, 1 < a < s}.
We consider the fundamental 2-form ® on the an indefinite metric f—structure
defined by

P(X,Y)=9g(X,p(Y)), VX, Y e I(TM). (2.6)

Let M a (2n + s)—dimensional indefinite metric f—manifold. If there exists 2-
form @ such that n' A ... An® A ®" # 0 on M then M is called an almost s-contact
indefinite metric manifold.

Let (M, p,&4,n", g) be an almost s—contact indefinite metric manifold. If for
all ¢, = g(€aéa) , @ = 1,...,s are the same causel character then M is called
an (eq) —almost s—-contact manifold (the causal character of the all characteristic
vector fields of the structure are preserved).

Thus we have the following new classes of manifolds.

1) ¢ = 1 for all @ € {1,...,s} and v = 2r, M is called a space-like almost
s—contact metric manifold.

2) eq =—1 forall € {l,...,s} and v =2r+s, M is called a time-like almost
s—contact metric manifold.

A space-like or time-like almost s-contact metric manifold is called an (e,) —almost
S-contact metric manifold. If an (e,) —almost s-contact metric manifold is normal
then M is called an (eq) — S—contact metric manifold.

Theorem 1. Let (p,&n,n%, g) be an almost S—contact structure and gy a metric on
semi-Riemannian manifold such that all characteristic vector fields &, (a=1,...,s)
are non-null and the same causal character. Then there exist on M a (1,2) type
symmetric tensor field g satisfying (2.3).

Proof. Two semi-Riemannian metrics are defined g1 = —fy—‘; Jo where v = go(&as &),
a=1,...,s and g such that

JXY) = 31" (X), 0 (V) + Y _ean™ (X) 1 (Y),  VX,Y € D(TM).
a=1

Thus, we have n% (X) = €, (X, &) and €4 = § (€a,&n) , @ = 1, ..., 5. In addition, we
denote by M the distribution spanned by the structure vector fields &1, . . ., &5 and by
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L its orthogonal complementary distribution with respect to g;.Since §1(X,&,) =0
and g1 (éa,éa) = —€a @ =1,..., 5 we get

g X, X)=q(X,X) VXeIl(L).

Hence, ¢ is a semi-Riemannian metric on M of the same index as §; is on £. A
symmetric tensor field g is defined by

9(XY) = (X, Y) +3(eX. oY) + Yean® (X)0* (V)}  ¥X,Y € D(TM),

a=1

Therefore, we get g (§a,&a) = €0 , @ =1,..., s and

9(pX,pY) = %{ﬁ(sz,«pY)+§(902X,¢2Y)+Zean“(X)n“(Y)}
a=1

s

= g(X,Y) =) ean™ (X)n* (V).

a=1

An (e,) —almost s—contact manifold M is called an (eq) —almost S—manifold
if
o (X,)Y)=dn*(X,Y),1<a<s.

We recall that an (e,) —almost S—manifold (M, ¢, &y, n®) is normal if

[0, 0] +2) dn® ® &y =0

a=1

where [p, ¢] is the Nijenhuis tensor field associated to .

An (eq) —almost S—structure which is normal is called an (ey) — S—structure.
A manifold endowed with an (e,) — S—structure is an (e,) — S—manifold.

If we have s = 1,v = 0 then M is Riemannian Sasakian manifold. If s = 1 then
(€a) — S—manifold M is (¢) —Sasaki manifold, resent studied an important subclass
by Bejancu and Duggal of the second class is Lorentzian Sasakian manifold (s = 1,
e=—1,v=1).

1) e = 1 for all @ € {1,...;s} and v = 2r, M is called a space-like almost
S—manifold.

2) eq = —1 forall ae€{l,...,s} and v=2r+s, M is called a time-like almost
S'—manifold.
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Theorem 2. Let (M, p,&.,n%, g) be an (e4) — almost s—contact manifold. Then
we have

20(Vx9)Y,Z) = 3d®(X,0(Y),0(2)) - 3d®(X,Y, Z) + g(N'(Y, Z), p(X))
+§8:1 ea{N2(Y, Z)n™ (X) + 2dn* (p(Y), X )™ (X)
—2dn*(p(Z), X)n™ (Y)}
Proof. We know that Kozsul formula is given by
29(VxY,Z) = Xg(Y,2)+Yg(X,Z) - Zg(X,Y)
+9([X, Y], Z2) + 9([Z, X],Y) — 9([Y, Z], X)

for all X,Y,Z € I'(T'M).By direct calculations using Kozsul formula, (2.3) and
(2.6), we get the desired result.

Theorem 3. Let (M, p,&n,n%, g) be an (ey) — s—contact manifold. M is an (e,) —
S—manifold if and only if

(Vx@)V =D {g(¢X,¢Y) & +ean™ (V) 9*(X)} VX, Y € [(TM)

a=1
where V is the Levi-Civita connection with respect to g.

Proof. Assume that M is an (e¢,) — S—manifold. From the Theorem 2, we have
9(Vxe)V,Z) = Y ea{dn®(p(Y), X)n* (X) — dn*((2), X)n* (YV)}
a=1

= > ca{9(e(Y), 0(X))n™ (X) = g((2), o(X))n™ (¥V)}

=g (Z(g(so(Y),w(X))ﬁa +ean™ (Y) soz(X)),Z) -

a=1
Conversely, if we take Y = ¢, in the hypothesis then we get

s

(Vxp)&y = Z e (&) 902(X)'

7=1

Thus, we have
—pVx&y = 60°(X)
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Using (2.1), we get
Vx&y = —e,0X.

On the other hand, we get
(Le,9)(X,Y) = 9(Vx&y, Y) + g(X, Vy&y) = 0.
That is; for all (y =1,...,s) &, are killing vector fields. Therefore, we have
d(X,Y) = —,9(X,Vy&) + ,9(Y, Vx&y) —g(X,9Y) = ®(X,Y), v =1,2,...,s.
for all X,Y € I'(T'M). In addition, the Nijenhuis torsion of ¢ is obtained
No(X,Y) = =2) g(X,pY)E,
=1
Hence, we have

el +2) dnf @6 =0.
=1

The proof is completed.

Corollary 4. Let (M, p, &4, 0%, g) be an (e5) — S—manifold. Then we have
Vxéa = —€ap (X)), VX e T(TM). (2.7)

Corollary 5. Characteristic vector fields &, for all 1 < a < s on an (€,) —
S—manifold are Killing vector fields .
We consider s = 1 then we have following the corollaries.

Corollary 6. [1] An (e)— almost contact metric manifold M is an (¢)— Sasakian
manifold if and only if

(Vxp)Y =g (X,)Y)¢—en(Y)X, VXY eI(TM).
Corollary 7. [1] Let M be an (¢)— Sasakian manifold. Then we have
Vxé=—epX, VX eI'(TM)
and & is a killing vector field.

Now, we give an example.
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Example 1. The first example of an (e,) — S—manifold (RZ"“, go,fa,na,g) where
for any a € {1, ..., s} we consider r # s and r < n. Thus, we defined

[ -1, o<i<r
TV 1L, G+D<i<n

where €, = £1 , for all a € {1, ..., s}.
Now we consider another case r = 0. In this case, we have € = +1 for all
i € {1,...,n}. Then, we consider (:c’,y’,za), i=1,...,nand a=1,....s as cartesian

coordinates on R*™ 5 and define with respect a tensor field of frames {8?:“ 821- , 8%}

a tensor field of type (1,1) by its matriz.

On’n In OTL,S
)= | ~In Opn Ons (2.8)
Os,n €'y’ 08,8 (2n+s)x (2n+s)
where
[ely! ey [~y -y oy Y
[y] = -
ely! . ey (o) I TR T Vi y" ] ()

The differential 1-form n® are defined by

n* = % {dza — Zr:eiyidxi — Zs: ei*yi*dazi*} (2.9)

=1 *=r+1

nt = %a {dza + iyidrm — i yi*dazi*}

i=1 *=r+1
ifr #0 and
€a - i, _a_ Ca ~
na:Q{dza—;eyd:vi} —na—2{dza—;y dmi} (2.10)
if r=0.
The vector fields &, are defined by
§a =26, 0, 1<a<s. (2.11)
Oz
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It is easy to check (2.1) and thus (p,&n,n") is a space-like almost S-structure on
R*F$ for each i € {1,...,n}. Finally, we define the semi-Riemannian metric g by
the matrix

€6 + eelylyl elyleryl” Orr  Oppey AT
€ eyter yj* e 0" 4 et e yz* y]* On—r,r On—r,n—r BT
a '
[g] = 5 Or,r Or,nfr €'o" Qr,nf?f Or,s
Onfr,r Onfr,nfr Onfr,r € 0v/ Onfr,s
A B Os,r Os,n—r 5aﬁ
(2.12)
where
—Elyl _eryr yl yr
A= . . = 1. .
—c'y! eyl W V'
and
_67‘+1 y7"+1 . X _enyn _y'/'-‘rl . . _yn
B = . .. . = .
_€T+1yT+1 T _enyn sx(n—r) _y”‘+1 T _yn X (n—r)

Then, we defined the semi-Riemannian metric g by the matriz

Y —l— yjyj . ‘*_yiyj: . On,r Or,n—r yi'*
c —y'y? o +yt Onfr,r Onfr,nfr -y’
(6%
[g] = ? Or,r Or,n—r _IT OT»”—T 07’75
Onﬁr,r Onfr,(l*T O"*Tﬂ” In—r Onfr,s
yz —y] Os,n Os,n—r Is (2n+s)x (2n+s)
for r # 0,and
. €169 + eieinyly On,n Y’ o 8ij +y'y’ On,n Y
l9] = 9 Omn 07 Ops| = 2 0”’,” 07 Ons
yz Os,n Is yz 037” IS (2n+s) X (2n+s)
forr=0.

With respect to the natural field on frames. In order to help the reader to see the
right form of [g] we write it down forn=4,r=1 and s =3:

r 2

-1+ (yl) —yly? —ytyd —yty* 0 0 0 0 yt y! yt

1,2 _ 242 2 3 2. 4 _ _ _
v v, 1 +2(y ) vy, vy, 6 0 0 0 y2 vz Y2
7y1y4 y2y4 -1 E(Z ) vy 452 0 0 0 o 7y4 7y4 7y4

-y y Yoy yoy -1+ (y%) 0 0 0 0 -y -y -y

€ 0 0 0 0 —1 0 0 0 o o o
[g] = -5 0 0 0 0 0 1 0 o0 o o o
0 0 0 0 o 0 1 o0 o o o

0 0 0 0 0 0 0 1 0 0 0

y! —y? —y3 —yt 0 0 0 0 1 0 0

y! —y —y3 —y* 0 0 0 0 0 1 0

yt —y —y3 —y 0 0 0 0 0 0 1

T 11x11
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An orthonormal field of frames with respect to the semi-Riemannian metric (2.12)
is

S S
E;=2g8, Eir=25, soEi:2{;;,+ Zeiyia}=2{fﬁ—a§1yiaga},
S
goEi*:2{a,f 1"*3/1-*86}—2{696* Zyz*a}, §a = 2€, o
a= Fo

Ozq Oz
where 1 <i<r,r4+1<i"<nandl<a<s.

It is easy to check that (p, £, 1%, g) given by (2.8)—(2.12) is an (e, ) —S—structure
on R?"FS for any i € {1,...,n}. In case r = 0 and ¢, = 1 for all a € {1,...,s} we
obtain the classical S—structure on R?"*¢.In other cases, we get either a Space—like
S—structure on R3" (e, = 1 for all @ € {1,..., s}, r = s) or time-like S—structure
on RS (e = —1 for all « € {1, ..., s}, r # 0).The Lorentz S—structure is ob-

2(n—s)+1
tain from the latter forr=nand v =1 .

3. REAL HYPERSURFACES OF (€,) —S—MANIFOLDS

3.1. The Induced (¢,) —S—Structure of The Different Rank as the
Ambient Manifolds

Let M be a real (2n + s) —dimensional (¢,) — S—manifold. M is an orientable
non-degenerate real hypersurface of M. For this, consider are orthonormal basis
{Ey,... En,0E1, ..., pEpn, &1, ..., &} of TM. Let N be the normal vector field of M.
We denoted &541 = @N.Thus we have

X = fX +w(X)N (3.1)

where w (X) =g (X, N). In addition, we have

"7a (N) = €a (N7 §a> =0, (3'2)
G (€s+1,85+1) = g (N, pN) =g (N, N) Zeoﬂ? N)=9g(N,N)
G(N,N) =€en = €541 (3.3)

and G (€s+1, N) =G (¢N, N) = 0. In addition, we have

(§s+17§a) = ( N, ga) =—g (Nv (Pga) = 07 §S+1 € F(TM)

G(pX,&11) =T (0X,oN) =g (X, N) = Y “ean™ (X) 0™ (N) =0

a=1
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and
JeX,N)=g(fX+w(X)N,N)=g(fX,N) +w(X)g(N,N).
Thus, we get
w(X)=g(pX,N) = -5 (X, pN) = =g (X,&41) = —esan” (X)),
X = [X — e (N) (3.4)
where
77$+1(X) = €s+1§(X> §s+1) = €s+1§(Xa QON)'

Lemma 8. M be a real (2n + s) —dimensional (e,) — S—manifold. The tensor field
of type (1.1), f on a real hypersurface M of M proved as follow

s+1
fP=-I+> 1"®&. (3.5)
a=1
Proof. From (3.5), we have
X = fX —n*TH(X)N. (3.6)

Thus, we obtain

o’ (X) =

Hence, we get
FAX) = @ (X)+ 7" (X)Esn
= X+ ZUQ(X)fa + 77N (X)€epn

s+1

= —X+) " (X)ka
a=1

Lemma 9. Let M be a real (2n + s) —dimensional (e,) — S—manifold. Then f is
the tensor field of type (1.1), f is f—structure on the real hypersurface M of M that
18,

P+f=o.
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Proof. Using (3.6) we have
s+1
FUX) ==X+ n"(X)f (%) = —FX
a=1
for all X € I'(T'M).

Lemma 10. Let M be a real (2n + s)-dimensional (e,) —S—manifold and M be a is
real hypersurface of M. Then f is skew-symmetric with respect to semi-Riemannian
metric g induced by g on M ; that is, for any X, Y € T'(TM)

9(fX,Y) +9(X, fY) = 0.
Proof. From (3.5) we get
g(fX.Y) = g(pX + " H(X)N,Y) = —g(X, pY).
In similar, we have

g(X, fY) = g(X, oY +n"T(Y)N)
= g(X,9Y) + 0" (Y)g(X,N).

It is completed the proof.

We now denote by {£,} for any a € {1, ..., s} the distribution spanned by &, on
M and by £ complementary orthogonal distribution to &, in I'(T'M). The projection
morphism of I'(T'M) to L is denote by P. Hence any vector field X on M is written

as follow
s+1

X =PX =) n*(X)é
a=1

Where n® are 1—forms on M defined by n%(X) = e49(X, &) - So, we get

n%(€s) = bap, [ 2(X) =X+ 0" (X)&

Moreover, we get

by using (3.3).
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Theorem 11. Let M be a real hypersurface of (€n) — S—manifold, and A be a
symmetric tensor field of type (1,1). The (eq) — S—structure on M immersed in an
() — S—manifold M satisfies

s+1

(VXY =Y {eag(AX,Y)é — n™(Y)AX} (3.7)
a=1
(Vxi®)Y = eag(fAX,Y) (3.8)

for any X,Y e T'(TM).

Proof. (i)This suggest to put, for any a € {1, ..., s}, A = foV&,, i.e., for any vector
field X on M

AX = f(Vx&a) (3.9)
where A is the of type (1, 1) tensor field. Since
FAX = —Vxéa (3.10)
we have
s+1
f(Vxéa) = —AX +) 1" (AX) &, (3.11)
a=1
s+1
9(Vx /)Y, 2) Z {dn™ (FY, X) 0™ (Z) = dn® (f 2, X) 0™ (Y)}, (3.12)
((fo) Y,Z2)=g9(Vx (fY) - f(VxY), 2). (3.13)

If we replace Y by &, in (3.13) we get

9(Vxf)éa: Z) = —g(f (Vx&a), 2).
If we replace Y by &, in (3.12) we get

s+1
9(Vx ) e Z) = =Y dn*(fZ,X). (3.14)
a=1
In similar, we have
9(Vxf)&a,Y) = —9(f (Vx&a),Y). (3.15)
We put (3.14) and (3.15) at (3.12) then
s+1
g(Vx )Y, Z) = —Z{g (Vx&a), Y)n*(2) = 9(f(Vx&a), Z)n*(Y)}
s+1

= Z {eag(f(Vx&a), Y)éa — f(Vx&a)n™(Y)}, 2).
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Since g is non-degenerate metric, and from (3.11) then

s+1

(VxHY = > {eag(f(Vx&a), V)l = F(VxEa)n™(V)}
a=1

s+1

= Y {eag(AX,Y)éa —n™(Y)(AX)} .
a=1

ii) We take covariant derivative of n“(Y’) then we get
Vx (1*(Y)) = Vx (€ag (Y, &a))

(VXﬁa)(Y) + TIa (VXY) = €adg (VXY7 ga) + €ag (vaav Y) :

Therefore, we have

(Vxn*)(Y) = €ag (Vx&a,Y) = €ag (fAX,Y).

Theorem 12. Let M be a real hypersurface of (€o) — S—manifold. Then the fol-
lowing assertions are equivalent
(i) f is parallel on M
(ii) n® is parallel on M
(iii) &, is parallel on M
(iv) A is a symmetric tensor field A of type (1,1) satisfies

s+1
AX = i {(n* (AX) &}, VX € T(TM).

a=1
Proof. (i) = (ii)Let f be parallel on M. Then by using (3.8) we get

s+1
0= (Vxf)Y Z{n Y)AX — cag(AX,Y)éa} -

s+1 s+1
If wereplace Y by &,, we get AX = > eqag(AX,Y ). Thus fAX = > eng(AX,Y)f(&) =
a=1 a=1

0. Therefore, we have

(Vxn®)Y = eag(fAX,Y) = 0;

i.e. n® are parallel on M.
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(19) = (i7i)Let n be parallel on M. Then by using (3.8) and (3.9) we get
(Vxn)Y = eag(fAX,Y) =0, VY € I(TM).
Since g is non-degenerate metric then
JAX =0 =-Vx&u

i.e. &, are parallel on M.
(iii) = (iv)By using (3.10), we get Vx&, = —fAX = 0.Thus f?>X = 0.Hence

s+1
AX = 217)0‘ (AX)&,.
(iv) = (i) If we replace Y by &, in (3.7), we get

(va>§oc =0.

Theorem 13. Let M be a real hpersurface of (e) —S—manifold. Then the following
assertions are equivalent

(1) M is an (eq) — S manifold

(ii) The &, -characteristic vector field satisfies (2.7)

(ii1) A is the symmetric tensor field of type (1,1) satisfies

s+1
AX =X + ) {n*(A&) — €a} n*(X)éa.
a=1

Proof. (i) = (ii) If we replace Y by &, then we get

s+1

(Vx)éa =D {9(X, &) o — can® (Ca) X} (3.16)

a=1

On the other hand, we know

(Vxf)éa = Vx (fa) = [ (Vx&a)-
From (3.16), we get

s+1

—f (nga) = Z {Eana (X) §a — €o¢X} )
a=1
Vxéy = —€o fX. (3.17)
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(1) = (477) From (3.10) and (3.17), we have €, fX = fAX. Using (3.8), we get

s+1
AX = PAX =) n"(AX)a. (3.18)
a=1
From (3.18) we have
s+1 s+1
eaf(PX 4+ n*(X)&) = F(PAX + ) n*(AX)&),
a=1 a=1
cafPX = fPAX,
caPX = PAX. (3.19)

If we replace X by &, in (3.18), we get

s+1

Ay =D 0 (Al)E
a=1

By using (3.18) and (3.19) we have

s+1
AX = PAX—i—Zeag(AX,Ea)fa
a=1
s+1 s+1
= €PX+)Y cag(X,> n%(A)éa)la
a=1 a=
s+1
= @WPX + S (O (A
a=1
s+1 s+1 s+1
= e, PX— ZEW (PX)é + Zean (Ala)n® (PX)éa + Zn “(Aba)éa
a=1 a=1
s+1 s+1 s+1
= e PX — Zeana(PX)ﬁa + Zeana(Aﬁa) (PX)éa + ZW “(ALa)n” (€a)éa
a=1 a=1 a=1
s+1 s+1
_Zean ga + Zean a ga
a=1

s+1

s+1 s+1
= Z'ﬂ X)éa) — €an™(PX — Zna(x)fa)fa + 1% (Ala)n™ (PX — Zna(x)fa)fa
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(131) = (i) From (3.13), we have

s+1
(Vx)Y = Z{n Y)AX — eag(AX,Y)E0}

s+1 s+1
= Z{ “ <€aX Z (Ala) — €a)n® (X)£a>

a=1

s+1
—€ag ((%zX Z (Aa) — €a)n” (X)£a> »Y> ga}
s+1

= D {9(X,Y)E — ean®(Y)X}.
a=1
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