doi: 10.17114/j.aua.2016.46.13

# UNIVALENCE CONDITIONS FOR AN INTEGRAL OPERATOR DEFINED OUTSIDE THE UNIT DISK

## VIRGIL PESCAR

ABSTRACT. In this paper we obtain the univalence conditions for an integral operator defined outside the unit disk.

2010 Mathematics Subject Classification: 30C45.

Keywords: Univalence, integral operator.

### 1. Introduction

We consider the unit disk  $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$  and outside the unit disk  $\mathcal{U}^- = \{z \in \mathbb{C} : |z| > 1\}$ .

Let  $\mathcal{A}$  be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

normalized by f(0) = f'(0) - 1 = 0, which are analytic in the open unit disk  $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}.$ 

We denote  $\Sigma_0$  the class of functions  $g(\xi) = \xi + \frac{b_1}{\xi} + \frac{b_2}{\xi^2} + ...$ , which are regular outside the unit disk  $\mathcal{U}^-$ .

In this paper we use the following lemmas.

**Lemma 1.** (Pascu [1]). Let  $\alpha$  be a complex number,  $Re \alpha > 0$  and  $f \in \mathcal{A}$ . If

$$\frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad \forall z \in \mathcal{U}, \tag{1}$$

then the function

$$F_{\alpha}(z) = \left[ \alpha \int_{0}^{z} u^{\alpha - 1} f'(u) du \right]^{\frac{1}{\alpha}}$$
 (2)

is regular and univalent in U.

**Lemma 2.** (Pescar [2]). Let  $\alpha$  be complex number, Re  $\alpha > 0$ , c be a complex number,  $|c| \leq 1$ ,  $c \neq -1$  and  $f \in \mathcal{A}$ ,  $f(z) = z + a_2 z^2 + \dots$ 

$$\left| c|z|^{2\alpha} + (1 - |z|^{2\alpha}) \frac{zf''(z)}{\alpha f'(z)} \right| \le 1, \quad \forall z \in \mathcal{U}, \tag{3}$$

then the function

$$F_{\alpha}(z) = \left[ \alpha \int_0^z u^{\alpha - 1} f'(u) du \right]^{\frac{1}{\alpha}}$$
 (4)

is regular and univalent in  $\mathcal{U}$ .

# 2. Main results

**Theorem 3.** Let  $\alpha$  be a complex numbers,  $Re \ \alpha > 0$  and  $h \in \Sigma_0$ . If

$$\frac{|\xi|^{2Re \alpha} - 1}{|\xi|^{2Re \alpha}} \left| \left( 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right) \frac{1}{Re \alpha} \right| \le 1, \tag{1}$$

for all  $\xi \in \mathcal{U}^-$ , then the function

$$H_{\alpha}(\xi) = \left[ \alpha \int_0^{\frac{1}{\xi}} u^{\alpha - 3} \frac{h'(\frac{1}{u})}{h^2(\frac{1}{u})} du \right]^{-\frac{1}{\alpha}}$$
 (2)

is regular and univalent in  $\mathcal{U}^-$ .

*Proof.* Since  $h \in \Sigma_0$ , it results that  $h(\frac{1}{z})$  is regular in  $\mathcal{U} - \{0\}$  and

$$f(z) = \frac{1}{h(\frac{1}{z})}\tag{3}$$

in  $\mathcal{U}$ .

The function h has a simple pole at  $\xi = \infty$  and hence it results that the function f is regular in z = 0, where it has a simple zero, such that the function f has the form

$$f(z) = \frac{1}{h(\frac{1}{z})} = z + \cdots$$
 (4)

From (4) we obtain

$$\frac{zf''(z)}{f'(z)} = -\left(2 + \frac{1}{z}\frac{h''(\frac{1}{z})}{h'(\frac{1}{z})} - \frac{2}{z}\frac{h'(\frac{1}{z})}{h(\frac{1}{z})}\right). \tag{5}$$

Then

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| = \frac{|\xi|^{2Re \ \alpha} - 1}{|\xi|^{2Re \ \alpha}} \left| \left( 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right) \frac{1}{Re \ \alpha} \right|, \tag{6}$$

where  $\xi = \frac{1}{z}$ .

From (6) and (1) we obtain

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,\tag{7}$$

for all  $z \in \mathcal{U}$ .

From Lemma 1 it results that the function  $F_{\alpha}$  defined by (2) is regular and univalent in  $\mathcal{U}$ , hence

$$F_{\alpha}(z) = \left[\alpha \int_0^z u^{\alpha - 1} f'(u) du\right]^{\frac{1}{\alpha}} = z + a_2 z^2 + \cdots$$
 (8)

Replacing in (4)  $z = \frac{1}{\xi}$  we obtain

$$F_{\alpha}(\frac{1}{\xi}) = \left[ \alpha \int_{0}^{\frac{1}{\xi}} u^{\alpha - 1} \frac{1}{u^{2}} \frac{h'(\frac{1}{u})}{h^{2}(\frac{1}{u})} du \right]^{\frac{1}{\alpha}}, \tag{9}$$

which is regular and univalent in  $\mathcal{U}^-$ . The function  $F_{\alpha}(z)$  is regular, univalent in  $\mathcal{U}$  and  $F_{\alpha}(0) = 0$ . Hence it results that  $F_{\alpha}(z) \neq 0$  for all  $z \in \mathcal{U} - \{0\}$ , and the function

$$H_{\alpha}(\xi) = \frac{1}{F_{\alpha}(\frac{1}{\xi})} = \left[ \alpha \int_{0}^{\frac{1}{\xi}} u^{\alpha - 3} \frac{h'(\frac{1}{u})}{h^{2}(\frac{1}{u})} du \right]^{-\frac{1}{\alpha}}$$
(10)

is regular and univalent in  $\mathcal{U}^-$ .

Corollary 4. Let be the function  $h \in \Sigma_0$ .

If

$$(|\xi|^2 - 1) \left| \left[ 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right] \right| \le 1, \tag{11}$$

for all  $\xi \in \mathcal{U}^-$ , then the function h is regular and univalent in  $\mathcal{U}^-$ .

*Proof.* Substituing  $\alpha = 1$  in the relation (9) we obtain

$$F_1\left(\frac{1}{\xi}\right) = \int_0^{\frac{1}{\xi}} \frac{1}{u^2} \frac{h'(\frac{1}{u})}{h^2(\frac{1}{u})} du = \left. \frac{1}{h(\frac{1}{u})} \right|_0^{\frac{1}{\xi}} = \frac{1}{h(\xi)}. \tag{12}$$

If  $h \in \Sigma_0$ , then  $\frac{1}{h(\infty)} = 0$ , such that the function

$$H_1(\xi) = h(\xi)$$
, where  $H_1(\xi) = \frac{1}{F_1(\frac{1}{\xi})}$ .

From Theorem 3 we obtain that the function h is univalent in  $\mathcal{U}^-$ .

**Theorem 5.** Let  $\alpha$  be a complex number,  $Re \ \alpha > 0$ , c be a complex number,  $|c| \le 1$ ,  $c \ne -1$  and  $h \in \Sigma_0$ .

$$\frac{1}{||\xi|^{2\alpha}|} \left| \left[ c + \left( |\xi|^{2\alpha} - 1 \right) \left( 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right) \frac{1}{\alpha} \right] \right| \le 1, \tag{13}$$

for all  $\xi \in \mathcal{U}^-$ , then the function  $H_\alpha$  defined by

$$H_{\alpha}(\xi) = \left[ \alpha \int_0^{\frac{1}{\xi}} u^{\alpha - 3} \frac{h'(\frac{1}{u})}{h^2(\frac{1}{u})} du \right]^{\frac{1}{\alpha}}$$
(14)

is regular and univalent in  $\mathcal{U}^-$ .

*Proof.* Because  $h \in \Sigma_0$  we have  $h(\frac{1}{z})$  is regular in  $\mathcal{U} - \{0\}$  and

$$f(z) = \frac{1}{h(\frac{1}{z})}$$

in  $\mathcal{U}$ .

The function h has a simple pole at  $\xi = \infty$  and hence we obtain that the function f is regular in z = 0, where it has a simple zero, such that the function f has the form

$$f(z) = \frac{1}{h(\frac{1}{z})} = z + \cdots$$
 (15)

From (4) we have

$$\frac{zf''(z)}{\alpha f'(z)} = \left[ -2 - \frac{1}{z} \frac{h''(\frac{1}{z})}{h'(\frac{1}{z})} + \frac{2}{z} \frac{h'(\frac{1}{z})}{h(\frac{1}{z})} \right] \frac{1}{\alpha}.$$
 (16)

Then

$$\left| c|z|^{2\alpha} + (1 - |z|^{2\alpha}) \frac{zf''(z)}{\alpha f'(z)} \right| =$$

$$= \frac{1}{||\xi|^{2\alpha}|} \left| \left\{ c + (|\xi|^{2\alpha} - 1) \frac{1}{\alpha} \left[ 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right] \right\} \right| \le$$

$$\le \frac{1}{||\xi|^{2\alpha}|} \cdot ||\xi|^{2\alpha}| = 1.$$
(17)

for all  $z \in \mathcal{U}$ . From Lemma 2 it follows that the function  $F_{\alpha}(z)$  defined by (4) is regular and univalent in  $\mathcal{U}$ .

$$F_{\alpha}(z) = \left[\alpha \int_0^z u^{\alpha - 1} f'(u) du\right]^{\frac{1}{\alpha}} = z + a_2 z^2 + \cdots$$

Replacing in (2)  $z = \frac{1}{\xi}$  and  $f(z) = \frac{1}{h(\frac{1}{z})}$ , we have

$$F_{\alpha}(\frac{1}{\xi}) = \left[ \alpha \int_{0}^{\frac{1}{\xi}} u^{\alpha - 1} \frac{1}{u^{2}} \frac{h'(\frac{1}{u})}{h^{2}(\frac{1}{u})} du \right]^{\frac{1}{\alpha}}, \tag{18}$$

which is regular and univalent in  $\mathcal{U}^-$ .

The function  $F_{\alpha(z)}$  is regular, univalent in  $\mathcal{U}$  and  $F_{\alpha}(0) = 0$ . Hence, it results that  $F_{\alpha}(z) \neq 0$  for all  $z \in \mathcal{U} - \{0\}$  and the function

$$H_{\alpha}(\xi) = \frac{1}{F_{\alpha}(\frac{1}{\xi})} = \left[\alpha \int_{0}^{\frac{1}{\xi}} u^{\alpha-3} \frac{h'(\frac{1}{u})}{h^{2}(\frac{1}{u})} du\right]^{-\frac{1}{\alpha}}$$
(19)

is regular and univalent in  $\mathcal{U}^-$ .

Corollary 6. Let c be a complex number,  $|c| \le 1$ ,  $c \ne -1$  and the function  $h \in \Sigma_0$ .

If

$$\left| c + \left( |\xi|^2 - 1 \right) \left[ 2 + \xi \frac{h''(\xi)}{h'(\xi)} - 2\xi \frac{h'(\xi)}{h(\xi)} \right] \right| \le |\xi|^2, \tag{20}$$

for all  $\xi \in \mathcal{U}^-$ , then the function h is univalent in  $\mathcal{U}^-$ .

*Proof.* Substituing  $\alpha = 1$  in the relation (19) we obtain

$$F_1\left(\frac{1}{\xi}\right) = \int_0^{\frac{1}{\xi}} \frac{1}{u^2} \frac{h'(\frac{1}{u})}{h^2(\frac{1}{u})} du = \left. \frac{1}{h(\frac{1}{u})} \right|_0^{\frac{1}{\xi}} = \frac{1}{h(\xi)}. \tag{21}$$

(if  $h \in \Sigma_0$ , then  $\frac{1}{h(\infty)} = 0$ ), such that the function

$$H_1(\xi) = h(\xi)$$
, where  $H_1(\xi) = \frac{1}{F_1(\frac{1}{\xi})}$ .

From Theorem 5 we obtain that the function h is univalent in  $\mathcal{U}^-$ .

### References

- [1] Pascu, N.N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow (Braşov), Preprint (1987), 43-48.
- [2] Pescar, V., A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malayesian Math. Soc. (Second Series), 19(1996), 53-54.
- [3] Pommerenke, Ch., *Univalent functions*, Mariner Publishing Company, Inc., 1984.
- [4] Nehari, Z., Conformal Mapping, McGraw-Hill book Comp., New York, 1952 (Dover.Publ.Inc., 1975).
- [5] Mocanu, T.P., Bulboacă, T., Sălăgean Şt.G., Teoria geometrică a funcțiilor univalente, Editura Cărții de Știință, Cluj, 1999.
  - [6] Goodman, A.W., Univalent functions, Mariner Publishing Company Inc., 1984.
- [7] Pescar, V., Breaz, V. D., The univalence of integral operators, Academic Publishing House, Sofia, 2008.

## Virgil Pescar

Department of Mathematics, Faculty of Mathematics and Computer Science, "Transilvania" University of Braşov,

500091 Braşov, Romania

email: virgilpescar@unitbv.ro