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UNIVALENCE CONDITIONS FOR AN INTEGRAL OPERATOR
DEFINED OUTSIDE THE UNIT DISK
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ABSTRACT. In this paper we obtain the univalence conditions for an integral
operator defined outside the unit disk.
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1. INTRODUCTION

We consider the unit disk 4 = {z € C: |z| < 1} and outside the unit disk U~ =
{zeC:|z| > 1}.
Let A be the class of functions f of the form

flz) =2+ Z%Z”,
n=2

normalized by f(0) = f’(0) —1 = 0, which are analytic in the open unit disk
U={zeC:|z] <1}
We denote ¥y the class of functions g(§) = & + %1 + 2—% + .., which are regular

outside the unit disk U~
In this paper we use the following lemmas.

Lemma 1. (Pascu [1]). Let o be a complex number, Re o > 0 and f € A. If

1— ’Z|2Rea Zf”(z)
e o ) <1, Vzel, (1)
then the function
Fu(2) = [04 /OZ uo‘lf’(u)du} . (2)

1s reqular and univalent in U.
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Lemma 2. (Pescar [2]). Let a be complex number, Re o > 0, ¢ be a complex
number, |c| <1, c# —1 and f € A, f(2) =z +azz® +....
If

2f"(2)
af'(z)

clz|** + (1 = [2**)

<1, Vzel, (3)

then the function

is reqular and univalent in U.

2. MAIN RESULTS

Theorem 3. Let a be a complex numbers, Re a > 0 and h € Xg.

If

—2¢

MW%Q—lK B () - 0

M@U |
eprea |2

h() ) Re «

for all £ € U™, then the function

1 11
Ho(§) = [a/OE ua*?’h (1{)

h*(3)

u

1
du] (2)
s regular and univalent in U™ .
Proof. Since h € ¥, it results that h(2) is regular in & — {0} and

1

&=

3)

ISEI=

in .

The function h has a simple pole at £ = oo and hence it results that the function
f is regular in z = 0, where it has a simple zero, such that the function f has the
form

1

O

=z+--- (4)

W=
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From (4) we obtain

2f"(2) _ ) 2n()
re (2 EVCRE h(i)) / )
Then
1— |Z’2Rea zf”(z) B |§’2Rea -1 h//(é-) hl(é) 1
Re o frz) | [gfPhee ’ <2 +¢ n(E) 2 h(€) > Re a (6)
where £ = %
From (6) and (1) we obtain
1— |Z|2Rea Zf”(z)
Re « 1(2) <1, (7)

for all z € U.
From Lemma 1 it results that the function F, defined by (2) is regular and
univalent in U, hence

Fo(z) = [a / ua_lf’(u)du] o rap?a-. (8)

0
r, (9)

which is regular and univalent in &/~. The function Fi(z) is regular, univalent in &/
and F,(0) = 0. Hence it results that F,(z) # 0 for all z € & — {0}, and the function

Replacing in (4) z = % we obtain

1, € 1 H(
F“(s)‘[afo u )

u

1

Oé/é ua—3 h/(%)
0 W (3)

u

du] - (10)

is regular and univalent in U ~.

Corollary 4. Let be the function h € Y.
If

e

for all £ € U™, then the function h is regular and univalent in U~ .
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Proof. Substituing a = 1 in the relation (9) we obtain

1
L 1
1 e 1K) 1 ¢ 1
e —/ LG gy = S 12
(o)1 2™ T RD| TR 12
If h € 3y, then ﬁ = 0, such that the function

H1(€) = h(©). where Hi(€) = i,

From Theorem 3 we obtain that the function A is univalent in U~

Theorem 5. Let a be a complex number, Re o« > 0, ¢ be a complex number,
le] <1, ¢# —1 and h € %.

It
U e e KON 1
] {””5‘ g (2+§h’(€) 2€h(§)>aH§1’ (13)

for all € € U™, then the function H, defined by

Q=

1 11
¢ a-3 h (ﬂ)
is reqular and univalent in U™ .
Proof. Because h € ¥ we have h(1) is regular in & — {0} and

1

16 =y

IS

in .

The function h has a simple pole at £ = oo and hence we obtain that the function
f is regular in z = 0, where it has a simple zero, such that the function f has the
form

f(z):h(ll):z—i—--- (15)
From (4) we have
2f"(2) 1ALy 2n()] 1
af'(z) 20 M) " zhl) | o (16)
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Then
20 |2 zf"(2) _
e + (1 =P 2
L o ey Ly MO K
= e [{e P 5 2 25ma]}‘§
< - lleP] = 1. (17)

for all z € Y. From Lemma 2 it follows that the function Fi,(z) defined by (4) is
regular and univalent in .

Fo(z) = [a /OZ ua_lf/(u)du] . z+agz? -

1
h(3)

z

1, € g 1L
lu@‘kéulmmmw

u

, we have

=)
D
o
—
&
.
=}
o
5.
©
N
I
i
&
=}
[N
~»
—~
N
N~—
I

1
e

7 (18)

which is regular and univalent in U ~.
The function F, (. is regular, univalent in ¢/ and F,(0) = 0. Hence, it results
that F,(z) # 0 for all z € U — {0} and the function

I DR PR Sy 67
m@—%@_kéu3wb

is regular and univalent in &~

du] h (19)

Corollary 6. Let ¢ be a complex number, |c| <1, ¢ # —1 and the function h € 3.

If

e+ (e - 1) [2+ €5 - 267 | < e (20)

for all € € U™, then the function h is univalent in U™ .

Proof. Substituing o = 1 in the relation (19) we obtain
S
h(&)’

i (8)= [ i

(if h € Xg, then #Oo) = 0), such that the function

Hy(&) = h(§), where Hy(§) = #%)

From Theorem 5 we obtain that the function A is univalent in U/~

(21)
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