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HYDROMAGNETIC CREEPING FLOW THROUGH A SLIT WITH
EXPONENTIAL ABSORPTION
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Abstract. The present work is concerned with the study of the creeping flow
of a magnetohydrodynamics (MHD) Newtonian fluid through a porous slit with
exponential absorption across the walls. The governing equations of the consid-
ered problem are obtained as two dimensional partial differential equations (PDEs).
Exact solutions of the flow equations lead to detailed expressions for velocity com-
ponents, pressure difference and wall shear stress. It is shown that the magnetic and
the exponential absorption parameter play a vital role in altering the flow properties.
The expressions for fractional absorption and leakage flux are also obtained. The
graphs for velocity components, pressure difference and wall shear stress have been
shown. The velocity vectors are also shown to get a better insight of the flow.
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1. Introduction

The study of the flow of an electrically conducting fluid under the action of transverse
magnetic field through a porous channel or tubes is of practical interest in biolog-
ical and engineering problems, such as glomerular tubule ultrafiltration, proximal
tubule reabsorption, artificial kidney, magnetic resonance imaging, giant magneto
resistive technology, electromyography, impulse magnetic field therapy, gaseous dif-
fusion, insulation of buildings, transpiration cooling, reverse osmosis desalination,
geothermal energy extraction, nuclear reactor, plasma studies, purification of crude
oil and electrostatics precipitation. Berman [1-2] investigated the steady laminar
flow of an incompressible fluid through a porous, two-dimensional channel and tube.
He obtained velocity profile and pressure drop in series form, assuming uniform wall
suction. Later, Sellars [3], Yuan [4] and Terrill [5] extended Berman’s work with a
high suction Reynolds number. Thereafter, Mehta et al. [6] and Terrill et al. [7-8]
studied the effect of uniform transverse magnetic field in the problem of Berman [1],
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and found significant effects of magnetic field parameter on velocity components, ax-
ial pressure and skin friction. Recently, Meena [9] and Rashidi et al [10-11] obtained
approximate solutions for steady, laminar, incompressible, viscous and electrically
conducting fluid through a semi porous channel in the presence of uniform magnetic
field.

Fouling is the process of accumulation of unwanted material at an interface. In
most studies, investigators demonstrated that microorganisms are able to produce
inductive and inhibiting chemical compounds that can block the pores at the sur-
faces of the channels and tubes [12-13]. It is worth mentioning from a physical point
of view that fouling can cause a variable absorption at the surface of the walls,
which gives the evidence of the present study. The movement of particles at low
Reynolds number is of practical interest in the field of chemistry, biomedical and
environmental engineering, for example motion of organisms, sedimentation, coagu-
lation, motion of cells in blood vessels and flow in earth’s mantle. The theoretical
study of Newtonian fluid at low Reynolds number is based on the classical work of
Stokes [14]. Macey [15-16] studied the hydrodynamic of Stokes flow through porous
cylinder, assuming linear and exponential wall absorption along the downstream
distance. Later, Kozinski et al.[17] not only completed solutions of Macey’s work
in tube geometry, but also extended it for porous slit to obtain the expression for
velocity and pressure fields. Recently, Haroon et al. [19] studied the behavior of
Newtonian fluid through a slit with uniform reabsorption at the walls. Siddiqui et al.
[20] discussed the hydrodynamics of viscous fluid through a porous slit with linear
absorption at the walls. Later Haroon et al. [21] extended the work of Siddiqui et al.
[20] and investigated the flow of Newtonian through a slit with periodic reabsorp-
tion at the walls. They believed in their work that the pore blockage phenomenon is
random and periodic nature of pore blockage may be one of the case. Siddiqui et al.
[22] further investigated the MHD flow of Newtonian fluid in a permeable tubule.
They assumed that the fluid absorption at the tube walls is a function of the wall
permeability and the pressure gradients across the tube wall.

The aim of the present paper is to study the hydrodynamics of the two dimen-
sional creeping MHD flow through a porous slit with exponential absorption at the
walls. Inverse method is used to to solve the PDEs with appropriate boundary con-
ditions. Using inverse methods, exact solutions can be obtained by looking into the
shape of the boundaries occupied by the fluid. Once the solution is obtained, the flow
properties, like velocity components, pressure distribution and wall shear stress can
also be easily calculated. Recently, Zeb et al. [23] applied the technique described
above to analyze the flow of a viscous fluid induced by the motion of two parallel
plates. Various authors [24-26] have obtained exact solutions of the Navier-Stokes
and other equations using the inverse method. This paper is arranged as follows:
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Basic equations governing the flow of the present problem and low Reynolds number
hydrodynamics equations with boundary conditions relating to the present problem
are set out in Section 2. Exact solutions are obtained by using an inverse method
and expressions for stream function, velocity components, flow rate, fractional ab-
sorption, leakage flux, pressure distribution and wall shear stress are obtained in
Section 3. Section 4 is concerned with results and discussion. The effects of mag-
netic and exponential absorption parameters are briefly discussed in this section.
Finally, the conclusions of the present study are given in the last section.

2. Equations of Motion and Formulation of the Problem

We consider the steady, laminar creeping flow of an incompressible electrically con-
ducting Newtonian fluid through a porous slit of width 2H apart. It is assumed
that the normal velocity decays exponentially along the length of the slit and fluid
have small electrical conductivity with a magnetic Reynolds number much less than
unity, so that the induced magnetic field is neglected. A rectangular Cartesian co-
ordinate system (x, y) is chosen with the x-axis aligned with the center line of the
slit and y- axis normal to it, Fig. (1) . It is assumed that the fluid has no slip
at the walls and a magnetic field of constant strength H0 is applied in a direction
perpendicular to the flow of the fluid. Then, the equations governing the creeping
flow of an incompressible fluid under the influence of a transverse magnetic field are
given by

∂u

∂x
+
∂v

∂y
= 0, (1)

∂p

∂x
− µ∇2u+ σB2

0u = 0, (2)

∂p

∂y
− µ∇2v = 0, (3)

where u and v are the velocities in the x- and y-direction, respectively, p is the
hydrodynamic pressure, ρ is the density, µ is the kinematic viscosity of the fluid,
σ is the electrical conductivity of the fluid and B0 = µ0H0 is the electromagnetic
induction, in which µ0 being the magnetic permeability.

The boundary conditions of the problem under consideration have the form:

∂u

∂y
= 0, v = 0, at y = 0, (4)

u = 0, v = V0e
−αx, at y = H, (5)

Q0 = 2W

∫ H

0
u(0, y)dy, (6)
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where α is an exponential absorption parameter, W is the breath of the slit, V0 and
Q0 are the uniform normal velocity and the flow rate, respectively at the entrance
of the slit.
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Fig (1): Geometry of the problem.
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Introducing the stream function ψ(x, y) in the following form

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (7)

We find that equations (1) is identically satisfied and equations (2 -3) take the form

∂p

∂x
= µ∇2

(
∂ψ

∂y

)
− σB2

0

(
∂ψ

∂y

)
, (8)

∂p

∂y
= −µ∇2

(
∂ψ

∂x

)
. (9)

Eliminating the pressure gradient from above equations, we obtain the following
PDE

∇4ψ −M2

(
∂2ψ

∂y2

)
= 0, (10)

where M2 =
σB2

0

µ
is magnetic parameter and ∇4 = ∇2(∇2) and ∇2 =

∂2

∂x2
+

∂2

∂y2

is a Laplacian operator. Further, the boundary conditions (4-6) in term of ψ(x, y)
become

∂ψ

∂y
= 0, −∂ψ

∂x
= V0e

−αx, at y = H, (11)

∂2ψ

∂y2
= 0,

∂ψ

∂x
= 0, at y = 0, (12)

Q0

2W
= ψ(0, H)− ψ(0, 0). (13)
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Conventionally, we take

ψ(0, 0) = 0, (14)

so

ψ(0, H) =
Q0

2W
, (15)

Equation (10) along with the boundary conditions (11-12) and (14-15) is two dimen-
sional boundary value problem (BVP), describing the MHD flow of an incompressible
Newtonian fluid flow through a porous slit with exponential absorption at the wall.

3. Method of Solution

To obtain the exact solutions of the above BVP, let us choose a particular form of
stream function, in view of boundary conditions

ψ = V0e
−αxF (y) +K(y), (16)

where F (y) and K(y) are some arbitrary function of the y. Using equation (16) in
equation (10), yields

V0e
−αx

[
d4F

dy4
+ (2α2 −M2)

d2F

dy2
+ α4F

]
+
d4K

dy4
−M2d

2K

dy2
= 0. (17)

One of the possibility to hold above equality is

V0e
−αx

[
d4F

dy4
+ (2α2 −M2)

d2F

dy2
+ α4F

]
= 0, (18)

and

d4K

dy4
−M2d

2K

dy2
= 0, (19)

Consider equality (18), since V0e
−αx 6= 0, then[

d4F

dy4
+ (2α2 −M2)

d2F

dy2
+ α4F

]
= 0. (20)

Both equations (19-20) are fourth order ordinary differential equations. With the
help of (16), boundary conditions (11 -12) and (14 -15) reduce to
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F (0) = 0,
d2F (0)

dy2
= 0, (21)

F (H) =
1

α
,

dF (H)

dy
= 0, (22)

and

K(0) = 0,
d2K(0)

dy2
= 0, (23)

K(H) =
αQ0 − 2V0W

2αW
,

dK(H)

dy
= 0. (24)

The solution of equation (20) along with the boundary condition (21- 22) is obtained
as

F (y) = ∆1 sinh

(
My

2

)
cos

(
∆y

2

)
+ ∆2 cosh

(
My

2

)
sin

(
∆y

2

)
, (25)

where

∆ =
√

4α2 −M2,

∆1 = −
M sinh

(
MH

2

)
sin

(
∆H

2

)
+ ∆ cosh

(
MH

2

)
cos

(
∆H

2

)
α

[
M sin

(
∆H

2

)
cos

(
∆H

2

)
−∆ cosh

(
MH

2

)
sinh

(
MH

2

)] ,

∆2 =

M cosh

(
MH

2

)
cos

(
∆H

2

)
−∆ sinh

(
MH

2

)
sin

(
∆H

2

)
α

[
M sin

(
∆H

2

)
cos

(
∆H

2

)
−∆ cosh

(
MH

2

)
sinh

(
MH

2

)] .
The solution of equation (19) along with the boundary condition (23- 24) becomes

K(y) =
(αQ0 − 2V0W )(M cosh (MH)y − sinh (My))

2αW (MH cosh (MH)− sinh (MH))
. (26)

Using solutions (25) and (26) in equation (16), ψ(x, y) becomes

ψ(x, y) = V0e
−αx

[
∆1 sinh

(
My

2

)
cos

(
∆y

2

)
+ ∆2 cosh

(
My

2

)
sin

(
∆y

2

)]
+

(αQ0 − 2V0W )(M cosh (MH)y − sinh (My))

2αW (MH cosh (MH))− sinh (MH)
, (27)

which strongly depends upon the magnetic parameter and the exponential absorp-
tion parameter.
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3.1. Components of Velocity

The velocity components are obtained with the help of relation (7) :

u(x, y) =
1

2
V0e

−αx
[
(∆1M + ∆2∆) cosh

(
My

2

)
cos

(
∆y

2

)
+ (∆2M −∆1∆) sinh

(
My

2

)
sin

(
∆y

2

)]
+

(αQ0 − 2V0W )[M cosh (MH)−M cosh (My)]

2αW (MH cosh (MH))− sinh (MH)
, (28)

v(x, y) = αV0e
−αx

[
∆1 sinh

(
My

2

)
cos

(
∆y

2

)
+ ∆2 cosh

(
My

2

)
sin

(
∆y

2

)]
.(29)

Equations (28) and (29) give a complete description of the fluid velocities at all the
points in the porous slit. We observed that by making use of ∆, ∆1 and ∆2 and
taking M → 0, velocity components of Kozinski et al. [17] are recovered:

u(x, y) =
e−αxV0 α [H sin (αH) cos (α y)− cos (αH) sin (α y) y]

αH − cos (αH) sin (αH)

+
3

4

H2Q0 α− 2H2V0W −Q0 α y
2 + 2V0Wy2

αWH3
,

v(x, y) =
V0 [H sin (αH) sin (α y)α+ α cos (αH) cos (α y) y − cos (αH) sin (α y)] e−αx

αH − cos (αH) sin (αH)
,

providing a mathematical verification of the model. We also noted that if M → 0,
α→ 0 and V0 → 0 the classical result of Poiseuille flow are recovered [27]:

u =
3Q0

4WH

[
1−

( y
H

)2]
.

The volume flow rate can be obtained by using the relation

Q(x) = 2W

∫ H

0
u(x, y)dy, (30)

which becomes

Q(x) =
2WV0e

−αx + αQ0 − 2V0W

α
, (31)

which shows that flow rate is independent of magnetic parameter and indicates that
the bulk flow decreases inside the slit. The fractional absorption, FA is defined as:

FA =
Q(0)−Q(L)

Q(0)
. (32)
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Using (31) in above equation, we get

FA =
2V0W (1− e−αL)

αQ0
. (33)

Fractional absorption strongly depends upon exponential absorption parameter, α
and having inverse relation with volume flow rate, Q0. The leakage flux q(x) is
defined as

q(x) = −dQ(x)

dx
. (34)

Substituting (31) in above equation, we arrive at

q(x) = 2WV0e
−αx, (35)

which shows that leakage flux has the direct relation with the product of breath and
exponential absorption. The maximum leakage is observed at the entrance of the
slit which goes decreasing downstream.

3.2. Pressure Distribution

To get an expression of pressure we use equation (16) in equation (8-9) and get

∂p

∂x
= µ

[
V0e

−αx
{
α2dF

dy
+
d3F

dy3
−M2dF

dy

}
+
d3K

dy3
−M2dF

dy

]
, (36)

∂p

∂y
= µ

[
αV0e

−αx
{
α2F +

d2F

dy2

}]
. (37)

To find p(x, y), we integrate equation (36) with respect to x to get

p(x, y) = µ

[
−V0e

−αx

α

{
α2dF

dy
+
d3F

dy3
−M2dF

dy

}
+

{
d3K

dy3
−M2dF

dy

}
x

]
+R(y),(38)

where R(y) is unknown function need to be determined. By differentiating equation
(38) with respect to y and comparing with (37), along with the use of (19-20), we
obtain

dR

dy
= 0. (39)

Integrating above equation, we get

R(y) = C, (40)
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where C is unknown constant of integration. Using equation (40) in equation (38),
we arrive at

p(x, y) = µ

[
−V0e

−αx

α

{
α2dF

dy
+
d3F

dy3
−M2dF

dy

}
+

{
d3K

dy3
−M2dF

dy

}
x

]
+ C.(41)

Using equations (25) and (26) in above expression, we get

p(x, y)− p(0, 0) =
µV0e

−αx

α

[
∆3 cosh

(
My

2

)
cos

(
∆y

2

)
−∆4 sinh

(
My

2

)
sin

(
∆y

2

)]
− µ(αQ0 − 2V0W )M3 cosh (MH)x

2αW (MH cosh (MH)− sinh (MH))
− µV0∆3

α
. (42)

where

∆3 =
1

8

[
∆3∆2 + 3M∆2∆1 +

(
∆2M

2 − 4∆2α
2
)

∆ + 3M3∆1 − 4M∆1α
2
]
,

∆4 =
1

8

[
∆3∆1 − 3M∆2∆2 +

(
∆1M

2 − 4∆1α
2
)

∆− 3M3∆2 + 4M∆2α
2
]
,

and p(0, 0) is the value of the pressure at the entrance of the slit at y = 0. It is
checked that by making use of ∆, ∆1, ∆2, ∆3 and ∆4 in equation (42) and taking
M → 0, previous result of Kozinski et al [17] are successfully recovered:

p(x, y)− p(0, 0) = −3

2

[
µ (Q0 α− 2V0W )x

WH3α

]
+

2V0 µαe−αx cos (αH) cos (α y)

αH − sin (αH) cos (αH)

3.3. Wall Shear Stress

The wall shear stress is defined as

τw

∣∣∣
y=H

= −µ
(
∂u

∂y
+
∂v

∂x

)
y=H

. (43)

Using (28 - 29) in above formula, we get

τw

∣∣∣
y=H

= −µV0e
−αx

4

[
∆5 sinh

(
MH

2

)
cos

(
∆H

2

)
+ ∆6 cosh

(
MH

2

)
sin

(
∆H

2

)]
+

µ(αQ0 − 2WV0)M
2 sinh (MH)

2αW (MH cosh (MH)− sinh (MH))
, (44)

where

∆5 = 2∆∆2M + ∆1∆7,

∆6 = −2∆∆1M + ∆2∆7,

∆7 = (M2 −∆2 − 4α2).
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If M → 0, one can get the expression for wall shear stress of Kozinski et al.[17]:

τw

∣∣∣
y=H

=
α (Hα cos (αH) cos (α) + sin (α) sin (αH)α+ cos (α) sin (αH))

sin (α) cos (α)− α
.

4. Results and Discussion

The purpose of the present study is to analyze the effect of magnetic parameter M
and exponential absorption α on velocity components at different positions x = 0.1
(entrance), x = 0.5 (mid) and x = 0.9 (exit) of the slit, pressure difference and
wall shear stress. The expressions for the velocity components (28-29), pressure
difference (42) and wall shear stress (44) are normalized by introducing the following
dimensionless quantities

x∗ =
x

H
, y∗ =

y

H
, ψ∗ =

ψ

V0H
, Q∗

0 =
Q0

V0WH
, M∗ = MH2,

p∗ =
p

µV0/H
, τ∗w =

τw
µV0/H

, (45)

and the variations have been explained through Figs. (2-11), after skipping ∗. By
inserting M = 0 in equations (28-29) and (42), we achieve the results of Kozinski et
al [18]. Fig. 2 demonstrates the effects of M on transverse component of velocity.
It is observed that with increase in M , the velocity u(x, y) increases near the wall
and decreases at the center. Parabolic profile at the entrance of the slit is higher
than at the mid and the exit of the sit. Effect of M on the normal component of
velocity v(x, y) can be analyzed through Figs. (3b-4). From Fig. (3b) it is found
that v(x, y) increases from the center to the boundary of the slit and its magnitude
decreases with increasing M , also the profile of v(x, y) is higher at the entrance
than at the mid and the exit of the slit, see Figs. (3b-4). The pressure difference
decreases down stream and with increasing M , it decreases, Figs.(5a). It is noted
that for M = 0, the pressure difference profile is higher in magnitude as compared
to M = 0.5, 1, 1.5 . Wall shear stress is demonstrated in Fig. (5b), it is observed
that pressure difference and wall shear stress have the same effects.

Effects of α on velocity components, pressure difference and wall shear stress in
the presence of a magnetic field are depicted in Figs. (6-9). Fig. (6a) demonstrates
the effects of α on u(x, y) at the entrance of the slit. For higher value of α = 3,
u(x, y) looks flatten while for smaller values of α, a parabolic profile is observed. It is
noticed that with increasing α, u(x, y) increases near the walls and decreases in the
center. In Fig. (6b), effects of α in the mid of the slit is observed, with increasing α,
u(x, y) decreases near the wall and remain uniform at the center of the slit. At the
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exit of the slit a parabolic profile is depicted for all values of α and with increasing
α, it decreases, see Fig. (7a). In Fig. (7b) effects of α on normal velocity v(x, y)
are shown at the entrance of the slit, and with increasing α, v(x, y) decreases from
the center to the upper wall of the slit. Similar effects are observed at the mid and
the exit of the slit, see Fig. (8). Pressure difference and wall shear stress increases
with increasing α, see Fig. (9). Figs. (10-11) demonstrate the velocity vectors for
different values of M and α. From these figures it is observed that show that for
fixed values of inlet flow rate and the absorption parameter, the fluid absorption
may be increased or decreased by varying M . Thus, we can say that magnetic field
can play significant role in controlling the absorption of fluid at the walls of the slit.
Similarly, effect of α are depicted in Fig. (11), for large values of α, fluid absorption
near the wall increases near the entrance while it goes decrease at the mid and vanish
at the exit of the slit walls.

5. Conclusion

The problem of MHD creeping flow of Newtonian fluid through a uniform porous
slit was investigated. Exact solutions were obtained by using an inverse method.
Expression for components of velocity, volume flow rate, pressure difference and wall
shear stress were derived. We observed that the volume flow rate is independent
of the magnetic field which decreases down stream. It was found that pressure
difference decreases considerably and wall shear stress increases with the increase
in the strength of the magnetic field. The longitudinal velocity increases at all the
position with increasing α, while normal velocity decreases near the slit walls with
increasing exponential suction. The leakage flux is maximum at the entrance of
the slit. Thus in the last we can say that magnetic field and exponential suction
parameters can play significant role in controlling the absorption of fluid at the walls
of the slit and the obtained results coincide well with those existing in the literature
for the study of fluid flow through a slit when M → 0 and α approaches to zero.
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Fig(2): Effect of M on longitudinal velocity at the (a) entrance (x = 0.1) and (b)
mid (x = 0.5) of the slit when Q0 = 3 and α = 2.
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Fig(3): Effect of M on (a) longitudinal velocity at the exit (x = 0.9) and (b)
normal velocity at the entrance (x = 0.1) of the slit when Q0 = 3 and α = 2.
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Fig(4): Effect of M on normal velocity at the (a) mid (x = 0.5) and (b) exit
(x = 0.9) of the slit when Q0 = 3 and α = 2.
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Fig(5): Effect of M on (a) pressure difference at the center line and (b) wall shear
stress when Q0 = 3 and α = 2.
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Fig(6): Effect of α on longitudinal velocity at the (a) entrance (x = 0.1) and (b)
mid (x = 0.5) of the slit when Q0 = 3 and M = 1.
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Fig(7): Effect of α on (a) longitudinal velocity at the exit (x = 0.9) and (b) normal
velocity at the entrance (x = 0.1) of the slit when Q0 = 3 and M = 1.
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Fig(8): Effect of α on normal velocity at the (a) mid (x = 0.5) and (b) exit
(x = 0.9) of the slit when Q0 = 3 and M = 1.
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Fig(10): The velocity vectors when (a) M = 0 and (b) M = 3 when Q0 = 3 and
α = 5.

92



T. Haroon, A.M. Siddiqui, A. Shahzad, M. M. Rashidi – Hydromagnetic. . .

Fig(11): The velocity vectors when (a) α = 2 and (b) α = 4 when Q0 = 3 and
M = 1.
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