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ABSTRACT. In this paper, we introduced a new classes of p—valent meromorphic
functions defined by using differ-integral operator. We investigate various inclusion
relationship for these classes and some argument properties are considered. Also,
some applications involving integral operators are studied.
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1. INTRODUCTION

Let ¥, , denote the class of multivalent meromorphic functions of the form:
oo
) =27+ aps” (peN=1{1,2,3,..}; n> —p), (1)
k=n

which are analytic in the punctured unit disk U* ={z:2 € C, and 0 < |2| < 1} =
U\{0}. We note that ¥, _, 1 = 3,. For a function f € ¥, ,,, we can define

2f'(z)
f(2)

2f"(2)
f'(2)

ES;JL(a) - {f € Z:p,n : Re < ) < —« (0 <a<p,zé€ U)},

ECpn(a) = {f€Xpn:Re <1+ )< —a (0<a<p, zel)},
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EKP,n(ﬂ7 O[)

/
={f€X,n:3g€XS, ,(a)such that Re (Zf (2)

9(2)

) <=8 (0<a,6<p, z€U)},
and
LK, (B, )

(2f'(2))
q'(2)

={feX,,:3g € XC, () such that Re( ) <—B (0<a,B<p, z€l)}.

These classes are meromorphic starlike, Convex, close-to-convex and quasi-convex
functions, respectively (see [3], [9], [15]-[17]).

Definition 1. For two functions f(z) and g(z), analytic in U, we say that the
function f(z) is subordinate to g(z) in U, written f < g or f(z) < g(2), if there exists
a Schwarz function w(z) which is analytic in U, satisfying the following conditions:

w(0)=0 and lw(z)| <1; (€U,

such that
f(z) =gw(z));  (2€0).

Indeed it is known that

f(z)<g9(z) (2€U) = [f(0)=g(0) and [f(U)Cg(U).

In particular, if the function ¢g(z) is univalent in U, we have the following equiv-
alence (see [4], [13], [14]):

f(z) <g(z) (z€U) <= f(0)=g(0) and f(U)Cg(U).

Let M be the class of functions ¢(z) which are analytic, univalent in U and for
which ¢(U) is convex with ¢(0) = 1 and R[p(z)] > 0 for z € U. By making use of
the principle of subordination between analytic functions, we define the subclasses
NSy n(a;9), BCpn(a;9), ZKpn(a, B,6,%) and LK, (o, B;¢,v) of the class ¥},
for 0 < o, 8 < p and ¢,9 € M, which are defined by

ESpnla;0) = {f€Xn: p i - <_;{;()Z) — a) < ¢(z) in U}, (2)
SCpa(a:¢) = {fES,n: pia <— [1 + ZJ{(,(;)] _ a> < é(z) iU}, (3)
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YKpn(a, B;¢,9) ={f € Xpn:3g € BS; ,(a; ¢) such that
1 <—Zf/(z)
p=B\ g(2)

- ﬁ) <$(z) m U},
(4)
and

EK;,n(au 55 ¢)71/]) :{f € Zp,n : Elg S ECp,n(Oé; qb) such that
1 <—(Zf'(2))'

- ﬁ) < 4(2) in U}.

p—2> q'(2)
(5)
We note that
() € SCpnl(ais) > 1 ;fz) € TS (i 9),
f(2) €SKL(anpigry) = L ;fz) € LKy u(a, B; 6, 1).

We observe that for special choices for the parameters p, , 8 and the functions
¢ and 1 involved in these definitions. For example, the classes

1 1
¥STo (a; 1 J_r z> =XS5"(a), XCiy (a; 1 J_r i) = %C(a),
142z 1+2 . 142 142 .
XK10 <a,6; 1-2"1— z) =XK(a,B8), ZKjj (04755 1. 1= z> =YK (a, B).

For u > 0,a,c € C be such that Re(c —a) > 0,Re(a) > pp,p € N and
f(z) € ¥, is given by (1), the integral operator

J;ﬁ :Ypn — Zpn
defined as following ([8])

e For Re(c—a) >0 by

WC L) — F(C_Np) ! a—1 _ pye—a—1 p .
Jpnu' ( ) o F(a _ Mp)r(c_ a) /O t (1 t) f( t“)dtv (6)

e For a =c by
e f(2) = 1(2). )
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Using (6) and (7), it is easily that the operator Jp;f(z) can expresse as following

aep(y _ —p . Llc—pp) a+uk o,
Jypf(z) =27" a— up) ZI‘ (8)

where 4 > 0, a, c € C, Re(c — a) > 0, Re(a) > up (p € N).
It is readily verified from (8) that

a,c a— HUP ra+1,c a a.c
(T f(2)) = . It f(Z)**Jp,’# (2). (9)

AJEHf(2)) = C_M”pJﬁ,ﬁf() MJ““f() (10)

We also note that the operator Jp’ f(z) generalizes several previously studied
familiar operators, and we will show some of the interesting particular cases as
follows

(i) Jac f(z) =1u(a,c)f(2)(a,c € C,u> 0, Re(a) > p, Re(c — a) > 0)(see [7]),

(ii) J[“+Z]))C+p (z) = Lyla,0)f(2)(a € R,c € R\Zy,Zy; = {0,1,2,..},p € N)(see
12

(iii) J;;“Qp’pﬂf(z) = D"*P=1f(2) (n is an integer, n > —p,p € N) (see [1],[2],[18]),
(iV) i f(2) = Jf(2) (Re(a) > p, p € N) (see [10]).

Using the operator Jp, we introduce the following subclasses of the multivalent
meromorphic functions as follows

NSl ¢) = {f : f € Tppn and Jpyif € B85 (o 9)}, (11)
where > 0;a,c € C; Re(c —a) > 0; Re(a) > pp;p € Nyn > —p; ¢ € M.
EC[‘f”ﬁ(a; ¢)={f:feX,,and J“ Cf € XCpnl(as )}, (12)

where 1 > 0;a,c € C; Re(c —a) > 0; Re(a) > pu;p € Nyn > —p; ¢ € M.

YEKpu(a,B50,9) ={f: f€Xpnand Jyif € XKy (o, B;0,9)}, (13)
where p > 0;a,c € C; Re(c — a) > 0; Re(a) > pu;p € Nyn > —p; ¢ € M.
YK, Bi0,0) ={f : f € ¥pn and Jpif € BK,, (B, 5 0,9)}, (14)

where p > 0;a,c € C; Re(c — a) > 0; Re(a) > pu;p € Nyn > —p; ¢ € M.
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We note that

a,C < ! < *xa,C
1) es0gase) — L essuao) (15)
*a,C Zf/(z) a,c
f(Z) € EKp#? (a>6;¢a ¢) — _T € ZKp:u(aaB; dM/f) (16)
In particular, set
*a,C 1 + AZ *a,C
and -
a,C + z a,C

In this paper, we investigate several inclusion relationship properties of the
classes mentioned above. Some applications involving integral operator are also
considered. We drive interesting arguments properties of p-valent meromorphic
functions defined by the integral operator Jp.

2. THE MAIN RESULTS

In this section, we give several inclusion relationships for p—valent meromorphic
functions classes, which are associated with the operator Jp.

Lemma 1. [5]/Let ¢ be convex univalent in U with ¢(0) = 1 and R{B¢(z) + v} >
0 (B,v € C). If q(2) is analytic in U with q(0) = 1, then

2q'(2)
q(z) + Ba(2) + v < #(2),

which implies that
q(z) < ¢(2).

Lemma 2. [14] Let ¢ be convex univalent in U and w be analytic in U with R{w(z)} >
0. If q(2) is analytic in U with q(0) = ¢(0), then

q(2) + w(2)2q'(2) < ¢(2),

implies that
q(z) < ¢(2).
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Unless otherwise mentioned we shall assume throughout this section that u > 0,
a,c € C, Re(c —a) > 0, Re(a) > up, p € N, 0 < o, < p and the powers are
understood as principle values.

Theorem 3. Let ¢ € M, Re(ﬁ),Re(%) > o with

Hm%Rd¢@»><mm{RdZ%—gqu>—a}7

z€U pP—« p—

then
ES;ﬁrl’c(a; @) C ES;i;c(a; @) C ES;fij(a; ?).
Proof. (i) we prove the first inclusion relationship
xa+1,c . *a,c .

ESp,,u (Oé, (b) - ESp,u (O[, ¢)
Let f(2) € £S5%4(; ) and set
2(Jpf (2))
—ac - = —a— (p—a)q(2), (19)

Ipuf(2)
where ¢(z) is analytic in U with ¢(0)

a—pﬂjgﬁl’cf(z)__a L =gz
TR e +u (p— a)q(z). (20)

Differentiating (20) logarithmically with respect to z, we obtain

(S “f(2))'

= 1. Then by applying Eq.(9) in (19), we obtain

(p—a)zq'(2)

=—a—(p—a)g(z) -

JEFLC £ (2) —a+ 4 —(p—a)q(z)
1| 2Ry ol — ot 2q'(2)
p—a[ T ) ]‘“)+—a+z—@—amwy .
Since
Re(a) a
r;leag(%{qb(z)}) < ;_704 (Re(a) > 0; 0 < a <p).

Applying Lemma 1 to Eq.(21), it follows that ¢(z) < ¢(2), that is f(z) € XSy (a; ¢).

(ii) For the second inclusion relationship asserted by Theorem 3, using arguments
similar to those detailed above with (10), we have

2554 (a; ¢) C TS (a3 ).

This completes the proof of Theorem 3.

20



R. M. El-Ashwah, W. Y. Kota — Inclusion Relationship ...

Theorem 4. Let ¢ € M, Re(ﬁ),Re(%) > o with

Re(%) -« Re(ﬁ) -«
p-—a ' p-a |’

gleaéc(Re{(;S(z)}) < mln{
then
SO (a3 ¢) C O (o ¢) C 2Ot (a5 9).
Proof. Applying (15) and Theorem 3, we obtain that
f(2) € SCy M (as0) & T f(2) € BCpn(a; ¢)
2 [ qatlc ! *
o ) € D8 ulas0)

& Joile (‘Zp,(z)) € B85, (a; ¢)
—2f'(2)

= T € ZS;iH’C(a; ®)
_ !/
= ZJ; ) ¢ sgrac(arg)

o g (LY ez
& _?Z (Jocf(2) € B85, (as 9)
& JUCf(2) € BChn(0v 0)

< f(z) € ZCgﬁ(a;qﬁ).

The second part of the theorem can be proved by using similar arguments. The
proof of Theorem 4 is completed.

Corollary 5. Suppose that

1A (Reqz)—a Re(ﬁ)—a>

——— < min ,
1+B pP—« pP—«

with Re(), Re($) > a; =1 < B < A < 1. Then, for the function classes defined by
(17) and (18),

NS4 (s A, B) C £93%°(o; A, B) C £55% (o A, B),
and

SCUAY(a; A, B) C SCYC(a; A, B) C £C%<+ (a3 A, B).
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Theorem 6. Let ¢,¢p € M, Re{$}, Re{} > o with

max (Re{é(2)}) < min <Re(z) o Rl a) ,

zeU p—a | p—a

then
SEp (o, B 0,0) C SRR (a, B 6,9) € SKp (o, 516, 9).
Proof. (1)We begin by showing the first inclusion relationship:
a+1,c . a,c .
EKp,;L (avﬁa ¢a¢) - EKp“u(awBWZ))w)'

Let f(z2) € Engtl’c(a, B; ¢,1), then from the definition of the class EKg,tl’c(a, B; ¢,)
there exists a function k(z2) € XS5, (a, ¢) such that

N 7 (G

’ — B < Y(z2).

p-B | kG | e

Ch((i)ose the function g(z) such that Jg:l’cg(z) = k(z). Then g(z) € BS54 (a; ¢)
an

L[ =alpi et )
1o — Bl <¥(2). (22)
p=B 1 Jpie(2)
- L (AU
—2(Jpul(Z
p\z) = a,c - /3:| ) 23
=25 | R )
where the function p(z) is analytic in U with p(0) = 1. Using (9), we find that

L e O/ 1) A IS S I ol ) R
p=B1 Jpite(z) p=B1 J5iCe(z)
1 {Z[Jﬁ,ﬁ(zf’(z))]’ +a/udyi(—2f'(2) ﬂ]
p—5 [ Tpig ()] + a/udpig(2)
1 [z[J;?:ﬁ(—zf’(Z))]’/ o (z)}+ 1 [a/u%ﬁ’ﬁ(—zf’(z))/ big2) g
2[Jpig(2)) [ Jpg(z) + a/p)  p—B Lz[Jpng(2)] [ Jpng(z) + a/p @é

S p-B

Since

9(2) € BS54 (e 9) C BS54 9)
By Theorem 3, then we set

q(z) =

L[]
p—a | Jyulg(2)
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where ¢(z) < ¢(z) in U with assumption that ¢(z) € M. Then by (23) and (24), we
observe that

Tpu(=2f'(2)) = (p = B)p(2)pi9(2) + BTg(2), (25)

and

L | =2 Ba (@) gl = 1 [Z[Jz‘i’ﬁ(—Zf’(z))]’/Jz‘f]ﬁg(Z)}
p—2 JEtCg(z) p=B L —(p—a)a(z) —a+a/n

(26)
1 [ a/pllp = B)p(z) +B] B}

=B = —a)a(z) —a+a/n

Differentiating both side of (25) with respect to z and dividing by Jp.g(z), we obtain

2 Jp(=2f"(2))]

= (p—B)zp'(2) = [(p — )a(z) + ol(p = B)p(z) + 8. (27)

Tp1ug(2)
Now, using Eqs.(22), (26) and (27), we get
L O/ (O M 2'(2) 2ol (o
p-pB [ Jpkq(2) ﬂ] Ca/p—a—(p—a)g(z) Tr) <9z (=€),
(28)
Since Re{%} > «, and ¢(z) < ¢(z) in U with
Re{a/p} —
ngﬁ({Re(ﬁf’(z))} < ,—a

We have
Re{a/p—a—(p—a)q(2)} >0 (z € ).

Hence by taking
1

&)= = o),

in (28) and then by applying Lemma 2, we can show that p(z) < 1(z) in U, so that
f(z) € BKpji(a, B; ¢, ).

(ii)For the second inclusion relationship asserted by Theorem 6, using arguments
similar to those detailed above with (10), we obtain

SKYq(a, B; ¢,10) C SKSC (o, B ¢, 0)).
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Theorem 7. Let ¢,¢p € M, Re{$}, Re{} > o with

max (Re{¢(z)}) < min (Re{a/u} - a’ Re{c/u} — a> ,

zeU pD— p—
then
SK4 e (a, B; 6, 4) C DK (a, B; 6,0) C SK5 a, 856, 9).
Proof. Applying (16) and Theorem 6 obtain that
f(2) € SKOH o, B, 0) & JiiHOf(2) € BK (o, B; ¢,1)
—z
& — (i (2)) € SKpu(a, B;6,9)
a c —* /(Z)
< Jp,tl’ (p > € XKpn(a, B;0,)
—zf(z
> 8 e srpicasion)

—2f'(2)
p

€ XKyy(a, B9, ¢)

o e (‘J; “"’) & SKpnla, B 6, )

& _?Z (Jcf(2)) € SEpn(o; 9)
& Jpaf(z) € 3K, (o, B 6, 9)
& [f(2) e 2K, B;6,9).

The second part of the theorem can be proved by using similar arguments. The
proof of Theorem 7 is completed.

3. INCLUSION PROPERTIES INVOLVING THE INTEGRAL OPERATORS Fy’p

In this section, we consider the integral operator F),, (see [10]) defined by

z
Fanf®) = o [ 7710t (f2) € Spnv > 0pEN). (20)
0
From the above equation, it is easily verified that

2 (T pf(2) = vJocf(2) — (v + D) JSCFup f(2). (30)

By using (30), we can prove the following theorems.

24



R. M. El-Ashwah, W. Y. Kota — Inclusion Relationship ...

Theorem 8. Let ¢ € M with max.cy (Re{¢(2)}) <1+ 75, (v > 0;0 < a <p).
If f(2) € 5,5 (a; ¢), then F,,f(z) € XSpp‘(a; ).
Proof. Let f(z) € £Sp5:°(a; ¢) and set

1 o Fy !
pe) = L |l O] (31)
2 JpuFupf(2)
where p(z) is analytic in U with p(0) = 1. By using (30) and (31), we have
Tpiuf (2)
— Vo ~=@—a)pz) —(v+p—a). 32
T E, (2 (p — )p(z) — ( ) (32)
Differntiating (32) logarithmically with respec to z, we obtain
ATEFG) ARG (p-a)a()
Tpiuf (2) TpuFvpf(z)  (p—a)p(z) = (v+p—a)

1 [=2lJpuf(2)] 2p'(2)
p—al Jpuf(2) (v+p—a)—(p—a)p(z)

Hence by Lemma 1, we conclude that p(z) < ¢(z) in U for

al =pz)+

(zeU).
v
R — +1 0,0 <
max (Re{$(2)}) < r—a (v>0,0<a<p),
which implies that

Fopf(2) € 8,5 (a; 9).

Theorem 9. Let ¢ € M with
v
14— ;0 < .
rgleaéc(Re{Mz)}) <1+ p— (r>0,0<a<p)

If f(2) € 2Cpyi(a; @), then
Fupf(2) € 2Ci(a; ¢).
Proof. By applying Theorem 8, it follows that

f(z) € 5C% (a5 ) _?Zf’(Z) € £S5 (s ¢)
= F,, (_pz f’(z)> € £55¢(as ¢)
o ‘? (Fupf(2)) € £8:%%(as ¢)

Fupf(z) € XCpy(a; ¢),
which proves Theorem 9.
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From Theorem 8 and 9, we obtain the following corollary.

Corollary 10. Suppose that

1—|—A<1+ v
1+ B p—a’

with v > 0;0 < a < p;—1 < B < A< 1. Then, for the function classes defined by
(17) and (18),

f(z) € BS54 (0 A, B) = F,,f(2) € $53% (0 A, B),

and

f(z) € ZC;J;LC(Q; A, B)=F,pf(2) € ZC’I‘}’ZLC(@; A, B).
Theorem 11. Let ¢,p € M with

rfea[;((Re{Mz)}) <1+ nya (r>0;0<a,pB<p).

If f(2) € SKpi(o, B 6,), then
F,pf(2) € SKc(a, B 6,0).

Proof. Let f(z) € XKpy(a, B;¢,1). Then in view of the definition of the function
class there exists a function g(z) € £5,5:°(a; ¢) such that

1 [Z(Jﬁﬁf(z))'
p—B Jpu9(2)

- ﬁ] <9(z) (D). (33)

Setting

p(z) = 1 [_Z(JliﬁFvaf(z))/ _ B:|
p—2 JponFvpg(2) ’
where the function p(z) is analytic in U with p(0) = 1. Applying Eq.(30), we obtain

1 [Z(Jg,’ﬁf(z))/ —,B} _ 1 {Jg,’ﬁ(zf’(z)) —B]

p=B1 Jpug(z) p=01 Jpug(2)

_ 1 [Z[Jz?ﬁFu,p(—Zf/(z))] + (v +p) Ty Fop(—2'(2)) —ﬁ]
p—p 2 JpuFypg(2)) 4 (v + )y pg(2)

_ 1 [ 2| Jpbvp(=2f" ()] JpinFv pg(2) ]
p =B [2[Jp)iFupg(2) ) JpinFupg(2) + (v + p)

1 [ v +p)JpiFup(—2f"(2))/ Jpmg(z) 6]

p =B [2[Jp)iFupg(2) | JpiiFypg(2) + (v + p) '

(34)

26



R. M. El-Ashwah, W. Y. Kota — Inclusion Relationship ...

Since
9(z) € LS5 (e 9),
By Theorem 8, we find F}, ,g(z) € £5,5°(; ¢) and set

1 [—Z[qu »(9(2)))
p—o Jp,u p(9(2))
where ¢(z) < ¢(z) in U with assumption that ¢(z) € M. Then by using the same
techniques as in the proof of Theorem 6 from Eqs.(33) and (34), we obtain

1 [=z[Jpa(f(2))
p—2 Jpug(2)

Hence, by setting

q(2) = —a,

8l = (= p'(2) .
3 =)+ = G <V O

1
w(z) = ,
R O e
in Eq.(35) and apply Lemma 2, we find that p(z) < ¢ (z) in U, which yields

Fypf(z) € XK (a, B ¢59).

Theorem 12. Let ¢,y € M with

max(Re{¢(z)}) <1+

zeU p—«
If f(2) € SK;% (85 6, 0), then
Fyupf(2) € B30, B; 6, 9).

(v>0,0<a,8<p).

Proof. By applying Theorem 11, we obtain that
ﬂ@emﬁﬁmﬁwm0<¢:ff@eﬁﬂﬁmﬂWW)
= R (T0) € SK3fla.5:6.0)
& %ﬂmﬂ@ﬁezmmmﬁww>

Fl/,pf(z) S EK;:L’C(O(, 67 ¢a 77/))7

which proves Theorem 9.
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4. ARGUMENT PROPERTIES FOR THE OPERATOR Jp;

Following the technique used by El-Ashwah [6], we will study some argument re-
sults involving the operator JpJ;. Unless otherwise mentioned, we shall assume
throughtout this section that p € N, § > 0, v, a, 6 > 0, a, ¢ € R™, (¢ —a) > 0,

a > up.
To derive our main theorems, we need the following lemma.

Lemma 13. [11] Let p(z) be analytic in U with p(0) = 1 and p(z) # 0. Further
suppose that

arg(p(=) + np'(2))] < 50+ ~ arctan(nd)) (1, 0> 0),

then .
largp(z)| < 56’.

Theorem 14. Let g(z) € ¥,. Suppose f(z) € ¥, satisfies the following condition
Jgﬁf(z)}v[ {Jﬁl’c (2) Jﬁl’cg(z)}D‘ W( 2 { op D
aj c 1 + 6 ’a c - 7a c 5 + = t
@ ({ Iping(2) Jpunf(2) png(2) = 2 “ m arctan v(a — up) “

then e ,
arg {J%’éf(z)} ‘ < Ea, (z €U).
Ipug(2) 2

Proof. Define a function
Tpiuf (2) }7
po) = { B 520, (36)
Jpug(2)
then p(z) = 1+ ¢12 + cg2z? + - -+, is analytic in U with p(0) = 1 and p’(0) # 0.
Differentiating (36) logarithmically with respect to z and multiplying by z, we have
12p'(2) _ 2(Jpuf () 2(Jpiug(2))
v p(2) Tpif (2) P9 (2)
Using (9) in (37), we obtain
1) TS
H zp’(z) _ { oS ( )}

v(a — pp)

(37)

p(2) +

s { T F(z) _ Jpie(2) H |

Tpug(2) Tpul(2)  Tpug(2)

By using Lemma 13, the proof of Theorem 14 is completed.

Putting v = 1 and g(z) = 7P in Theorem 14, we obtain the following corollary:
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Corollary 15. If f(z) € ¥, satisfies the following condition
larg (1 —6) (szgﬁ () + (5sz;;1’6]‘"(2))‘ < g <a + %arctan [(afﬂup)a]>
then
larg {sz;’ﬁ (2)} < ga, (z € ).
Next, putting p = 1 in Corollary 15, we obtain the following corollary:
Corollary 16. If f(z) € 31 satisfies the following condition

s (00 (s5259) w0151 ) | < 5 (o B[ 55))

then -
‘arg {zJﬁ’ﬁf(z)H <5 (z € ).

Putting a = ¢, = 1 and g(z) = 27P in Theorem 14, we obtain the following
corollary:

Corollary 17. If f(z) € £, satisfies the following condition

(1 (2 1+ )| <3 o+ 2 ]

then

larg {f(2)}] < S, (z€D).

Finally, putting f(z) = z7P,v = 1 in Theorem 14, we obtain the following
corollary:

Corollary 18. If g(z) € ¥, and % 0, satisfies the following condition

z7P
Ip,1u9(2)
1 1 Jotbeg(z) T 2 S
ar 140 (T),(;( e )(p’f;c )>‘<—(a+7arctan{ a})
9 (049 (5ammm) —* (e ) Cint 2\ x @)

then »
Z ™
2 U<Th, (ze)
w0 )| <5 €V
Theorem 19. Suppose g(z) € £, and f(z) € ,, satisfies the following condition

a,c+1 il a,c a,c
arg <{JI;Z+71JC(Z)} {1 +4 { ipci{(Z) - ipci?(Z) H ) ‘ <z (a + 2 arctan { o a])
o g(2) I f(2) T g(2) 2 T v(c— pp)

then

< ga, (z € D).
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Proof. The proof is similar to the proof of Theorem 14, so we omit it.

Putting v = 1 and g(z) = 27 P in Theorem 19, we obtain the following corollary:
Corollary 20. If f(z) € ¥, satisfies the following condition
2 O
1—-96 p 7a,c+1 §2P Jac z “ t
larg (( ) (ZPI5 f(2) + 622 T3 f(2)) | < 5 | @+ —arctan e Np)a
then .
a,c+1
larg {szp,qu f(2)} < 5% (z € ).
Next, putting p = 1 in Corollary 20, we obtain the following corollary:
Corollary 21. If f(z) € X1 satlisfies the following condition

‘arg ((1 — ) (zJﬁﬁ“ f(z)) + 6z f(z)) ( < g <a + % arctan [ (c‘s_“u) aD

then

‘arg {zJifLHf(z)H < ga, (z €U).

Putting a = ¢, 0 = p = 1 and g(z) = z7P in Theorem 19, we obtain the following
corollary:

Corollary 22. If f(z) € ¥, satisfies the following condition

or (o (455)) <5 o+ Foom ]

larg {zP f(2)}7] < ga, (z €U).

then

Finally, putting f(z) = z7P, v = 1 in Theorem 19, we obtain the following
corollary:

Corollary 23. If g(z) € ¥, and Ja,%f;(z) =% 0, satisfies the following condition
Y2y

1 1 JCa(z
arg <(1 +9) ( actl ) -9 < a1 > ( aig( ) ))
2P Ip 9(z) 2P JIp 9(z) Ip,u 9(z)

7 (o Zoncan [ 20
< —-|a+ —arctan | ———«
2 ™ (¢ — pp)

Z_p
arg —eer g
Tpii " g(2)

30

then

< ga, (z € ).
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Theorem 24. Let 0 < § < 1. Suppose f(z) € Ep, (p € N) satisfies the following
condition

(= Ty f(2)) | < 5 (a—i— 7Tarctan [a—,upa , (2 €U),

then

a— up _a—wp z a—pp _q ™
arg< " A / twus (thI‘iﬁf(t))Wdt>‘ < g
0

Proof. Consider the function

a— up _a—ip Z a—pp_q a,c
p(e) = 2 [ ey e V), (39)

then p(z) = 1+ 12+ ..., is analytic in U with p(0) = 1 and p/(0) # 0. differentiating
(38) with respect to z, we have

o
a— pp

p(z) + 2 (2) = (P Ty f(2).

By using Lemma 13, the proof of Theorem 24 is completed.

Puttingp=§d=~=1,a=cand p =1 in Theorem 24, we obtain the following
corollary:

Corollary 25.

™

arg(=f(2)| < (a + %arctan [a o 1]) ,

1 [z
arg (C;a—l /0 t“_lf(t)dt>‘ < g

Theorem 26. Let 0 < § < 1. Suppose f(z) € ¥y, (p € N) satisfies the following
condition

then

a,c+1 m 2 ,U,(S
‘(zp,]p# ()| < 5 <a + - arctan L — Mpa]> , (z € ),

then

— c— Z
arg <C HP ~ 55" / t #gp_l(th;ﬁ+1f(t))7dt>‘ <Za.
1o 0 ’ 2

Proof. The proof is similar to the proof of Theorem 26, so we omit it.
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Puttingp=§6d=~=1,a=cand p =1 in Theorem 26, we obtain the following
corollary:

Corollary 27.

larg(zJy f(2))] < g <a + %arctan [a i 1]) ,

—1 [?
arg (Z“l /0 ta_lJ;f(t)dt>‘ < g

Theorem 28. Suppose f(z) € ¥, satisfies the following condition

then

J3ef(2) T 2 1)
_ P 7a,c 0 p ja,c ¥ Yyl hal =
arg <(1 0) (2P Iy iFup(2))” + 0127 Jp b p(2)] {J{,’jﬁFy,p(z) <5 (a+ ~arctan e

then .
a,c v
’arg (szp#Fy,pf(z)) | < 5% (z € U),
where the function F, ,(z) is defined by (29).

Proof. Let
p(z) = (PIgFpf(2)), 7 #0, (39)

Differentiating (39) logarithmically with respect to z and multiplying by z, we have

lzp’(z) _ 2(JppFupf(2))
v p(2) JpouFypf(2)

Using (30) in (40), we obtain

+p. (40)

p(z) + jyzp'(z) = (1= 0) (P I Fupf(2))Y + 6 (P Fupf(2)” [']p”“f(z) ] :

TpiFupf(2)
By using Lemma 13, the proof of Theorem 28 is complete.

Remark 1. By specifying the parameters p, a, ¢ and pu, we obtain various results
for different operators remined in the introduction.
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