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1. Introduction

Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω. Assume
that a : (0,∞)→ R is a function such that the mapping, defined by

ϕ(t) :=

{
a(|t|)t for t 6= 0,

0, for t = 0,

is an odd, increasing homeomorphisms from R onto R. For the function ϕ above,
let us define

Φ(t) =

∫ t

0
ϕ(s)ds for all t ∈ R,

on which will be imposed some suitable conditions later.
In this article, we are concerned with a class of Kirchhoff type problems in

Orlicz-Sobolev spaces of the form{
−M

( ∫
Ω Φ(|∇u|)dx

)
div
(
a(|∇u|)∇u

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1)

where M : [0,+∞)→ R and f : Ω× R→ R are two continuous functions, and λ is
a positive real parameter.
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Firstly, it should be noticed that if ϕ(t) = p|t|p−2t for all t ∈ R, p > 1 then
problem (1) becomes the well-known p-Kirchhoff-type equation{

−M
( ∫

Ω |∇u|
pdx
)

∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(2)

which has been intensively studied in recent years, see the papers [3, 7, 16, 21, 22, 26].
In the case when p(.) is a function, problem (2) has been also studied by many
authors, see for examples [2, 15, 17, 18]. Since the first equation in (2) contains
an integral over Ω, it is no longer a pointwise identity; therefore it is often called
a nonlocal problem. This problem models several physical and biological systems,
where u describes a process which depends on the average of itself, such as the
population density, see [8]. Moreover, problem (2) is related to the stationary version
of the Kirchhoff equation which was presented by Kirchhoff in 1883, see [20] for
details.

We point out the fact that if M(t) ≡ 1 and the function ϕ(t) is defined above,
problem (1) becomes a nonlinear and non-homogeneous problem, namely,{

−div
(
a(|∇u|)∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(3)

which has been studied by some authors in Orlicz-Sobolev spaces, we refer to [5, 6,
12, 13, 14, 19, 23, 24].

In this article, motivated by the works mentioned above, we shall study the
existence of solutions for problem (1). It is clear that this is a natural extension
from the earlier studies on Kirchhoff type problems in classical Sobolev spaces and
on nonlinear non-homogeneous problems in Orlicz-Sobolev spaces. More precisely,
using the ideas firstly introduced in the paper [4] and developed in [17] we want to
illustrate how to handle problem (1) in Orlicz-Sobolev spaces by using three critical
points theorem. Our situation here is different from those presented in the previous
papers [9, 10, 11] on the topic. Indeed, while in [9] we deal with problem (1) and
the superlinear and subcritical growth conditions, the main tools in [10, 11] are
the mountain pass theorem, the minimum principle and genus theory. To our best
knowledge, the result of the present paper is new even in the case M(t) ≡ 1, see
[6, 12, 19, 23].

In order to study problem (1), let us introduce the functional spaces where it
will be discussed. We will give just a brief review of some basic concepts and facts
of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows, for more
details we refer the readers to the books by Adams [1], Rao and Ren [25], the papers
by Clément et al. [13, 14].
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For ϕ : R → R and Φ introduced at the start of the paper, we can see that
Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and limt→∞Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0, limt→0
Φ(t)
t = 0, and limt→∞

Φ(t)
t =

+∞, the function Φ is then called an N -function. The function Φ∗ defined by the
formula

Φ∗(t) =

∫ t

0
ϕ−1(s)ds for all t ∈ R

is called the complementary function of Φ and it satisfies the condition

Φ∗(t) = sup{st− Φ(s) : s ≥ 0} for all t ≥ 0.

We observe that the function Φ∗ is also an N -function in the sense above and the
following Young inequality holds

st ≤ Φ(s) + Φ∗(t) for all s, t ≥ 0.

The Orlicz class defined by the N -function Φ is the set

KΦ(Ω) :=

{
u : Ω→ R measurable :

∫
Ω

Φ(|u(x)|) dx <∞
}

and the Orlicz space LΦ(Ω) is then defined as the linear hull of the set KΦ(Ω). The
space LΦ(Ω) is a Banach space under the following Luxemburg norm

‖u‖Φ := inf

{
k > 0 :

∫
Ω

Φ

(
u(x)

k

)
dx ≤ 1

}
or the equivalent Orlicz norm

‖u‖LΦ
:= sup

{∣∣∣∣∫
Ω
u(x)v(x) dx

∣∣∣∣ : v ∈ KΦ∗(Ω),

∫
Ω

Φ∗(|v(x)|) dx ≤ 1

}
.

For Orlicz spaces, the Hölder inequality reads as follows (see [25]):∫
Ω
uv dx ≤ 2‖u‖LΦ(Ω)‖u‖L∗

Φ(Ω) for all u ∈ LΦ(Ω) and v ∈ LΦ∗(Ω).

The Orlicz-Sobolev space W 1LΦ(Ω) building upon LΦ(Ω) is the space defined by

W 1LΦ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, ..., N

}
.

and it is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + ‖|∇u|‖Φ.
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Now, we introduce the Orlicz-Sobolev space W 1
0LΦ(Ω) as the closure of C∞0 (Ω) in

W 1LΦ(Ω). It turns out that the space W 1
0LΦ(Ω) can be renormed by using as an

equivalent norm
‖u‖ := ‖|∇u|‖Φ.

For an easier manipulation of the spaces defined above, we define the numbers

ϕ0 := inf
t>0

tϕ(t)

Φ(t)
and ϕ0 := sup

t>0

tϕ(t)

Φ(t)
. (4)

Throughout this paper, we assume that

1 < ϕ0 ≤
tϕ(t)

Φ(t)
≤ ϕ0 <∞, t ≥ 0, (5)

which assures that Φ satisfies the ∆2-condition, i.e.,

Φ(2t) ≤ KΦ(t), ∀t ≥ 0, (6)

where K is a positive constant, see [24, Proposition 2.3].
In this paper, we also need the following condition

the function t 7→ Φ(
√
t) is convex for all t ∈ [0,∞). (7)

We notice that Orlicz-Sobolev spaces, unlike the Sobolev spaces they generalize,
are in general neither separable nor reflexive. A key tool to guarantee these prop-
erties is represented by the ∆2-condition (6). Actually, condition (6) assures that
both LΦ(Ω) and W 1

0LΦ(Ω) are separable, see [1]. Conditions (6) and (7) assure that
LΦ(Ω) is a uniformly convex space and thus, a reflexive Banach space (see [24]);
consequently, the Orlicz-Sobolev space W 1

0LΦ(Ω) is also a reflexive Banach space.

Proposition 1 (see [6, 23, 24]). Let u ∈W 1
0LΦ(Ω). Then we have

(i) ‖u‖ϕ0 ≤
∫

Ω Φ(|∇u(x)|) dx ≤ ‖u‖ϕ0 if ‖u‖ < 1.

(ii) ‖u‖ϕ0 ≤
∫

Ω Φ(|∇u(x)|) dx ≤ ‖u‖ϕ0
if ‖u‖ > 1.

We also find that with the help of condition (5), the Orlicz-Sobolev spaceW 1
0LΦ(Ω)

is continuously embedded in the classical Sobolev space W 1,ϕ0
0 (Ω), as a result,

W 1
0LΦ(Ω) is continuously and compactly embedded in the classical Lebesgue space

Lq(Ω) for all 1 ≤ q < ϕ∗0 := Nϕ0

N−ϕ0
.

Example 1 (See [6, 12, 23]).
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(1) Let ϕ(t) = p|t|p−2t, t ∈ R, p > 1. A simple computation shows that ϕ0 =
ϕ0 = p. In this case, the corresponding Orlicz space LΦ(Ω) is the classical
Lebesgue space Lp(Ω) while the Orlicz-Sobolev space W 1

0LΦ(Ω) is the classical
Sobolev space W 1,p

0 (Ω). Therefore, we obtain the p-Kirchhoff type problems as
in [3, 7, 16, 21, 22, 26] and the references cited there.

(2) Let ϕ(t) = log(1+ |t|s)|t|p−2t, t ∈ R, p, s > 1. Then we can deduce that ϕ0 = p
and ϕ0 = p+ s.

(3) Let ϕ(t) = |t|p−2t
log(1+|t|) if t 6= 0, ϕ(0) = 0 with p > 2. Then we can deduce that

ϕ0 = p− 1 and ϕ0 = p.

Before stating and proving the main result of this paper in the next section, in
the rest of this section we recall a variational principle due to G. Bonanno [4] that
plays an important role in our arguments.

Proposition 2 (See [4, Theorem 2.1]). Let (X, ‖.‖) be a separable and reflexive real
Banach space, A,F : X → R be two continuously Gâteaux differentiable functionals.
Assume that there exists x0 ∈ X such that A(x0) = F(x0) = 0, A(x) ≥ 0 for all
x ∈ X and there exist x1 ∈ X, ρ > 0 such that

(i) ρ < A(x1),

(ii) sup{A(x)<ρ}F(x) < ρF(x1)
A(x1) .

Further, put

a =
ξρ

ρF(x1)
A(x1) − sup{A(x)<ρ}F(x)

, with ξ > 1,

and assume that the functional A−λF is sequentially weakly lower semicontinuous,
satisfies the Palais-Smale condition and

(iii) lim‖x‖→∞[A(x)− λF(x)] = +∞ for every λ ∈ [0, a].

Then, there exist an open interval Λ ⊂ [0, a] and a positive real number δ such that
each λ ∈ Λ, the equation

DA(u)− λDF(u) = 0

has at least three solutions in X whose ‖.‖-norms are less than δ.
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2. Multiple solutions

In this section, we shall state and prove the main result of the paper. We shall
seek weak solutions of (1) in the Orlicz-Sobolev space W 1

0LΦ(Ω). The norm in the

space Lp(Ω) is defined by |u|p =
(∫

Ω |u|
p dx

) 1
p . We denote by Sq the best constant

in the embedding W 1
0LΦ(Ω) ↪→ Lp(Ω) while we use the letters Ci to denote general

positive constants. This means that Sp|u|p ≤ ‖u‖ for all u ∈W 1
0LΦ(Ω).

Definition 1. A function u ∈ W 1
0LΦ(Ω) is said to be a weak solution of problem

(1) if it holds that

M

(∫
Ω

Φ(|∇u|) dx
)∫

Ω
a(|∇u|)∇u · ∇v dx−

∫
Ω
f(x, u)v dx = 0

for all v ∈W 1
0LΦ(Ω).

Theorem 1. Assume that M,f satisfy the following conditions

(M1) There exist m0 > 0 and 1 < α <
ϕ∗

0
ϕ0 such that

M(t) ≥ m0t
α−1, ∀t ∈ [0,+∞);

(F1) lim|t|→+∞
|f(x,t)|
|t|αϕ0−1 = 0 uniformly for x ∈ Ω;

(F2) lim|t|→+∞
|f(x,t)|
|t|αϕ0−1

= 0 uniformly for x ∈ Ω;

(F3) There exist x0 ∈ Ω, t0 ∈ R and R0 > 0 so small that BN (x0, R0) = {x ∈
RN : |x − x0| ≤ R0} ⊂ Ω and we have ess infx∈BN (x0,R0)F (x, t0) = l0 > 0,

ess supx∈BN (x0,R0) max|t|≤|t0| |F (x, t)| = L0 <∞, where F (x, t) =
∫ t

0 f(x, s) ds.

Then there exist an open interval Λ ⊂ (0,+∞) and a constant µ > 0 such that
for every λ ∈ Λ problem (1) has at least three distinct weak solutions in W 1

0LΦ(Ω),
whose W 1

0LΦ(Ω)-norms are less than µ.

For each λ ∈ R, we define the functional Jλ : W 1
0LΦ(Ω)→ R by

Jλ(u) = A(u)− λF(u), u ∈W 1
0LΦ(Ω), (8)

where

A(u) = M̂

(∫
Ω

Φ(|∇u|) dx
)
, F(u) =

∫
Ω
F (x, u) dx. (9)
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By (F1), using the method as in [24], we can show that Jλ is of C1(W 1
0LΦ(Ω),R)

and its derivative is given by

J ′λ(u)(v) = M

(∫
Ω

Φ(|∇u|) dx
)∫

Ω
a(|∇u|)∇u · ∇v dx−

∫
Ω
f(x, u)v dx.

Hence, weak solutions of problem (1) are exactly the critical points of the functional
Jλ. Our idea is to prove Theorem 1 by verifying all the asumptions of Proposition
2.

Lemma 2. The functional Jλ is weakly lower semi-continuous.

Proof. Let {um} be a sequence that converges weakly to u in X. Then, from the
proof of [24, Lemma 4.3] we deduce that the functional u 7→

∫
Ω Φ(|∇u|) dx is weakly

lower semi-continuous, i.e.,∫
Ω

Φ(|∇u|)dx ≤ lim inf
m→∞

∫
Ω

Φ(|∇um|) dx. (10)

Combining (10) with the continuity and monotonicity of the function ψ : R+ →
R, t 7→ ψ(t) = M̂(t), we get

lim inf
m→∞

M(um) = lim inf
m→∞

M̂
(∫

Ω
Φ(|∇um|) dx

)
≥ M̂

(
lim inf
m→∞

∫
Ω

Φ(|∇um|) dx
)

≥ M̂
(∫

Ω
Φ(|∇u|) dx

)
=M(u).

(11)

Now, we shall show that
lim
m→∞

F(um) = F(u). (12)

Indeed, by the condition (F1), there exists a positive constant C1 > 0 such that

|f(x, t)| ≤ C1(1 + |t|αϕ0−1), ∀(x, t) ∈ Ω× R. (13)
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Hence, using the Hölder inequality, we get

|F(um)−F(u)| ≤
∣∣∣∣∫

Ω
F (x, un) dx−

∫
Ω
F (x, u) dx

∣∣∣∣
≤
∫

Ω
|F (x, un)− F (x, u)| dx

≤
∫

Ω
|f(x, u+ θn(un − u))||un − u| dx

≤ C1

∫
Ω

(1 + |u+ θn(un − u))|αϕ0−1)|un − u| dx

≤ C1

(
|Ω|

αϕ0−1
αϕ0 + |un|αϕ0

αϕ0−1 + |un|αϕ0−1
αϕ0

)
|un − u|αϕ0 , θn ∈ (0, 1),

(14)

which proves (8). From (11), (14) and the definition of Jλ, the lemma is proved.

Lemma 3. The functional Jλ is coercive.

Proof. Let us fix λ ∈ R, arbitrary. By (F1), there exists δ = δ(λ) > 0 such that

|f(x, t)| ≤ m0

α
Sαϕ0
αϕ0

αϕ0(1 + |λ|)−1|t|αϕ0−1, ∀|t| ≥ δ and x ∈ Ω. (15)

Integrating the above inequality we have

|F (x, t)| ≤ m0

α
Sαϕ0
αϕ0

(1 + |λ|)−1|t|αϕ0 + max
Ω×{|t|≤δ}

|f(x, t)||t|, ∀t ∈ R. (16)

Thus, for all u ∈W 1
0LΦ(Ω) with ‖u‖ > 1, we obtain

Jλ(u) = M̂

(∫
Ω

Φ(|∇u|) dx
)
− λ

∫
Ω
F (x, u) dx

≥ m0

α

(∫
Ω

Φ(|∇u|) dx
)α
− |λ|

∫
Ω
|F (x, u)| dx

≥ m0

α
‖u‖αϕ0 − m0

α
.
|λ|

1 + |λ|
Sαϕ0
αϕ0

∫
Ω
|u|αϕ0 dx− max

Ω×{|t|≤δ}
|f(x, t)|

∫
Ω
|u| dx

≥ m0

α(1 + |λ|)
‖u‖αϕ0 −

maxΩ×{|t|≤δ} |f(x, t)|
S1

‖u‖.

(17)

By (17) and the fact that αϕ0 > ϕ0 > 1, the functional Jλ is coercive.
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Lemma 4. The functional Jλ satisfies the (PS) condition.

Proof. Let {um} ⊂W 1
0LΦ(Ω) be a sequence such that

Jλ(um)→ C2 > 0, J ′λ(um)→ 0 in
(
W 1

0LΦ(Ω)
)∗
, (18)

where
(
W 1

0LΦ(Ω)
)∗

is the dual space of W 1
0LΦ(Ω).

Since the functional Jλ is coercive, it follows from (18) that the sequence {um}
is bounded in W 1

0LΦ(Ω). On the other hand, by conditions (5) and (6), the Banach
space W 1

0LΦ(Ω) is reflexive. Thus, there exists u ∈ W 1
0LΦ(Ω) such that passing

to a subsequence, still denoted by {um}, it converges weakly to u in W 1
0LΦ(Ω).

Therefore, {um} converges strongly to u in Lαϕ0(Ω). Using the Hölder inequality
we deduce that∣∣∣F ′(um)(um − u)

∣∣∣ =

∣∣∣∣∫
Ω
f(x, um)(um − u) dx

∣∣∣∣
≤ C3

∫
Ω

(1 + |um|αϕ0−1)|um − u| dx

≤ C3

(
|Ω|

αϕ0−1
αϕ0 + |um|αϕ0−1

αϕ0

)
|um − u|αϕ0

(19)

which tends to 0 as m→∞.
On the other hand, by (18), we have

lim
m→∞

J ′λ(um)(um − u) = 0. (20)

From (18)-(20) and the definition of the functional Jλ, we get

lim
m→∞

M′(um)(um − u) = 0. (21)

Using Proposition 1, since {um} is bounded in W 1
0LΦ(Ω), passing to a subsequence,

if necessary, we may assume that∫
Ω

Φ(|∇um|) dx→ t1 ≥ 0 as m→∞.

If t1 = 0 then {um} converges strongly to u = 0 in X and the proof is finished. If
t1 > 0 then since the function M is continuous, we get

M

(∫
Ω

Φ(|∇um|) dx
)
→M(t1) as m→∞.
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Thus, by (M0), for sufficiently large m, we have

M

(∫
Ω

Φ(|∇um|) dx
)
≥ C4 > 0. (22)

From (21), (22), it follows that

lim
m→∞

∫
Ω
a(|∇um|)∇um · (∇um −∇u) dx = 0.

Thus, using [23, Lemma 5], {um} converges strongly to u in W 1
0LΦ(Ω) and the

functional Jλ satisfies the Palais-Smale condition.

Lemma 5. The following property holds

lim
ρ→0+

sup{F(u) : A(u) < ρ}
ρ

= 0.

Proof. Due to (F2), for an arbitrary small ε > 0, there exists δ > 0 such that

|f(x, t)| ≤ εαϕ0Sαϕ
0

αϕ0 |t|αϕ
0−1, ∀|t| < δ and x ∈ Ω. (23)

From (13) and (23) we have

|F (x, t)| ≤ εSαϕ
0

αϕ0 |t|αϕ
0

+K(δ)|t|q, ∀t ∈ R and x ∈ Ω, (24)

where q ∈ (αϕ0, ϕ∗0) is fixed and K(δ) > 0 does not depend on t. For ρ ∈ (0,+∞),
let us define the sets

B1
ρ = {u ∈W 1

0LΦ(Ω) : A(u) < ρ} (25)

and
B2
ρ =

{
u ∈W 1

0LΦ(Ω) :
m0

α
‖u‖αϕ0

< ρ
}
. (26)

For all u ∈W 1
0LΦ(Ω) with ‖u‖ < 1, by Proposition 1, we have

A(u) ≥ m0

α
‖u‖αϕ0

,

which implies that B1
ρ ⊂ B2

ρ for all ρ ∈
(
0, m0

α

)
.

From (24) we obtain

F(u) ≤ ε‖u‖αϕ0
+K(δ)S−qq ‖u‖q. (27)
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Since 0 ∈ B1
ρ and F(0) = 0 one has 0 ≤ supu∈B1

ρ
F(u). On the other hand, if u ∈ B2

ρ ,
then

‖u‖ ≤
(
α

m0

) 1
αϕ0

ρ
1

αϕ0

and using (27) we get

0 ≤
supu∈B1

ρ
F(u)

ρ
≤

supu∈B2
ρ
F(u)

ρ

≤ εα

m0
+
αK(δ)S−qq

m0
‖u‖q−αϕ0

≤ εα

m0
+ S−qq

(
α

m0

) q

αϕ0

ρ
q−αϕ0

αϕ0 .

(28)

Because ε > 0 is arbitrary and ρ→ 0+, we get the desired result since q > αϕ0.

Proof of Theorem 1. Let x0 ∈ Ω, t0 ∈ R and R0 > 0 be from the condition (F3).
Let us denote by BN (x0, r) the N−dimensional closed euclidean ball with center
x0 ∈ RN and radius r > 0.

For σ ∈ (0, 1), we define the function uσ by

uσ(x) =


0, for x ∈ RN\BN (0, R0),

t0, for x ∈ BN (0, σR0),
t0

R0(1−σ)(R0 − |x|) for x ∈ BN (0, R0)\BN (0, σR0).

It is clear that uσ ∈W 1,ϕ0
0 (Ω) and

|uσ(x)| ≤ |t0| for all x ∈ RN .

Moreover, a simple computation implies that

‖uσ‖ϕ0

W
1,ϕ0
0 (Ω)

=

∫
Ω
|∇uσ(x)|ϕ0 dx =

|t0|ϕ0(1− σN )

(1− σ)ϕ0
RN−ϕ0

0 wN > 0, (29)

where wN is the volume of BN (0, 1).
Since the embedding W 1

0LΦ(Ω) ↪→ W 1,ϕ0
0 (Ω) is continuous, there exists C5 > 0

such that
C5‖u‖W 1,ϕ0

0 (Ω)
≤ ‖u‖, ∀u ∈W 1

0LΦ(Ω), (30)
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which helps us to get ‖uσ‖ > 0 for all σ ∈ (0, 1). Using the definition of uσ and the
condition (F3) we obtain

F(uσ) =

∫
Ω

F (x, uσ) dx

=

∫
BN (x0,σR0)

F (x, uσ) dx+

∫
BN (x0,R0)\BN (x0,σR0)

F (x, uσ) dx

≥
∫
BN (x0,σR0)

F (x, t0) dx−
∫
BN (x0,R0)\BN (x0,σR0)

|F (x, uσ)| dx

≥ ess infx∈BN (x0,R0)F (x, t0)σNRN0 wN − ess supx∈BN (x0,R0) max
|t|≤|t0|

|F (x, t)|(1− σN )RN0 wN

≥
[
l0σ

N − L0(1− σN )
]
RN0 wN .

For σ close enough to 1, the right-hand side of the last inequality becomes strictly
positive, let σ0 be such a number. Then we have F(uσ0) > 0.

Now, applying Lemma 5, we may choose ρ0 ∈
(
0, m0

α

)
such that

ρ0 <
m0

α
‖uσ0‖αϕ

0 ≤ A(uσ0)

and

sup{F(u) : A(u) < ρ0}
ρ0

<

[
l0σ

N − L0(1− σN )
]
RN0 wN

2A(uσ0)

<
F(uσ0)

A(uσ0)
.

(31)

In Proposition 2 we choose x1 = uσ0 and x0 = 0 and observe that the hypotheses
(i) and (ii) are satisfied. We define

a :=
1 + ρ0

F(uσ0 )

A(uσ0 ) −
sup{F(u): A(u)<ρ0}

ρ0

. (32)

Taking into account Lemmas 2 and 4, all the assumptions of Proposition 2 are
verified. Thus, there exist an open interval Λ ⊂ [0, a] and a number µ > 0 such
that for each λ ∈ Λ, the equation J ′λ(u) = A′(u) − λF ′(u) admits at least three
solutions in W 1

0LΦ(Ω) having W 1
0LΦ(Ω)-norms less that µ. Theorem 1 is completely

proved.
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pass type solutions for quasilinear elliptic equations, Calc. Var. 11, (2000), 33-62.

[14] Ph. Clément, B. dePagter, G. Sweers, and F. deThin, Existence of solutions
to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1,
(2004), 241-267.

[15] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic
elliptic Kirchhoff equations, Nonlinear Anal. 74, (2011), 5962-5974.

165



Nguyen Thanh Chung – Kirchhoff type problems in Orlicz-Sobolev spaces . . .
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