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APPLICATIONS OF CARLSON SHAFFER OPERATOR IN
UNIVALENT FUNCTION THEORY
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ABSTRACT. In this research paper, we introduce some new classes of k-starlike
functions and k-uniformly close-to-convex functions in the unit disk £ = {z : |2| < 1}
by using Carlson-Sheffer operator. Some inclusion relationships, coefficient bounds

and other interesting properties of these classes are investigated. Some known results
are derived as special cases.
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1. INTRODUCTION

Let A be the class of functions f(z) given by

(o)
B)=z+Y apnz", |z < 1. (1.1)
n=2

analyticin F = {z: |z| <1} . Let S, C, S*, K be the subclasses of A of uni-
valent, convex, starlike and close-to-convex functions respectively. The convolution
(Hadamard product) given by

f*g Zan n2" |Z‘ <1, (12)

where f(z) is given by (1.1) and g(z) = z + anz see [2].

Let f and g be analytic in £. The function f 1s subordinate to g, written f < g
or f(z) < g(z), if g is univalent in E, f(0) = ¢(0) and f(E) C g(E), see [7].
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Let incomplete beta function ¢(a,c;z), see [9] defined by

d(a,c;2) =2z9F1(1,a,¢;2) = 2 + Z Egnl z",
n—2 n—1

|z <1, c#0,—1,-2....; (1.3)
where (a), is Pochhammer symbol defined interms of the Gamma functions, by

(@) =

I'(a+n) :{ 1, n=0, (1.4)

I'(n) nn+1)(n+2).. ;(a+n—1), n € N.

Further for f(z) € A, then a linear operator L(a,c): A — A, see [1] defined as

Lo 0)f(e) = dlaci )+ fl2) =24 3G <t (15)
n—2 n—1
where ¢(a,c; z) is given by (1.3). It follows from (1.3) and (1.5) that
2(L(a,c)f(2)) = aL{a+1,¢)f(2) — (a — 1)L(a,c) f(2). (1.6)
L(a,c)f is a polynomial for a = 0,—1,-2,.... . Fora #0.—1,-2,..., root test
implies that
1
lim (@)n|" =
n—oo | (¢)p,

This shows that infinite series for L(a,c)f and f has same radius of convergence.
There is 1 — 1 mapping of A onto itself with L(a,a) as identity and L(c,a) is the
continuous inverse of L(a, c) (a # 0.—1,—2,...) . Furthermore, if h(z) = zf’(z) , then
f(z) = L(1,2)h(z) and h(z) = L(2,1)f(z). Carlson-Shaffer operator generalizes
other linear operators.

In 1999, Kanas and Wisniowska [3] introduced the conic domain Q, k& > 0 and
studied it comprehensively, defined as

Qk:{u+iv:u>/€\/(u—1)2+v2}. (1.7)

Extremal functions for the conic regions ) are given as

( Ej? k::Q
2
l—i-%(logifg) , k=1,
pe(z) ={ 1+ e sinh?[(2 arccos k) arctan hy/z], 0 <k <1, (1.8)

u(z)
t

1 1
J ﬁ_gﬂmdz + g k> 1,

1 .
1+ 7= sin 21%’(@

=5
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where, u(z) = 2=VL ¢ (0,1),]2] < 1 and =z can be chosen such that k =

1—Vtz’
cosh (Zg(%)) , R(t) is Legendre’s complete elliptic integral of R(t) , see [3], [4].
If pr(z) =1+ 0kz+ ....., then from (1.8) one can have
8(arccos k)?
PR 0<k<l
0 =1 T k=1 (1.9)
s k>1

4(k2-1)\/t(1+)k2(t)’

Later, Kanas and Wisniowska [3] defined the class of functions which maps open
unit disk |z| < 1 into these conic regions and denoted this class by P(py) as,
p satisfy the condition p(0) = 1 belongs to the class P(pg), if p(z) < pi(2) ,
|z| <1. Thatis, p(E) C p(E) = Q% . p(z) € P(px) holds following property that
Re (p(z)) > ﬁ

Now we define the following classes.

Definition 1.1 If a function f is analytic in |z| < 1 and defined by (1.1) , then

f €k—-UCV(a,c) if and only if

L(a,e)f e k—UCV  (c#0,-1,-2,...). (1.10)

Special Cases

(1) 0-UCV(1,1) =C , see [17].

(i) k—UCV(1,1) =k —-UCV, we refer [3].
Definition 1.2 If f is analytic in |2|] < 1 and defined by (1.1) , then f €
k—UT(a,c) if and only if

L(a,o)f €k—ST (c#0,—1,-2,..). (1.11)

Special Cases

(1) 0—UT(a,c) =T(a,c) introduced and studied in [18],

(i1) 0—UT(1,1) = S*, see [12].

(iii) k—UT(2,1) =k —UCV, we refer [3].

(tv) k—=UT(1,1) =k — ST introduced and studied in [3].

(v) 0—-UT(2,1) =C, see [17].

The relationship between the classes of is k — UCV (a,c¢) and k — UT(a,c) is
given as

fek—-UCV(a,e) ifandonlyif =zf €k— UT(a,c). (1.11)
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Definition 1.3 If f is analytic in |z| < 1 and defined by (1.1) , then f €
k —UK(a,c) if and only if

L(a,0)f e k—UK  (¢#0,-1,-2,...). (1.12)

Special Cases
(i) 0—UK(1,1) = K,
(1) k—UK(1,1) =k — UK, see [14].
(i1i) 0 — UK (2,1) = C*, we refer [15].
(i) k—UK(1,1) =k —UC™* , introduced in [14].
(v) We take g(z) = f(z) in (1.12), we obatin the class k — UCV (a, ).

Definition 1.4 If f is an analytic function in |2| < 1 and defined by (1.1) , then
f € k—UC*(a,c) if and only if
L(a,e)f € C* (c#0,—1,-2,...). (1.13)

Special Cases

(1) 0—-UC*(1,1) = C* , see [15].

(i) k—=UC*(1,1) =k — UC*, we refer [14].

(791) We take g(z) = f(z) in (1.13), we obatin the class k — UCV (a,c).

The relationship between the classes of is k — UC*(a,c¢) and k — UK(a,c) is
given as

fek—-UC*(a,c) ifandonlyif zf €k— UK(a,c). (1.14)

2. PRELIMINARY CONCEPTS
To prove our results, we need the following lemmas.

Lemma 2.1 [5] Let f(2) = z + a22® + a32® + ... € k — ST. Then
|az| < [0k|-

This coefficient bound is also holds for the classes of k — UCV, k — UK and
k—UC*.

Lemma 2.2 [11] If a , b and ¢ are real and satisfy
-1<a<1,b>0 and c¢>14+max{2+|a+b—2[,1—(a—1)(b—1)},

then
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zF(a,b;c;z) € S*, (2.1)
where -
a)n(b)y 2"
F(a,b;c;z):l+z( 20)() o
n=1 n ’

is the Guassian hypergeometric function.

Lemma 2.3 [18] If a and ¢ are real and satisfy
—1<a<1 and ¢>3+|al,

then ¢(a,c;z) defined by (1.3) is convex in E.
Lemma 2.4 [16] The class S* and K are closed under convex convolution.

Lemma 2.5 [5] Let 0 < k < co and 8,6 be any complex numbers with 5 # 0
and %(kﬁ—ﬁ +9) >0 where 7 is defined as:
If h(z) is analytic in £, h(0) =1 and it satisfies

2l (2)
h(z) + Bhiz) 43 P (2.2)

and g is an anlytic solution of

Ty (2) + m = pr.r(2), (2.3)

then qi(2) is univalent, h(2) < qr(2) < pr~(2), and qx,(z) is best dominant
of (2.2).

Lemma 2.6 [17] If f(z) € C' and g € S*, then sor any analytic function in E with
F(0)=1.

f+Fg

fxg
where CoF(E) denotes the closed convex hull of F(E) (the smalest convex set
which contain F(E) ).

Lemma 2.7 [10] Let P be a complex function in E, with Re(P(z)) > 0 for
z € E and h be a convex function in E. If p(z) be a analytic function in E, with
p(0) = h(0) then,

(E) C CoF(E), feC, ges, (2.4)

p(2) + P(2)2(2) < h(2). (2.5)
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3. MAIN RESULTS

Theorem 3.1 For ¢ > 1

k—UT(a+1,¢) Ck—UT(a,c).

Proof. Let f(z) e k—UT(a+1,c¢).
Let

Then p(z) is analytic with p(0) = 1.
From (2.6) and (3.1), we have

al(a+1,¢)f(z) = (a = 1)L(a,¢) f(2) = p(2)L(a, ¢) f(2),

aL(a+1,¢)f(z) = L(a,c)f(2)[(a — 1) + p(z)].
Differentiating logarithmically, we get

allla+1,0f(z) _ 2(Lladf() 2/
Lia+1,0)f(2) L(a,0)f(z)  p(z)+(a—1)

Since f € k —UT(a+ 1,c¢), it follows that

/
P'(2) }
p(2) + ———"——= ¢ < Di(?),
e+ ) <
and by using Lemma , p(z) < pr(z). This proves that f(z) € k — UT(a,c) in E.
As special case we note that for kK = 0 in Theorem 3.1, we obtain the known
result given in [18].

Theorem 3.2 Let f(z) € k—UT(a,c) and

z

/ PLEdE (v > 0). (3.3)

0

vFl

P =1

Then F(z) € k—UT(a,c).
Proof. From (3.3), we note that F(z) € A and

r(L(a,c)F(2)) + z(L(a,c)F(2)) = (v + 1)L(a, c) f(2). (3.4)
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Let
2(L(a,c)F(z))

L(a,c)F(z)
We note that h(z) is analytic in E write h(0) = 1.
Then, from (3.4), we have

h(z) = (3.5)

L(a, 0)f(2)

r+h(z)=(r+ 1)L(a, OF ()’

Differentiating Logarithimacally, we get
h(z) < pk(z) in E,
and this proves that F'(z) € k — UT(a,c) in E.
Theorem 3.3 For a > 1,
k—UK(a+1,¢) Ck—-UK(a,c).
Proof. Let f(z) € k—UK(a+ 1,¢). Then there exists g(z) € k —UT(a+ 1,c¢)

such that
2(L(a+1,¢)f(2))

L(a.0)9() = p(z). (3.6)

Using (1.6), we have

al(a+1,¢)f(2) = (a = 1)L(a, ¢) f(2) = p(2)(L(a, c)g(2)),

and differentiating we get

a(L{a+1,0)f(2)) = p'(2)(L(a,c)g(2) + (a = 1)(L(a,¢) f(2)) + p(2)(L(a, c)g(2))
= P(2)(L(a,0)g(2)) + (a = )(L(a, ) f(2))
+p(2)[aL(a+1,¢)9(2) — (a = 1)L(a, ¢)g(2) (2)

Using (1.6), we can write

AL+ LS _ [ Dada(:)

L(a+1,c)g(z) = ){aL(a-l—l,c)g(z)}

) L(a,c)g(2) }
"L(a+1,¢)g(2)

(L(a, o) f(=
L(a,c)g(z
(L(a,0)g(2))"  L(a,c)g(2) } (3)

+p<2){1‘(“_” L(a,0g(z) Llat Log) )

+(a — 1){

~ | ~~—
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Since g(z) € k—UT(a+1,¢) and k—UT(a+1,¢) C k—UT(a,c), it follows that

Z<LL((Z’CC))§((§;)/ = po(2) < pr(z)-

From (77?), (?7), we get

z(L(a+1,¢c)f(z))
L(a+1,c)g(z)

zp'(z)
po(2) + (a—1)

=p(2) + (3.7)
Now po(z) € P(px) <k+1 C P anda >1,s0 R(po(z) + (a—1)) > 0. Let

h()(Z) m Then %hO(Z) >0 in FE.
Thus, from (3.9) and f(z) € k —UK(a+1,¢), we obtain

[p(2) + ho(2)(zp'(2))] < pi(2)-

Using Lemma 2.7, it gives us that

p(2) < pi(2),

which proves that f(z) € k — UK(a,c) in E. This completes the proof.

Theorem 3.4 For F(z) be defined by (3.3) and f(z) € k — UK(a,c), z € E.
Then
F(z) e k—UK(a,c).
Proof. Since f(z) € k — UK (a,c), there exists g(z) € k — UT(a,c) such that
AL(@)f ()" pe(2), 2 € E.

L(a,0)g(2)
Let ;
G(z) = 7;1/t7—1g(t)dt (v>0). (3.10)
0
Then, by Theorem 3.2 leads us that G(z) € UT(a,c) in E.
Let
H(z) = M. (3.11)

Then H(z) is analytic in £ with H(0) =
From (3.10) and (3.11), we have

H'(2)(L(a, ¢)G(2)) + H(z)(L(a, c)G(2))' = =7(L(a, ) F(2)) + (v + 1)(L(a, ) f(2)) .
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This gives us

B+ B G ~ 1 o+ O Ve (12
a,c)g(z

Let %)GG((‘?)), = po(2),po(z) € P(pr) C P and so Re(pyp(z) +v) € P in E. It

follows that ()
{6+ ZEE L <

From this we have
H(z)+ hi(2)(zH'(2)) < pr(2),
where hy(z) = pO(Z)JW e P.

We now apply Lemma 2.7, and this gives us H(z) < pg(z), which proves that
F(z) e k—UK(a,c) in E.

Theorem 3.5 Let f € k —UT(a,c) and ¢ € C, then ¢ x f € k —UT(a,c).

Proof. Let
2[L(a,0)(f x9)(2)] _ 2(Lla,e)f <>> 6(2)
Lia,e)(f+0)(2) — (L(a,0)f(2) * (2)
o(z) « ZHEAE (g, ) f(2)
6(2) * L{a, o) f(2)
_ 6(2) * h(z)(L(a, ) (2))
6(=) ¥ L(a, ) f(z)

Now ¢ € C, L(a,c)f(z) € k—UT C S*, h(z) € P(pg) , so using Lemma 2.6 we
have

2(L(a, c)(f * &)
L(a,c)(f * ¢)

and therefore ¢ x f € k — UT(a,c).
Special Cases

(i) We take k = 0, it follows that S(a,c) is invariant under convex convolution.

(ii) Fora=1, ¢=1 and k =0, we get the well known result that the class
S* is closed under convolution with convex function. For this we refer [17].

Following the similar techniques, we can easily prove the following.

Theorem 3.6 Let ¢ € C' and let f € k—UK(a,c). Then ¢« f € k — UK (a,c).
(We include the proof for the sake of completeness).

Proof. Since f € k — UK (a,c), %))gf&))l € P(pr), g€ k—UT(a,c).

S P(pk)7
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cLa)(f o)) 9()x HeIE L0, c)g(2)
L(a,c)(g*o)(z) #(2) * L(a,c)g(z)

where ¢ € C, h € P(p), L(a,c)g € S*. Now on using Lemma 2.6, we obtain the
required result that (f x ¢) € k — UK (a,c) in E.

As special cases we note that when a =1, ¢=1 and kK =0 in Theorem 3.6,
it follows that the class K is closed under convolution with convex function, see [17].

Applications of Theorem 3.5 and Theorem 3.6

From Theorem 3.5 and Theorem 3.6, it follows that the classes k—UT(a,c) and
k—UK(a,c) are invariant under convolution with convex function. Using this fact,
it can be easily verified that these classes are closed under the integral operators
given as:

0 =] "
0 z
) Fat) =2 [0

0
(i) fo(t) = =1 ()

As applications of Theorem 3.5 and Theorem 3.6 we have following results.

Theorem 3.7 Let a and ¢ be real and satisfy
c#0,—1<c<1l,and a >3+ |c|. (3.13)

Then
k—UT(a,c) C k—ST.

Proof. If f(z) € k— UT(a,c). That is L(a,c)f(z) = ¢(a,c) * f(z) € k — ST.
Since a and ¢ satisfy the condition (3.13), we have from that ¢(c,a) € C. Therefore,
an application of Theorem 3.5 leads to

f=d(c, z)*pla,c)f € k— ST.

As special case we take k = 0 , then we obtain the known result given in [18].
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Using Theorem 3.6 and similar techniques we have the following.

Theorem 3.8 Let @ and ¢ be real and satisfy (3.13). Then
k—UK(a,c) Ck—UK.
Theorem 3.9 Let a, ¢ and d be real. If
d#0,-1<d<1landc>3+]|d,

then
(1) k—UT(a,d) C k—UT(a,c),
(1) k—UK(a,d) C k—UK(a,c).
Proof. Let
f(z) e k—=UT(a,d).

Then

L(a,d)f(z) = ¢(a,d) * f(z) € k — ST.
Using Lemma 2.3, ¢(d, c) € C. Hence,
La,c)f(z) = ¢la,c)* f(2)

(
¢(a,d) * ¢(d, c)
¢(d, c) x ¢(a,d)

S~

= (2)
(2)-

« f
«f

(3.14)

Since ¢(a,d)* f(z) = L(a,d) f(z) € k—ST and ¢(d,c) € C, it follows L(a,c)f(z) €

k — ST and consequently f(z) € k — UT(a,c). This completes the proof.
Proof of (ii) is similar and therefore omit it.

As special case we take K = 0 in Theorem 3.9, this implies the following.

(1) S(a,d) C S(a,c) which has been proved in [18].
(73) K(a,d) C K(a,c).

Theorem 3.10 Let f € k — UT(a,c) and f(z) be given by (1.1). Then

C
ool < |2 2.

Proof. Since we have L(a,c)f(z) = z+ > %anﬂz"“ belongs to k — ST,
n=1"""

this implies that
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which gives the required result.

Special Cases

(i) We take k =0, we have 6 = 2. This implies that |az| < 2|£].

(ii) For k=1, we have &, = %, from which follows that |as| < |£]5.

(i7i) We take a =2 and ¢ = 1, it follows that L(2,1)f = zf’. Therefore, we
have L(2,1)f € k — ST implies that |ag| < % .

Let a and ¢ satisfy condition (3.13). Then by Theorem 3.7, f € k—UT(a,c) is
starlike and hence univalent. Using this observation, we prove the following covering
result.

Theorem 3.11 Let a and ¢ satisfy (3.13) and let f € k — UT(a,c). Then f(E)
contains the disk

|wl (3.15)

-2
2a + ]c]dk .
Proof. Since f € k — UT(a,c) with a and ¢ defined by (3.13) is univalent,
_ wof(z) 1 5 13
g(z) = wo—f2) z+ <a2+ o z°+ (a3 + w02)z + o
is also univalent, where wy (wy # 0) is complex number such that f(z) # wgy for
z € E. Hence

— —Jag|| <

|wo

1
a2+’ <2.
wo

Now, using Theorem 3.10, we have |az| < [£|0g, where 05, is given by (1.9). This
gives us

L§2+‘E‘5kzw,
|wo a a
which implies that
2a + C(Sk
> 2

This completes the proof of theorem.

Special Cases
(i) We take k = 0, we have 6 = 2 . It follows that, f(£) contains the disk

lw| < m which has been proved in [18].
(ii) For k£ = 1, we have 0 = %. That is f € 1 — UT(a,c) implies that f(E)
a7r2

contains the disk |w| < oz i)
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(iii) We take a = 2 and ¢ = 1, it follows that L(2,1)f = zf’. Therefore, we
have L(2,1)f € k — ST implies that f(F) contains the disk |w| < ﬁ.

Theorem 3.12 Let f € k — UT(a,c) and for a > 0, let

Folz) = (1= a)f(2) + azf'(2).
Then F,(z) € k—UT(a,c) for |z| < rq, where

1
20+ +V4aZ —2a+1
Proof. When a = 0, the proof is immediate. So we take & > 0. In Theorem 3.5,

we have proved that the class k — UT'(a,c) is preserved under convex convolution.
We define

Ta

(3.16)

0al2) = (-o)g—ytog—p

= z+Z(1+(n— Da)z". (4)
n=2

It is known [10] and can easily be verified that ¢,(z) € C' for |z| < r,, where 74
is given by (3.16).
We can write

Fa(2) = (1— a)f(2) + azf'(2) = ga(2) * (2).

Since f € k—UT(a,c), ¢o € C in |z| <1y, therefore , by Theorem 3.5, it follows
that FO( ck— UT(CL,C) in ’Z‘ < Tq = Wﬁ

Special Cases

(i) Let o = L in Theorem 4.2.8. Then we have Fy(z) = GL&V  This ig
Livingston’s operator, see [8]. In this case, r 1= g

(i) For a = 1 in Theorem 4.2.6. It follows that F,(z) = zf'(z) and

: _ 1
f€k—UT(a,c). In this case F(z) € k —UT(a,c) for |z| <r = CTRVeE
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