http://www.uab.ro/auajournal/

No. 44/2015 pp. 167-173

doi: 10.17114/j.aua.2015.44.11

APPLICATION OF SUPERORDINATION TO A SUBCLASS OF ANALYTIC FUNCTIONS INCLUDED DOUBLE INTEGRAL OPERATORS

R. AGHALARY, P. ARJOMANDINIA AND H. RAHIMPOOR

ABSTRACT. We suppose that the normalized analytic function f(z) satisfies the differential equation

$$f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z) = g(z),$$

where g is univalent in the open unit disk \mathbb{D} and is superordinate to a convexunivalent function h(z) normalized by h(0) = 1. In addition, we assume that the function f(z) is given by a double integral operator of the form

$$f(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} z G'(z t^{\mu} s^{\nu}) ds dt,$$

where G'(z) + zG''(z) = g(z). We shall determine the best subordinant of the solutions of differential superordination

$$h(z) \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z).$$

Some special cases are given in the corollaries.

2010 Mathematics Subject Classification: Primary 30C45, Secondary 30C80.

Keywords: convoulution, convex-univalent functions, integral operator, superordination.

1. Introduction

Let \mathcal{A} be the class of all analytic functions f(z) of the form

$$f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots; \quad (z \in \mathbb{D}),$$

which satisfy the normalization condition f(0) = f'(0) - 1 = 0, and that $S \subseteq \mathcal{A}$ be the class of normalized univalent functions. Further, suppose that C denote the class of convex-univalent functions in \mathbb{D} . For two analytic functions

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ g(z) = z + \sum_{k=2}^{\infty} b_k z^k$$

the Hadamard product (or convolution) of f and g is an analytic function in \mathbb{D} defined by $(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k$.

For $f,g \in \mathcal{A}$ the function f is subordinate to g (or g is superordinate to f) written as $f(z) \prec g(z)$ if there exist an analytic function w(z) in \mathbb{D} with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). If g is univalent in \mathbb{D} , then $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$, (see [3]).

Suppose that p, h are two analytic function in \mathbb{D} and $\varphi : \mathbb{C}^3 \times \mathbb{D} \to \mathbb{C}$. If p(z) and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent in \mathbb{D} and if p(z) satisfies the second-order superordination

$$h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z), \tag{1}$$

then p is called a solution of the differential superordination (1). An analytic function q(z) is called a subordinant of (1), if $q(z) \prec p(z)$ for all the solutions of (1). The best subordinant \tilde{q} is univalent subordinant that satisfies $q \prec \tilde{q}$ for all the subordinants q of (1), (see [4]).

Definition 1. ([3]) We denote by Q the set of all functions p(z) that are analytic and injective on $\overline{\mathbb{D}} \setminus E(p)$, where

$$E(p) = \{ \xi \in \partial \mathbb{D} : \lim_{z \to \xi} p(z) = \infty \},$$

and are such that $p'(\xi) \neq 0$ for $\xi \in \partial \mathbb{D} \setminus E(p)$.

We will use the following results, but we omit their proofs.

Lemma 1. ([5]) Let $f, g \in \mathcal{A}$ and $F, G \in C$. If $f \prec F$ and $g \prec G$, then $f * g \prec F * G$.

Lemma 2. ([4]) Let h(z) be convex in \mathbb{D} , with $h(0) = a, \lambda \neq 0$ and $\Re(\lambda) \geq 0$. If $p \in Q(a) = \{p \in Q : p(0) = a\}, p(z) + \frac{1}{\lambda}zp'(z)$ is univalent in \mathbb{D} and

$$h(z) \prec p(z) + \frac{1}{\lambda} z p'(z)$$

then $q(z) \prec p(z)$, where

$$q(z) = \frac{\lambda}{nz^{\lambda/n}} \int_0^z h(w) w^{\frac{\lambda}{n} - 1} dw.$$

The function q is convex in \mathbb{D} and is the best subordinant.

In a recently paper [1] authors used subordination and investigated starlikeness and other properties of functions $f \in \mathcal{A}$ given by a double integral operator. In this article, using superordination, conditions on a different integral operator are investigated. Let $\delta_1 > -1$ and $\delta_2 > -1$. We consider functions $f \in \mathcal{A}$ defined by the double integral operator of the form

$$f(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} z G'(z t^{\mu} s^{\nu}) ds dt; (G \in \mathcal{A}, z \in \mathbb{D}).$$
 (2)

From (2) we see that

$$f'(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} g(zt^{\mu}s^{\nu}) ds dt,$$

where g(z) = G'(z) + zG''(z). In addition, we will see that there are suitable parameters α, λ such that

$$f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z) = g(z).$$

2. Main results

Let h(z) be a convex-univalent function in \mathbb{D} with h(0) = 1. For $\alpha \geq \lambda \geq 0$, consider $f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)$ is univalent in \mathbb{D} . We define the class $S(\alpha, \lambda, h)$ of functions $f \in \mathcal{A}$ as following

$$S(\alpha, \lambda, h) = \{ f \in \mathcal{A} : h(z) \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z), \ z \in \mathbb{D} \}.$$

Put

$$\mu = \frac{1 + \delta_2}{2} ((\alpha - \lambda) - \sqrt{\triangle}), \quad \alpha - \lambda = \frac{\nu}{1 + \delta_1} + \frac{\mu}{1 + \delta_2}, \quad (1 + \delta_1)(1 + \delta_2)\lambda = \mu\nu \quad (3)$$

where $\triangle = (\alpha - \lambda)^2 - 4\lambda$. It is seen that $\Re(\mu) \ge 0$ and $\Re(\nu) \ge 0$. Now we write the solution of

$$f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z) = g(z)$$

$$\tag{4}$$

in it's double integral form. The relations (3) and (4) show that

$$g(z) = f'(z) + \left(\frac{\mu\nu}{(1+\delta_1)(1+\delta_2)} + \frac{\nu}{1+\delta_1} + \frac{\mu}{1+\delta_2}\right) z f''(z) + \frac{\mu\nu}{(1+\delta_1)(1+\delta_2)} z^2 f'''(z)$$

$$= \frac{\nu}{1+\delta_1} z^{1-\frac{1+\delta_1}{\nu}} \left(\frac{\mu}{1+\delta_2} z^{1+\frac{1+\delta_1}{\nu}} f''(z) + z^{\frac{1+\delta_1}{\nu}} f'(z)\right)'$$

$$= \frac{\nu}{1+\delta_1} z^{1-\frac{1+\delta_1}{\nu}} \left(\frac{\mu}{1+\delta_2} z^{1+\frac{1+\delta_1}{\nu} - \frac{1+\delta_2}{\nu}} (z^{\frac{1+\delta_2}{\mu}} f'(z))'\right)'.$$

Therefore

$$\frac{\mu}{1+\delta_2} z^{1+\frac{1+\delta_1}{\nu} - \frac{1+\delta_2}{\mu}} (z^{\frac{1+\delta_2}{\mu}} f'(z))' = \frac{1+\delta_1}{\nu} \int_0^z w^{\frac{1+\delta_1}{\nu} - 1} g(w) \ dw.$$

Using the change of variable $w = zs^{\nu}$, we obtain

$$(z^{\frac{1+\delta_2}{\mu}}f'(z))' = \frac{(1+\delta_1)(1+\delta_2)}{\mu} \int_0^1 s^{\delta_1} z^{\frac{1+\delta_2}{\mu}-1} g(zs^{\nu}) \ ds.$$

Integrating both sides, a change of variable yields

$$f'(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} g(zt^{\mu}s^{\nu}) ds dt.$$

Take $\psi_{\delta,\lambda}(z) = \int_0^1 \frac{t^{\delta} dt}{1-zt^{\lambda}}$. By Theorem [[3], 2.6h] it is seen that $\psi_{\delta,\lambda}(z) \in C$ provided that $\Re(\lambda) \geq 0$.

Theorem 3. Let μ and ν be defined as (3) and

$$q(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} h(zt^{\mu} s^{\nu}) ds dt.$$
 (5)

Then the function $q(z) = (1 + \delta_1)(1 + \delta_2)(\psi_{\delta_1,\nu} * \psi_{\delta_2,\mu} * h)(z)$ is convex. If $f \in S(\alpha,\lambda,h), f'(z) \in Q$ and $f'(z) + \frac{\nu}{1+\delta_1}zf''(z) \in Q$ then $q(z) \prec f'(z)$ and q is the best subordinant.

Proof. We have

$$\psi_{\delta_2,\mu}(z) * h(z) = \int_0^1 \frac{t^{\delta_2} dt}{1 - zt^{\mu}} * h(z) = \int_0^1 t^{\delta_2} h(zt^{\mu}) dt.$$

Therefore

$$(\psi_{\delta_{1},\nu}(z) * \psi_{\delta_{2},\mu}(z)) * h(z) = \psi_{\delta_{1},\nu}(z) * \int_{0}^{1} t^{\delta_{2}} h(zt^{\mu}) dt$$

$$= \int_{0}^{1} s^{\delta_{1}} \left(\int_{0}^{1} t^{\delta_{2}} h(zs^{\nu}t^{\mu}) dt \right) ds$$

$$= \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h(zt^{\mu}s^{\nu}) ds dt.$$

The function q(z) is convex, since the functions $\psi_{\delta_1,\nu}, \psi_{\delta_2,\mu}$ and h are convex univalent in \mathbb{D} (see [2]). Put $p(z) = f'(z) + \frac{\nu}{1+\delta_1}zf''(z)$, then $h(z) \prec p(z) + \frac{\mu}{1+\delta_2}zp'(z)$. By Lemma 2 we obtain

$$\frac{1+\delta_2}{uz^{\frac{1+\delta_2}{\mu}}} \int_0^z w^{\frac{1+\delta_2}{\mu}-1} h(w) \ dw = (1+\delta_2)(\psi_{\delta_2,\mu}(z)*h(z)) \prec p(z),$$

or equivalently

$$(1 + \delta_2)(\psi_{\delta_2,\mu}(z) * h(z)) \prec f'(z) + \frac{\nu}{1 + \delta_1} z f''(z).$$

Using again Lemma 2 we obtain

$$\frac{1+\delta_1}{u^2} \int_0^z (1+\delta_2) w^{\frac{1+\delta_1}{\nu}-1} (\psi_{\delta_2,\mu} * h)(w) \ dw \prec f'(z)$$

or equivalently $q(z) \prec f'(z)$. Since $q(z) + \alpha z q'(z) + \lambda z^2 q''(z) = h(z)$, this means that q(z) is a solution of the differential superordination

$$h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z) = p(z) + \alpha zp'(z) + \lambda z^2p''(z)$$
 (6)

which f'(z) also satisfies (6). Therefore q(z) will be a dominant for all subordinants of $h(z) \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)$. Hence q(z) is the best subordinant of it.

Corollary 4. Suppose that all conditions of Theorem 3 are satisfied. Then

$$(1+\delta_1)(1+\delta_2)\int_0^1 \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} h(zrt^{\mu}s^{\nu}) \ dr \ dt \ ds = \int_0^1 q(tz)dt \prec \frac{f(z)}{z}.$$

Proof. Consider $p(z) = \frac{f(z)}{z}$, then $q(z) \prec p(z) + zp'(z) = f'(z)$. Lemma 2 shows that

$$\int_0^1 q(tz)dt = \frac{1}{z} \int_0^z q(w)dw \prec p(z) = \frac{f(z)}{z}.$$

Using Theorem 3 and Corollary 4 with $h(z) = \frac{1+Az}{1+Bz}$ where $-1 \le B < A \le 1$, we obtain the following result.

Corollary 5. Suppose that all conditions of Theorem 3 are satisfied. If

$$\frac{1+Az}{1+Bz} \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)$$

then $q(z; A, B) \prec f'(z)$, where

$$q(z; A, B) = \frac{A}{B} - \frac{(1+\delta_1)(1+\delta_2)(A-B)}{B} \int_0^1 \int_0^1 \frac{s^{\delta_1} t^{\delta_2} \, ds \, dt}{1 + Bzt^{\mu} s^{\nu}}; \ (B \neq 0)$$

and

$$q(z; A, 0) = 1 + \frac{A(1+\delta_1)(1+\delta_2)z}{(1+\delta_1+\nu)(1+\delta_2+\mu)} \prec f'(z),$$

also the functions q(z; A, B) and q(z; A, 0) are the best subordinants. In addition

$$\frac{A}{B} - \frac{(1+\delta_1)(1+\delta_2)(A-B)}{B} \int_0^1 \int_0^1 \int_0^1 \frac{s^{\delta_1} t^{\delta_2} dr ds dt}{1 + Bzrt^{\mu} s^{\nu}} \prec \frac{f(z)}{z}$$

if $B \neq 0$, and

$$1 + \frac{A(1+\delta_1)(1+\delta_2)z}{2(1+\delta_1+\nu)(1+\delta_2+\mu)} \prec \frac{f(z)}{z}$$

for B = 0.

Finally, the last theorem is about the convolution of two functions in $S(\alpha, \lambda, h)$.

Theorem 6. Let μ and ν are given by (3) and $f, g \in S(\alpha, \lambda, h)$. If $g'(z) \in Q$, $g'(z) + \frac{\nu}{1+\delta_1}zg''(z) \in Q$ and $f'(z) + \alpha zf''(z) + \lambda z^2f'''(z)$, $\frac{g(z)}{z} \in C$, then f * g belongs to $S(\alpha, \lambda, h_1)$ where $h_1(z) = q(z) * \int_0^1 h(tz)dt$ and q(z) is given by (5).

Proof. It is easy to see that

$$(f * g)'(z) + \alpha z (f * g)''(z) + \lambda z^{2} (f * g)'''(z) = (f'(z) + \alpha z f''(z) + \lambda z^{2} f'''(z)) * \frac{g(z)}{z}.$$

Hence

$$h_{1}(z) = q(z) * \int_{0}^{1} h(tz) dt$$

$$= (1 + \delta_{1})(1 + \delta_{2})(h(z) * \psi_{\delta_{1},\nu}(z) * \psi_{\delta_{2},\mu}(z)) * (h(z) * \psi_{1}(z))$$

$$= (1 + \delta_{1})(1 + \delta_{2})(h(z) * \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h(zrt^{\mu}s^{\nu}) dr ds dt)$$
(by Lemma 1) $\prec (f'(z) + \alpha z f''(z) + \lambda z^{2} f'''(z)) * \frac{g(z)}{z}$

$$= (f * g)'(z) + \alpha z (f * g)''(z) + \lambda z^{2} (f * g)'''(z),$$

where $\psi_1(z) = \int_0^1 \frac{dr}{1-zr}$. This completes the proof.

References

- [1] R. M. Ali, S. K. Lee, K. G. Subramanian and A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Journal of Abstract and Applied Analysis, (2011).
 - [2] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.

- [3] S. S. Miller and P. T. Mocanu, Differential subordinations, Theory and Applications, Marcel Dekker, New York, (2000).
- [4] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48, 10 (2003), 815-826.
- [5] S. Ruscheweyh and J. Stankiewicz, Subordination under convex-univalent functions, Bull. Polish Acad. Sci. Math., 33 (1985), 499-502.

Rasoul Aghalary
Department of Mathematics, Faculty of Science,
Urmia University,
Urmia, Iran
email: raghalary@yahoo.com

Parviz Arjomandinia
Department of Mathematics,
Urmia University,
Urmia, Iran
email: p.arjomandinia@urmia.ac.ir

Hossein Rahimpoor Department of Mathematics, Payam Noor University, P.O. BOX 19395-3697, Tehran, Iran email: rahimpoor2000@yahoo.com