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SECOND HANKEL DETERMINANT FOR A GENERAL SUBCLASS
OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH THE

RUSCHEWEYH DERIVATIVE

Ş. Altınkaya, S. Yalçın

Abstract. The Ruscheweyh derivative has been applied in this paper to in-
vestigate a general subclass of the function class Σ of bi-univalent functions defined
in the open unit disc. Moreover, making use of the Hankel determinant, we optain
upper bounds for the second Hankel determinant H2(2) of this class.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : |z| < 1} with in the form

f(z) = z +
∞∑
n=2

anz
n. (1)

Let S be the subclass of A consisting of the form (1) which are also univalent in
U.

The Koebe one-quarter theorem [10] states that the image of U under every
function f from S contains a disk of radius 1

4 . Thus every such univalent function
has an inverse f−1 which satisfies

f−1 (f (z)) = z , (z ∈ U)

and

f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,
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where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f−1 (z) are
univalent in U.

For a brief history and interesting examples in the class Σ, see [26]. Examples
of functions in the class Σ are

z

1− z
, − log(1− z), 1

2
log

(
1 + z

1− z

)
and so on. However, the familier Koebe function is not a member of Σ. Other
common examples of functions in S such as

z − z2

2
and

z

1− z2

are also not members of Σ (see [26]).
Lewin [16] studied the class of bi-univalent functions, obtaining the bound 1.51

for modulus of the second coefficient |a2| . Netanyahu [18] showed that max |a2| = 4
3

if f (z) ∈ Σ. Subsequently, Brannan and Clunie [6] conjectured that |a2| ≤
√

2
for f ∈ Σ. Brannan and Taha [7] introduced certain subclasses of the bi-univalent
function class Σ similar to the familiar subclasses. S? (β) and K (β) of starlike and
convex function of order β (0 ≤ β < 1) respectively (see [18]). By definition, we have

S? (β) =

{
f ∈ S : Re

(
zf

′
(z)

f (z)

)
> β; 0 ≤ β < 1, z ∈ U

}

and

K (β) =

{
f ∈ S : Re

(
1 +

zf
′′

(z)

f ′ (z)

)
> β; 0 ≤ β < 1, z ∈ U

}
.

The classes S?Σ (β) and KΣ (β) of bi-starlike functions of order α and bi-convex func-
tions of order β, corresponding to the function classes S? (β) and K (β) , were also
introduced analogously. For each of the function classes S?Σ (β) and KΣ (β) , they
found non-sharp estimates on the initial coefficients. Recently, many authors investi-
gated bounds for various subclasses of bi-univalent functions ([2], [?], [12], [17], [24],
[26], [27], [28]). Not much is known about the bounds on the general coefficient |an|
for n ≥ 4. In the literature, the only a few works determining the general coefficient
bounds |an| for the analytic bi-univalent functions ([3], [8], [14], [15]). The coefficient
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estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open
problem.

The Fekete-Szegö functional
∣∣a3 − µa2

2

∣∣ for normalized univalent functions

f(z) = z + a2z
2 + · · ·

is well known for its rich history in the theory of geometric functions. Its origin was
in the disproof by Fekete and Szegö of the 1933 conjecture of Littlewood and Paley
that the coefficients of odd univalent functions are bounded by unity (see [11]). The
functional has since received great attention, particularly in many subclasses of the
family of univalent functions. Nowadays, it seems that this topic had become an
interest among the researchers ( see, for example, [5], [21], [29]).

The qth Hankel determinant for n ≥ 0 and q ≥ 1 is stated by Noonan and
Thomas ([19]) as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

This determinant has also been considered by several authors. For example, Noor
([20]) determined the rate of growth of Hq(n) as n→∞ for functions f given by (1)
with bounded boundary. In particular, sharp upper bounds on H2(2) were obtained
by the authors of articles ([20], [22]) for different classes of functions.

It is interesting to note that

H2(1) =

∣∣∣∣ a1 a2

a2 a3

∣∣∣∣ = a3 − a2
2

and

H2(2) =

∣∣∣∣ a2 a3

a3 a4

∣∣∣∣ = a2a4 − a2
3.

The Hankel determinant H2(1) = a3 − a2
2 is well-known as Fekete-Szegö functional.

Very recently, the upper bounds of H2(2) for some classes were discussed by Deniz
et al. [9].

The object of the present paper is to introduce a general subclass of the function
class Σ applying the Ruscheweyh derivative, where Ruscheweyh [25] observed that

Dnf(z) =
z
[
zn−1f(z)

](n)

n!
(2)
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for n ∈ N0 = N ∪ {0} , where N = {1, 2, . . .} .This symbol Dnf(z), n ∈ N0 is called
by Al- Amiri [1], the nth order Ruscheweyh derivative of f(z).

We note that D0f(z) = f(z), D1f(z) = zf ′(z) and

Dnf(z) = z +

∞∑
k=2

Γ(n, k)akz
k, (3)

where

Γ(n, k) =

(
n+ k − 1

n

)
. (4)

Definition 1. A function f ∈ Σ is said to be T λΣ (n, β) , if the following conditions
are satisfied:

Re

(
(1− λ)

Dnf(z)

z
+ λ [Dnf(z)]′

)
> β; 0 ≤ β < 1, λ ≥ 1, z ∈ U

and

Re

(
(1− λ)

Dng(w)

w
+ λ [Dng(w)]′

)
> β; 0 ≤ β < 1, λ ≥ 1, w ∈ U

where g(w) = f−1(w).

In order to derive our main results, we require the following lemmas.

Lemma 1. [23] If p (z) = 1 + p1z + p2z
2 + p3z

3 + · · · is an analytic function in U
with positive real part, then

|pn| ≤ 2 (n ∈ N = {1, 2, . . .})

and ∣∣∣∣p2 −
p2

1

2

∣∣∣∣ ≤ 2− |p2|2

2
.

Lemma 2. [13] If the function p ∈ P , then

2p2 = p2
1 + x(4− p2

1) (5)

4p3 = p3
1 + 2(4− p2

1)p1x− p1(4− p2
1)x2 + 2(4− p2

1)(1− |x|2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.
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2. Main results

Theorem 3. Let f given by (1) be in the class T λΣ (n, β) and 0 ≤ β < 1. Then

∣∣a2a4 − a2
3

∣∣ ≤



[
2(1−β)2

(n+1)2(1+λ)3
+ 3

(n+2)(n+3)(1+3λ)

]
8(1−β)2

(n+1)2(1+λ)
,

β ∈
[
0, 1− 1

2

√
3(n+1)2(1+λ)3

(n+2)(n+3)(1+3λ)

]
81(1+λ)2(1−β)2

(n+2)(n+3)(1+3λ)[3(n+1)2(1+λ)3−(n+2)(n+3)(1+3λ)(1−β)2]
,

β ∈
[
1− 1

2

√
3(n+1)2(1+λ)3

(n+2)(n+3)(1+3λ) , 1

)
.

Proof. Let f ∈ T λΣ (h, β) . Then

(1− λ)
Dnf(z)

z
+ λ [Dnf(z)]′ = β + (1− β)p(z) (6)

(1− λ)
Dng(w)

w
+ λ [Dng(w)]′ = β + (1− β)q(w) (7)

where p, q ∈ P .
It follows from (6) and (7) that

(n+ 1) (1 + λ) a2 = (1− β) p1, (8)

(n+ 1)(n+ 2)

2
(1 + 2λ)a3 = (1− β) p2, (9)

(n+ 1)(n+ 2)(n+ 3)

6
(1 + 3λ)a4 = (1− β) p3 (10)

− (1 + λ) a2 = (1− β) q1, (11)

(n+ 1)(n+ 2)

2
(1 + 2λ)

(
2a2

2 − a3

)
= (1− β) q2 (12)

− (n+ 1)(n+ 2)(n+ 3)

6
(1 + 3λ)

(
5a3

2 − 5a2a3 + a4

)
= (1− β)q3. (13)

From (8) and (11) we obtain
p1 = −q1. (14)

and

a2 =
(1− β)

(n+ 1) (1 + λ)
p1. (15)
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Subtracting (9) from (12), we have

a3 =
(1− β)2

(n+ 1)2 (1 + λ)2 p
2
1 +

(1− β)

(n+ 1)(n+ 2) (1 + 2λ)
(p2 − q2) .

Also, subtracting (10) from (13), we have

a4 = 5(1−β)2

2(n+1)2(n+2)(1+λ)(1+2λ)
p1 (p2 − q2) + 3(1−β)

(n+1)(n+2)(n+3)(1+3λ) (p3 − q3) .

Then, we can establish that∣∣a2a4 − a2
3

∣∣ =
∣∣∣− (1−β)4

(n+1)4(1+λ)4
p4

1 + (1−β)3

2(n+1)3(n+2)(1+λ)2(1+2λ)
p2

1 (p2 − q2)

+ 3(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p1 (p3 − q3)− (1−β)2

(n+1)2(n+2)2(1+2λ)2
(p2 − q2)2

∣∣∣ (16)

According to Lemma 2 and (14), we write

2p2 = p2
1 + x(4− p2

1)
2q2 = q2

1 + x(4− q2
1)

}
⇒ p2 = q2 (17)

and

p3 − q3 =
p3

1

2
− p1(4− p2

1)x− p1

2
(4− p2

1)x2. (18)

Then, using (17) and (18), in (16),∣∣a2a4 − a2
3

∣∣ =
∣∣∣− (1−β)4

(n+1)4(1+λ)4
p4

1 + 3(1−β)2

2(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p4

1

− 3(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p2

1(4− p2
1)x− 3(1−β)2

2(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p2

1(4− p2
1)x2

∣∣∣ .
(19)

Since p ∈ P, so |p1| ≤ 2. Letting |p1| = p, we may assume without restriction that
p ∈ [0, 2] . Then, applying the triangle inequality on (19), with µ = |x| ≤ 1, we get∣∣a2a4 − a23∣∣ ≤ (1−β)4

(n+1)4(1+λ)4
p4 + 3(1−β)2

2(n+1)2(n+2)(n+3)(1+λ)(1+3λ)p
4

+ 3(1−β)2
(n+1)2(n+2)(n+3)(1+λ)(1+3λ)p

2(4− p2)µ+ 3(1−β)2
2(n+1)2(n+2)(n+3)(1+λ)(1+3λ)p

2(4− p2)µ2 = F (µ).

Differentiating F (µ), we obtain

F ′(µ) = 3(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p2(4−p2)+ 3(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p2(4−p2)µ.
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Furthermore, for F ′(µ) > 0 and µ > 0, F is an increasing function and thus, the
upper bound for F (µ) corresponds to µ = 1;

F (µ) ≤ (1−β)4

(n+1)4(1+λ)4
p4− 3(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p4+ 18(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p2 = G(p).

Assume that G(p) has a maximum value in an interior of p ∈ [0, 2] , then

G′(p) =
[

(1−β)2

(n+1)2(1+λ)3
− 3

(n+2)(n+3)(1+3λ)

]
4(1−β)2

(n+1)2(1+λ)
p3+ 36(1−β)2

(n+1)2(n+2)(n+3)(1+λ)(1+3λ)
p.

Then,

G′(p) = 0⇒


p01 = 0

p02 =

√
9(n+1)2(1+λ)3

3(n+1)2(1+λ)3−(n+2)(n+3)(1+3λ)(1−β)2

.

Case 1. When β ∈
[
0, 1− 1

2

√
3(n+1)2(1+λ)3

(n+2)(n+3)(1+3λ)

]
, we observe that p02 > 2 and G

is an increasing function in the interval [0, 2] , so the maximum value of G(p) occurs
at p = 2. Thus, we have

G(2) =
[

2(1−β)2

(n+1)2(1+λ)3
+ 3

(n+2)(n+3)(1+3λ)

]
8(1−β)2

(n+1)2(1+λ)
.

Case 2. When β ∈
[
1− 1

2

√
3(n+1)2(1+λ)3

(n+2)(n+3)(1+3λ) , 1
)
, we observe that p02 < 2 and

since G′′(p02) < 0, the maximum value of G(p) occurs at p = p02. Thus, we have

G(p02) = 81(1+λ)2(1−β)2

(n+2)(n+3)(1+3λ)[3(n+1)2(1+λ)3−(n+2)(n+3)(1+3λ)(1−β)2]
.

This completes the proof.

Remark 1. Putting λ = 1 and n = 0 in Theorem 3 we have the second Hankel
determinant for the well-known class T λΣ (n, β) = HΣ(β) as in [9].

Corollary 4. Let f given by (1) be in the class HΣ(β) and 0 ≤ β < 1. Then

∣∣a2a4 − a2
3

∣∣ ≤


(1− β)2

2

[
2(1− β)2 + 1

]
β ∈

[
0, 1

2

]
9(1− β)2

16 [1− (1− β)2]
β ∈

[
1
2 , 1
) .

Remark 2. Putting n = 0 in Theorem 3 we have the second Hankel determinant
for the well-known class T λΣ (n, β) = N1,λ

Σ (β) as in [9].
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Corollary 5. Let f given by (1) be in the class N1,λ
Σ (β) and 0 ≤ β < 1. Then

∣∣a2a4 − a2
3

∣∣ ≤


4(1−β)2

(1+λ)

[
4(1−β)2

(1+λ)3
+ 1

1+3λ

]
β ∈

[
0, 1− 1

2

√
(1+λ)3

2(1+3λ)

]
9(1+λ)2(1−β)2

2(1+3λ)[(1+λ)3−2(1+3λ)(1−β)2]
β ∈

[
1− 1

2

√
(1+λ)3

2(1+3λ) , 1
) .
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