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A. Ourraoui

Abstract. In this work, under appropriate assumptions, we present a result
on the existence of solutions of difference equation

−∆
(
|∆u(k − 1)|p−2∆u(k − 1)

)
= f(k, u(k)) + g(k)|u(k)|q−2u, k ∈ [1, T ].

Our method is based on the Ekeland’s variational principle.
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1. Introduction

Many papers devoted to study of the discrete equations have increased in recent
years, by using various methods and techniques as fixed point theorems, lower and
upper solutions, and variational approach, see for example [1, 2, 3, 4, 5, 6, 7, 10, 11,
12]...

Let T ≥ 2 be a fixed positive integer, [a, b] be the discrete interval {a, a+1, ..., b}
where a and b are integers and a < b.

Motivated by the above mentioned papers, we deal with the following discrete
boundary value problem

−∆
(
|∆u(k − 1)|p−2∆u(k − 1)

)
= f(k, u(k)) + g(k)|u(k)|q−2u, k ∈ [1, T ].

u(0) = u(T + 1) = 0,
(1)

where ∆u(k) = u(k + 1) − u(k) is the forward difference operator, 1 < q < p < ∞
while f : [1, T ]× R→ R is a continuous function.

Denoting by F : [1, T ]→ R the primitive of f i.e.,

F (k, u) =

∫ u

0
f(k, s)ds, u ∈ R.
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There is by now a rich literature on problems like (1), which began to receive
much attention and are known to be mathematical models of various phenomena
arising in the study of elastic mechanics, control systems, artificial or biological
neural networks, computing, electrical circuit analysis, dynamical systems, eco-
nomics,...For more detail, we may refer to [8, 13].

Here, we are concerned with investigating nonlinear discrete boundary value
problems by using variational approach.

The rest of this paper is arranged as follows. In section 2, we recall some basic
definitions and tools in order to prove our main result and at after all we give an
example.

2. Preliminaries and statement of main results

In this section, we recall some basic properties which will be used in the proof of
the precise result.

Solutions to (1) will be investigated in a space

W =
{
u : [0, T + 1]→ R s.t u(0) = u(T + 1) = 0

}
,

which is a T -dimensional Hilbert space, see [2], with the inner product

(u, v) =

T+1∑
k=1

∆u(k − 1)∆v(k − 1), for all u, v ∈W.

The associated norm is defined by

‖u‖ =
( T+1∑
k=1

|∆u(k − 1)|p
) 1
p
.

Moreover, it is useful to introduce other norms on W , namely

|u|m =
( T∑
k=1

|u(k)|m
) 1
m
, ∀u ∈W and m ≥ 2.

It can be verified (see [6]) that

T
2−m
2m |u|2 ≤ |u|m ≤ T

1
m |u|2, ∀u ∈W and m ≥ 2. (2)

Next, we list some inequalities that will be are used later.
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Lemma 1. ([10]) For every u ∈W , we have

(a)
T∑
k=1

|u(k)|m ≤ T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m, ∀m ≥ 2.

(b)
T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ 2m
T∑
k=1

|u(k)|m, ∀m > 1.

We say that u ∈W is a weak solution of problem (1) if

T+1∑
k=1

(
|∆u(k − 1)|p(k−1)−2∆ϕ(k − 1)

)
=

T∑
k=1

f(k, u(k))ϕ(k) + µ

T∑
k=1

g(k)|u(k)|pϕ(k),

for any ϕ ∈W .
Related to problem (1), define the functional φ : W → R given by

φ(u) =
T+1∑
k=1

(1

p
|∆u(k − 1)|p

)
−

T∑
k=1

F (k, u(k))− 1

q

T∑
k=1

g(k)|u(k)|q.

We assume the following conditions.

(g1) g ∈ L∞([1, T ]), g ≥ (6≡)0.

(f1) f(x, t) ∈ C([1, k]× R), f 6≡ 0.

(f2) 0 ≤ l1 := lim
t→0

f(k, t)

|t|p−1
< λ1 and λ1 < l2 := lim

t→∞

f(k, t)

tp−1
<∞

uniformly in [1, T ] where λ1 > 0 is the smallest positive eigenvalue of

−∆
(
|∆u(k − 1)|p−2∆u(k − 1)

)
= λ|u(k)|p−2u, k ∈ [1, T ],

u(0) = u(T + 1) = 0,
(3)

see [2] .
The following theorem is the main result of this paper.

Theorem 2. If (g1), (f1) and (f2) hold true, then the problem (1) has at least one
nontrivial weak solution.

Proof of Theorem 2. It is clear that the functional φ is differentiable and its deriva-
tive is given by

φ′(u).v =

T+1∑
k=1

|∆u(k−1)|p−2∆u(k−1)∆v(k−1)−
T∑

k=1

f(k, u(k))v(k)−
T∑

k=1

g(k)|u(k)|p−2u(k)v(k),
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for all u, v ∈W. For simplicity, we give an auxiliary result about f :
In view of (f1) and (f2) with l2 <∞ we have

lim
t→∞

f(k, t)

tr−1
= 0, for p < r <∞, uniformly in [1, T ].

Therefore, for any ε > 0 there exists C(ε) > 0 such that
f(k, t) ≤ (l1 + ε)tp−1 + C(ε)tr−1 for all t ≥ 0, k ∈ [1, T ],

and thus
F (k, t) ≤ l1+ε

p tp + C(ε)
r tr, for all t ≥ 0, k ∈ [1, T ].

On the other hand, according to (f2) and the fact that l1 < λ1, we may find ε1 > 0
such that

l1 + ε1 < λ1,

F (k, t) ≤ l1 + ε1
p

tp + C0t
r, for all t ≥ 0, k ∈ [1, T ]

with C0 > 0 is nonnegative constant.
We present the following Lemma:

Lemma 3. There exist ρ > 0 and α > 0 such that

φ(u) ≥ α > 0, for every u ∈W, with ‖u‖ = ρ.

Proof of Lemma 3. By using of Lemma 1 we have

φ(u) =

T+1∑
k=1

(1

p
|∆u(k − 1)|p

)
−

T∑
k=1

F (k, u(k))− 1

q

T∑
k=1

g(k)|u(k)|q

≥ 1

p
‖u‖p − l1 + ε

p

T∑
k=1

|u(k)|p − C(ε)

r

T∑
k=1

|u(k)|r − |g|∞
q

T∑
k=1

|u(k)|q

≥ 1

p
‖u‖p − |g|∞

q
T (T + 1)q−1

T+1∑
k=1

|∆u(k − 1)|q − l1 + ε1
p

T (T + 1)p−1
T+1∑
k=1

|∆u(k − 1)|p

−C(ε)T (T + 1)r−1
T+1∑
k=1

|∆u(k − 1)|r

≥ C1‖u‖p − |g|∞C2‖u‖q − C3‖u‖r > 0, (4)

for ‖u‖ is small enough, with C1 = 1
p

(
1 − l1+ε1

λ1

)
> 0 and C2, C3 are positive

constants. �

Define
Bρ = {u ∈ E : ‖u‖ ≤ ρ}
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endowed with metric

d(u, v) = ‖u− v‖, u, v ∈ Bρ,

and
∂Bρ = {u ∈W : ‖u‖ = ρ}.

By the previous Lemma 3, we know that

φ(u)/∂Bρ ≥ α > 0

and it is easy to see that the functional φ is bounded from below.
Let c∗ = minBρ φ(u), so we have c∗ < 0. In fact, fix a nonnegative function v ∈
W \ {0}, and note that for t > 0 we have

φ(tv) =
T+1∑
k=1

(1

p
|∆tv(k − 1)|p

)
−

T∑
k=1

F (k, tv(k))− 1

q

T∑
k=1

g(k)|tv(k)|q

≤ tp

p
‖v‖p − l1t

p

p

T∑
k=1

v(k)p − tq

q

T∑
k=1

g(k)v(k)q.

Since q < p, the last inequality implies that for some t∗ > 0 sufficiently small,

φ(t∗v) < 0, and t∗v ∈ Bρ(0).

By the Ekeland’s variational principle in [9], we may find a sequence (un)n ⊂ Bρ(0)
such that

φ(un)→ c∗ i.e c∗ ≤ φ(un) ≤ c∗ + 1
n , ∀n > 0

and

φ(v) ≥ φ(un)− 1

n
‖un − v‖, ∀v 6= un.

Once that φ is differentiable, it follows from the last inequality that

φ′(un)→ 0.

Indeed, let u ∈W such that ‖u‖ = 1, putting ωn = un + λu. Fix n > 1 we have

‖ωn‖ ≤ ‖un‖+ λ < ρ

with λ > 0 is small enough. It yields

φ(un + λu) ≥ φ(un)− λ

n
‖u‖
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then
φ(un + λu)− φ(un)

λ
≥ − 1

n
‖u‖,

tending λ→ 0 so we get

φ′(un).u ≥ − 1

n

that is,

|φ′(un).u| ≤ 1

n

with ‖u‖ = 1. So φ′(un)→ 0.
Since the sequence (un) is bounded in W, there exists u1 ∈ W such that, up to

a subsequence, (un) converges to u1 in W. Therefore,

φ(u1) = c∗, and φ′(u1) = 0,

and thus u1 is a non trivial solution of problem (1).

Example 1. Taking β > 0 and l2 > λ1, the function f such that

f(x, t) = l2tβ+1

1+tβ
when t ≥ 0 and f(x, t) = 0 if t ≤ 0,

satisfies the conditions (f1) and (f2) provided l2 <∞.

Remark 1. If we assume that lim sup
|t|→∞

f(k, t)

|t|p−2t
< λ1, k ∈ [1, T ] then, it is easy to

check that there exists 0 ≤ λ < λ1 such that

φ(u) ≥ 1

p

(
1− λ

λ1

)
‖u‖p − C4‖u‖ − C5‖u‖q, (5)

where C4 and C5 are positive constants.
Thus φ is coercive and bounded from below so it has a global minimizer.
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