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1. INTRODUCTION

Throughout this paper X, Y will denote Banach spaces, and E, F will denote
Banach lattices. Bx is the closed ball of X.

In [3] the authors studied the L-weak (resp. M-weak) compactness of semi-
compact operators. They proved that if £ and F' are nonzero Banach lattices, then
each semi-compact operator T': E — F' is L-weakly compact if, and only if, the
norm of F' is order continuous [[3], Theorem 1]. Also, if F' is Dedekind o—complete,
then each positive semi-compact operator 7' : E — F' is M-weakly compact if,
and only if, the norms of E' and F are order continuous or E is finite dimensional
[[3], Theorem 2|. Our objective in this paper is to continue the investigation of
Banach lattices on which each limited operator is L-weakly compact (resp. M-weakly
compact) and the converse.

The article is organized as follows, after the introduction, we give notations,
definitions and what we will need from the Banach lattice theory in a preliminary
section. In section 3, we start with a characterization for limited (compact) operators
being L-weakly compact (Theorem 1). Also, we give necessary conditions under
which each L-weakly compact operator is limited (Theorem 3). Finally, in section 4
we characterize Banach lattices on which each positive limited operators is M-weakly
compact (Theorem 6), and we give some sufficient conditions for which the class of
regular limited operators coincides with that of L-weakly compact operators and
M-weakly compact (Corollary 8).
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2. PRELIMINARIES

A bounded subset A of X is called limited if, for every weak® null sequence (z/,) in

the dual space X', we have z/, () — 0 uniformly for 2 in A. Based on this concept,
the class of limited operators, first appeared in 1984 in connection with studying
problems of the strictly cosingular operators (see [2]). We recall that an operator
T:X — Y is said to be limited if T(Bx) is a limited subset of Y. Alternatively,
the operator T is limited if, and only if, ||77(f,)|| — 0 for every weak* null sequence
(fa) C Y.

It is well known that each compact operator is limited but there exists a limited
operator which is not compact. Indeed, the canonical injection i : ¢g — £*° is
limited (see [1, Theorem 4.67]) but fails to be compact. On the other hand, an
operator T' from F into X is M-weakly compact if, ||T'(x,)|| — 0 holds for every
norm bounded disjoint sequence (z,) in E. An operator 1" from X into E is called
L-weakly compact if, ||y,|| —> 0 holds for every disjoint sequence (y,,) in the solid
hull of T'(Bx). That L-weakly compact and M-weakly compact operators are weakly
compact operators was shown by P. Meyer-Nieberg [5, Proposition 3.6.12].

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (F, ||.||) such that F is a vector lattice and its
norm satisfies the following property: for each z,y € E such that |z| < |y|, we

have ||z|| < ||yl A norm || - | of a Banach lattice E is order continuous if for
each generalized sequence (z,) such that z, | 0 in E, (z,) converges to 0 for the
norm || - || where the notation z, | 0 means that (z,) is decreasing, its infimum

exists and inf(x,) = 0. For the element x in a Riesz space E, if the order ideal
generated by z coincides with the vector space generated by x then x is called a
discrete element of . The Riesz space E is called discrete if all discrete elements
of E are order dense. For instance, the spaces ¢, ¢op and (1 < p < oo) are discrete
Riesz spaces but the spaces (£>°)" and L?[0,1] are not discrete. If all limited sets
in Banach space X are relatively compact, then X is said to be a Gelfand-Phillips
space (has GP-property). For example, the classical Banach spaces cg and ¢! have
the GP-property and every separable Banach space, every Schur space (i.e., weak
and norm convergence of sequences in X are coincide), and spaces containing no
copy of £, such as reflexive spaces, have the same property [2].

Note that if F is a Banach lattice, its topological dual E’, endowed with the
dual norm and the dual order, is also a Banach lattice. Also, a vector lattice
is Dedekind o-complete if every majorized countable nonempty subset of E has a
supremum. The lattice operations in F (resp. in E’) are called weak (resp. weak*)
sequentially continuous if the sequence (|x,|) (resp. (|fn|)) converges to 0 in the
weak (resp. weak®) topology, whenever the sequence (x,) (resp. (f)) converges
weakly (resp. weak®) to 0 in F (resp. in E’). A subset A of a Riesz space is called
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solid whenever |z| < |y| and y € A imply = € A. The solid hull of a set A is the
smallest solid set including A and is exactly the set

Sol(A) :=={x € E: 3y € A with |z| < |y|}.

We will use the term operator T': E — F' to mean a bounded linear mapping.
It is positive if T(x) > 0 in F' whenever x > 0 in E. Note that each positive
linear mapping on a Banach lattice is continuous. If an operator T : E — F'is
positive then, its adjoint 7" : F/ — E’ is likewise positive, where T" is defined by
T'(f)(x) = f(T(z)) for each f € F’ and for each = € E.

Note that

E®* = {x € E : every monoton sequence in [0, |z|| is convergent}

is the maximal closed order ideal in £ on which the induced norm is order continuous.
The following facts are basic and will be used in the rest of this paper very often
(see [5], p. 212).

1. Every L-weakly compact subset A of a Banach lattice F is contained in E°.

2. Every relatively compact subset of E® is L-weakly compact. In particular, if
FE has an order continuous norm then every relatively compact subset of E is
L-weakly compact so that every compact operator from X into E is L-weakly
compact.

We refer the reader to [[1], [5]] for unexplained terminologies on Banach lattice
theory and positive operators

3. LIMITED AND L-WEAKLY COMPACT OPERATORS

Note that there exists an operator which is compact (resp. limited) but not L-weakly
compact (resp. M-weakly compact). In fact, the operator T : £ — ¢°° defined by

T(()‘n)n) = (Z )‘n)(lv 1,.. )
n=1

for all (\,) € . It is clear that T is a compact (and hence a limited) operator
but it is neither L-weakly compact nor M-weakly compact [[1], p. 322]. Conversely,
there exists an operator which is L-weakly compact (resp. M-weakly compact) but
not limited ( see Remark 1).

The following result characterizes pairs of Banach lattices E, F' for which every
limited (resp. compact) operator T': E — F' is L-weakly compact.
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Theorem 1. The following assertions are equivalent:
1. each limited operator T : E — F' is L-weakly compact;
2. each compact operator T : E — F' is L-weakly compact;

3. one of the following conditions is valid:

(a) E={0};

(b) the norm of F is order continuous.

Proof. (1) = (2) Obvious.

(2) = (3) Assume by way of contradiction that F # {0} and the norm of F' is
not order continuous. To finish the proof, we have to construct a compact operator
T : E — F which is not L-weakly compact. Since E # {0}, it follows from [12,
Theorem 39.3] that there exist a € ET and ¢ € (E')" such that [|¢] = 1 and
¥(a) = lafl = 1.

On the other hand, since the norm of F' is not order continuous, it follows from
[5, Theorem 2.4.2] that there exists an order bounded disjoint sequence (u,,) C F'™
which is not norm convergent to zero. We can assume that there is u € F* with
0 < wu, <ufor all n. As |uy| = u, — 0 for o(E, E’) (see Remark of ([1], page
192), it follows from [4, Corollary 2.6], that there exists a bounded disjoint sequence
(fn) C (F')" such that f,(u,) > ¢ for every n (¢ > 0 fixed). Define the operator
T:FE — F by T(x) = ¢(x)u for each z € E, and note that T is compact (because
its rank is one). But is not L-weakly compact. In fact, since (f,) is a bounded
positive disjoint sequence in F’ and

1" (fu)ll = 1 fn ()l = | fn(un)tbl| > €

for every n. This show that 7" is not M-weakly compact. Hence by [5, Proposition
3.6.11] T is not L-weakly compact.

(3;a) = (1) Obvious.

(3;0) = (1) Let T : E — F be a limited operator and let (f,) be a disjoint
sequence in Bps. As the norm of F' is order continuous then, it follows from [5,
corollary 2.4.3] that (f,,) is a weak™ null sequence. Now, as T is limited, |T"(f,)|| —
0. Then T” is M-weakly compact and hence T is L-weakly compact.

As a consequence, we obtain a characterization of the order continuity of the
norm of a Banach lattice.

Corollary 2. The following statements are equivalent:

1. every limited operator T' from E into E is L-weakly compact;
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2. every compact operator T from E into E is L-weakly compact;
3. the norm of E is order continuous.

It should be noted that a subset A C X is limited if, and only if, f, (z,) — 0
for every sequence (x,) in A and every weak™* null sequence (f,) in X'.

Now, we give the converse of Theorem 1. In fact, we give necessary conditions
under which each L-weakly compact operator is limited.

Theorem 3. If each L-weakly compact operator T from E into F is limited, then
one of the following assertions is valid:

1. the norm of E' is order continuous;

2. each order bounded subset of F'* is limited.

Proof. 1t suffices to prove that if the norm of E’ is not order continuous, then each
order bounded subset of F® is limited i.e., For each y € (F*)*, (y,) C [~v,y] and
weak® null sequence (g,) C (F'*)’, we have g, (y,) — 0.

Since the norm of E’ is not order continuous, there exists a positive order
bounded disjoint sequence (x],) C E’ satisfying ||z},|| = 1 for all n ([5, Theorem
2.4.2]). Let 2’ € (E")* such that 0 < !, < 2’ for all n.

Now, consider the operators:

P:E — (' 2+ P(x) = (2, (2))2

n n=1 >
Sl = F, ()il — > Antn -
n=1

Since > o7, |z (x)| < 307 @, |z| < 2'|x| for each x € E, the operator P take values
in /1.

Let T =SoP:E — (' — F such that T'(z) = Y >, 2}, (x)y, for each = € E.
Note that for all x € Bg, we have

%) [e'S)
T(@)| < |2l @)llyal < O @)lzly < @'lzly < [|2']|y.
n=1

n=1

So that T(Bg) C ||2'||[-y, y], then T is L-weakly compact (because y € (F*)") and
hence by our hypothesis T is limited. As (g,) is a weak* null sequence in F’, we
have for every n

o0
T (gn)l = gn (i)} > g (yn)|2;, > 0.
=1
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Thus,
|9n(yn)| = gn (yn) |20l < 177 (gn)l] — 0.

This ends the proof of the Theorem.
In the remark we will need the following Lemma,

Lemma 4. Let A be a norm bounded subset of X. If for each € > 0 there exists
some limited subset A in X such that A C A. + eBx then, A is limited in X.

Proof. Let S : X — ¢g be an operator and € > 0, then by our hypothesis there
exists a limited subset A; in X such that A C A. + eBx hence, S(A) C S(A:) +
e||S||Bey- As A is a limited set then, S(A.) is relatively compact in ¢y [7, Theorem
2.3.] and hence by [1, Theorem 3.1], S(A) is relatively compact in ¢yp. This shows
by [7, Theorem 2.3.] that A is a limited set in X.

Remark 1. 1. The first necessary condition of Theorem 3 is not sufficient. In-
deed, let E = (> and F = L*0,1]. Since E' and F are not discrete, it follows
from [8, Theorem 1] that there exist two operators S,T : E — F such that
0 < S <T with T is compact (and hence is L-weakly compact because the norm
of F is order continuous) and S is not compact (hence is not limited because
F' has the GP-property). Since the class of L-weakly compact operators satis-
fies the domination problem [1, Exercise 2 in Section 5.3], then S is L-weakly
compact. We conclude that there exists a positive operator S : E — F which
is L-weakly compact (resp. M-weakly compact because E' and F have order
continuous norms [5, Theorem 3.6.17]) but it is not limited. Although, the
norm of E' is order continuous.

2. The second necessary condition of Theorem 3 is sufficient. In fact, if T : E —
F is L-weakly, then by [5, Proposition 3.6.2] for each € > 0 there exists x € F°
such that T(Bg) C [—y,y] + eBpa. Since each order bounded subset of F® is
limited it follows from Lemma 4 that T is limited.

As consequence of Theorem 3 and Remark 1 we have the following characteriza-
tion,

Corollary 5. The following assertions are equivalent:

1. each L-weakly operator T from ¢' into E is limited.

2. each order bounded subset of E* is limited.
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4. LIMITED AND M-WEAKLY COMPACT OPERATORS

In the following result, we characterize Banach lattice on which each positive limited
operator is M-weakly compact.

Theorem 6. Let F' be a Dedekind o—complete and F' has weak™ sequentially con-
tinuous lattice operations. Then the following assertions are equivalent:

1. each positive limited operator T : E — F 1s M-weakly compact;
2. one of the following conditions is valid:

(a) E is finite dimensional;

(b) F= {O};

(¢) The norms of E' and F are order continuous.
Proof. (1) = (2) It suffices to establish the following two separate claims.
(a) if the norm on F is not order continuous then E is infinite dimensional,
(b) if the norm on E’ is not order continuous then F' = {0}.

Indeed, Assume that F is infinite dimensional and that the norm of F' is not order
continuous. By [10, Proposition 0.2.11] there exists a positive disjoint sequence (x,)
of E such that ||z,|| > e. As ||x,]| = sup{f(z,) : f € (Bg/)T}, for each n there exists
fn € (Bg)" such that f,(x,) > e. Applying [10, Proposition 0.3.11] and its proof,
we find a positive disjoint sequence (g,,) of E’ such that g, < fn, gn(Tn) = fn(xn)
for all n and g, (x,,) = 0 for n # m. Consider the positive operator P : E — (>
defined by P(z) = (gn(z)), and note that P(Bg) C Bye. On the other hand, since
the norm of F' is not order continuous, it follows from [5, Theorem 2.4.2] that there
exists an order bounded disjoint sequence (y,) € F'* which is not norm convergent
to zero. We can assume that there is y € F'* with 0 < y,, < y for all n. It follows
from the proof of [11, Theorem 117.3] that the operator

S A — F () — Z)\kyk
k=1

defines a positive operator from £°° into F' where the convergence is in the sense of
the order.
Now, we consider the operator T'= S o P: F — F defined by

T(x) = ng(x)yk foreach x€FE
k=1
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is well defined and limited. Indeed, note that for all (A\;x) € By and from the
disjointness of the sequence (y,), we have

IS < D ellynl < (Sgplkkl)z lykl <y
k=1 k=1

Since T(Bg) = S(P(Bg)) C [—y,y] and the order interval [—y,y| is limited ([6,
Proposition 3.1]), then T'(Bg) is limited so that 7" is limited. But 7" is not M-weakly
compact. To see this, note that ||T'(z,)|| = ||S o P(xy)|| = [1S(en)| = llynll = O.

To prove claim (b), we suppose that the norm on E’ is not order continuous and
F # {0}. By [11, Theorem 116.1] there is a norm bounded disjoint sequence (uy,)
of positive elements in £ which does not converge weakly to zero. Hence, we may
assume that |lu,| < 1 for all n and also that for some 0 < ¢ € E’ and some € > 0
we have ¢(u,) > € for all n. Then it follows from [11, Theorem 116.3] that the
components ¢, of ¢ in the carriers C,,, form an order bounded disjoint sequence in
(E')T such that

On(Uun) = ¢(uy,) for all n and ¢y, (uy,) =0 if n # m.
Now, we define a positive operator P : E — ¢! by

P(z) = ($2)5e, for all w € E.

Since > 7, \Jé:“ <15 dnl|z]) < 1é(|2])| holds for each x € E, the operator

P is well defined. On the other hand, as F' # {0}, there exists a non-null element
u € FT. We consider the positive operator defined by S : ¢! — E defined by

S(()) = (iojl An)u for all (A,) € €1,

Now, we consider the composed operator T = So P : E — ¢! — E defined by

T(z) = (3 $5)u for all z € B,
n=1 "

Note that 7" is compact (and hence is limited). Since (u,) is a disjoint sequence in
Bg and ||[T(upn)|| = ||S o P(uy)|| = [|S(en)|| = ||u|| for all n, it follows that T is not
M-weakly compact, and this gives a contradiction with our hypothesis (1).

(2;a) = (1) and (2;b) = (1) are obvious.

(2;¢) = (1) It follow from (2;b) = (1) of Theorem 1 and [5, Theorem 3.6.17].
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Remark 2. The conditions “F is Dedekind o-complete” and “F' has weak™ se-
quentially continuous lattice operations ” are not an accessory in the above theorem.
Indeed, each operator T : £>° — c is weakly compact (see the proof of [9, Proposi-
tion 1]). Since £>° is an AM-space, T is M-weakly compact [1, Theorem 5.62]. Yet
none of the three possible conditions listed holds.

In [6], the authors considered a weak version of the class of limited operators,
so called order limited operators. Recall that an operator T’ from F into X is said
to be order limited, if T' carries each order bounded subset in £ to a limited one in
X, equivalently, |T'(f,)| — 0 for o(E’, E) for each sequence (f,) C X’ such that
fn — 0 for o(X’, X) [6, Theorem 3.3 (3)].

Note that, there exists an order limited operator which is not limited. Indeed,
the identity operator of the Banach lattice ! is order limited, but is not limited. In
our last major result, we show that each operator between Banach lattices is limited
whenever it is both order limited and M-weakly compact.

Theorem 7. Each operator T : E — F is limited whenever it is both order limited
and M-weakly compact.

Proof. Consider an operator 7' : E — F which is order limited and M-weakly
compact.

Let (fn) C F' be a weak® null sequence. We shall show that||7”(f,)|| — 0.
By [4, Corollary 2.7], it suffices to prove that |T(f,)] — 0 for o(F’, E) and
(T'(fn))(x) — 0 for every disjoint and norm bounded sequence (z,) C ET. In-
deed:

- as T is order limited then, |T(f,)| — 0 for o(E', E).

-as fp, — 0 for o(F', F), (fy) is norm bounded Hence and since T" is M-weakly,
we obtain |T'(fn)(xn)| = |fu(T(z0))] < |falllT(2n)|| — 0. This complete the
proof.

An operator T : E — F is regular if T'= T — T5 where 17 and Ty are positive
operators from F into F.

As a consequence of Theorem 7, we give some sufficient conditions under which,
the class of L-weakly compact, M-weakly compact and limited operators to coincide.

Corollary 8. If E' and F have order continuous norms. Then, for each regular
order limited operator T : E — F' the following statements are equivalent:

1. T is L-weakly compact;
2. T is M-weakly compact;

3. T is limited.
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Proof. (1) = (2) Follows from [5, Theorem 3.6.17].
(2) = (3) Follows from Theorem 7.
(3) = (1) Follows from Theorem 1.

Note that if £’ has weak* sequentially continuous lattice operations, then every
operator T' from FE into an arbitrary Banach space is order limited. The following
consequence of Theorem 7 gives a sufficient condition under which each M-weakly
compact operator is limited.

Corollary 9. If E' has weak* sequentially continuous lattice operations. Then, each
M-weakly compact operator from E into F is limited.
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