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Abstract. In the present paper we investigate the upper bounds of the Hankel
determinant H3(1) for a class of analytic functions with respect to symmetric points,
denoted Ms(α).
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1. Introduction

Let A be the class of functions

f(z) = z +

∞∑
k=2

akz
k, (1)

which are analytic in the open unit disk U = {z : |z| < 1}. Consider S the subclass
of A consisting of univalent functions.

Recently, Selvaraj and Vasanthi [16] defined the next subclass of analytic func-
tions with respect to symmetric points:

Definition 1. ([16]) Let Ms(α) denote the class of analytic functions f of the form
(1) and satisfying the condition

Re

[
αz2f

′′
(z) + zf

′
(z)

αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))

]
> 0, 0 ≤ α ≤ 1 , z ∈ U. (2)

In particular:
(i) for α = 0,Ms(0) ≡ S∗s ,

S∗s :=

{
f ∈ A : Re

[
zf

′
(z)

f(z)− f(−z)

]
> 0, z ∈ U

}
.
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These functions are called starlike functions with respect to symmetric points and
were intoduced by Sakaguchi [13].

(ii) for α = 1,Ms(1) ≡ Ks,

Ks :=

{
f ∈ A : Re

[
(zf

′
(z))

′

(f(z)− f(−z))′

]
> 0, z ∈ U

}
.

Functions in the class Ks are called convex functions with respect to symmetric
points and were introduced by Das and Singh [14].

Definition 2. ([10]) Let f and g be two analytic functions in U. Then, the function
f is said to be subordinate to g, written f ≺ g, if there exists a function w, analytic
in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, so that

f(z) = g(h(z)) for all z ∈ U.

Pommerenke [11] stated the q−th Hankel determinant as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q
· · · · · · · · · · · ·

an+q−1 · · · · · · an+2q−2

∣∣∣∣∣∣∣∣ , (3)

where n ≤ 1 and q ≤ 1. The Hankel determinant is useful, for example, in the study
of power series with integral coefficients (see [3, 4]), meromorfic functions (see [21])
and also singularities (see [4]).

It is well known that the Fekete-Szegö functional is equivalent to H2(1). In
particular, sharp upper bounds on H2(2) were obtained in [6, 7, 8, 20]. Recently,
the third Hankel determinant H3(1) has been considered in works [1, 12, 17].

In this paper, we determine the upper bound of H3(1) for subclasses of ana-
lytic functions with respect to symmetric and conjugate points by using Toeplitz
determinants [15] and following a method devised by Libera and Zlotkiewicz (see
[18, 19]).

In our proposed investigation we shall make use of the next results.

2. Preliminary Results

Let P denote the class of analytic functions p normalized by

p(z) = 1 +
∞∑
k=1

tkz
k (4)

such that Rep(z) > 0, z ∈ U.
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Lemma 1. [5]. If p ∈ P then the following sharp estimate holds:

|tk| ≤ 2, k = 1, 2, . . . . (5)

Lemma 2. [18, 19]. Let p ∈ P. Then

2t2 = t21 + x(4− t21), (6)

4t3 = t31 + 2(4− t21)t1x− (4− t21)t1x2 + 2(4− t21)(1− |x|2)z, (7)

for some complex numbers x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 3. [9]. If p ∈ P , then for λ a complex number

|t2 − λt21| ≤ 2 max(1, |2λ− 1|). (8)

This result is sharp for the functions

p(z) =
1 + z

1− z
and p(z) =

1 + z2

1− z2
. (9)

3. Main Results

Theorem 4. Let f ∈Ms(α). Then we have the sharp inequality

|a2a3 − a4| ≤
1

1 + 3α
max

{
1

2
,

2(4α2 + 3α+ 1)

3(1 + α)(1 + 2α)

√
4α2 + 3α+ 1

3(1 + α)(1 + 2α)

}
.

Proof. Using the definition of subordination, f ∈Ms(α) if and only if

2αz2f
′′
(z) + 2zf

′
(z)

αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))
=

1 + ω(z)

1− ω(z)
= p(z), p ∈ P.

It follows that

z +

∞∑
n=2

n [1 + α(n− 1)] anz
n = (1 + t1z + t2z

2 + . . . ){z + (1 + 2α)a3z
3

+ (1 + 4α)a5z
5 + · · ·+ [1 + (2n− 2)α]a2n−1z

2n−1 + (1 + 2nα)a2n+1z
2n+1 + · · · }.

(10)

On equating the coefficients like powers of z in (10), we obtain

a2 =
t1

2(1 + α)
, a3 =

t2
2(1 + 2α)

, a4 =
t1t2 + 2t3
8(1 + 3α)

. (11)
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Assuming t1 = t and substituting for t2 and t3 by using Lemma 2 in (11), we have

a2 =
t

2(1 + α)
, a3 =

t2 + (4− t2)x
4(1 + 2α)

, (12)

and

a4 =
1

16(1 + 3α)
(2t3 + 3t(4− t2)x− t(4− t2)x2 + 2(4− t2)(1− |x|2)z). (13)

From (12) and (13) we get

|a2a3 − a4| =A(α)| − 4α2t3 − t(4− t2)(6α2 + 3α+ 1)x

+ t(4− t2)(1 + 3α+ 2α2)x2 − 2(4− t2)(1 + 3α+ 2α2)(1− |x|2)z|,

where

A(α) =
1

16(1 + α)(1 + 2α)(1 + 3α)
.

Applying the triangle inequality with t ∈ [0, 2], |z| ≤ 1 and δ = |x|, we have

|a2a3 − a4| ≤A(α)[4t3α2 + t(4− t2)(6α2 + 3α+ 1)δ

+ t(4− t2)(1 + 3α+ 2α2)β2 + 2(4− t2)(1 + 3α+ 2α2)(1− δ2)]
= A(α)[(t− 2)(4− t2)(1 + 3α+ 2α2)δ2 + t(4− t2)(6α2 + 3α+ 1)δ

+ 4t3α2 + 2(4− t2)(1 + 3α+ 2α2)] = A(α)F (δ). (14)

Next, we maximize the function F (δ).
F

′
(δ) = 0 implies δ = at

2(2−t)b ≡ d
∗ where a = 6α2 + 3α+ 1 and b = 2(1 +α)(1 + 2α),

so we need to consider two cases.
(i) If δ∗ > 1, we have max

δ∈[0,1]
F (δ) = F (1), therefore

F (δ) ≤ −2t3(2α2 + 3α+ 1) + 8t(4α2 + 3α+ 1) = G1(t).

By differentiating G1(t), we get

G
′
1(t) = −6t2(2α2 + 3α+ 1) + 8(4α2 + 3α+ 1).

Setting G
′
1(t) = 0 we obtain t = ±2

√
4α2+3α+1

3(2α2+3α+1)
. Since

G
′′
1(t) = −12t(2α2 + 3α+ 1) ≤ 0,
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it follows that G has a maximum value at t = 2
√

4α2+3α+1
3(2α2+3α+1)

= t
′
. Hence,

G1(t) ≤
32(4α2 + 3α+ 1)

3

√
4α2 + 3α+ 1

3(2α2 + 3α+ 1)
. (15)

(ii) If δ∗ ≤ 1, we find that max
δ∈[0,1]

F (δ) = F (δ∗). Thus,

F (δ) ≤ (2 + t)(a2t2 + 8b2(2− t))
4b

+ 4α2t3 = G2(t).

It follows that G2 has a maximum value at t = 0, so

G2(t) ≤ 16(1 + α)(1 + 2α). (16)

From the relations (14), (15) and (16) upon simplification, the theorem is proved.
The result is sharp for t1 = t, t2 = t21 − 2 and t3 = t1(t

2
1 − 3).

Corollary 5. [2] If f ∈ S∗s , then

|a2a3 − a4| ≤
1

2
.

Corollary 6. [2] If f ∈ Ks, then

|a2a3 − a4| ≤
4

27
.

Theorem 7. Let f ∈Ms(α). Then for a complex number µ, we have

|a3 − µa22| ≤
1

1 + 2α
max

(
1,

∣∣∣∣(1 + 2α)µ

(1 + α)2
− 1

∣∣∣∣) . (17)

Proof. From (11), we get

|a3 − µa22| =
1

2(1 + 2α)

∣∣∣∣t2 − (1 + 2α)µ

2(1 + α)2
t21

∣∣∣∣ .
Applying Lemma 3, the theorem is proved. This result is sharp for the functions

αz2f
′′
(z) + zf

′
(z)

αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))
=

1 + z

1− z
or

αz2f
′′
(z) + zf

′
(z)

αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))
=

1 + z2

1− z2
.
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For µ = 1, we get H2(1).

Corollary 8. If f ∈Ms(α), then

|a3 − a22| ≤
1

1 + 2α
.

Corollary 9. [2] If f ∈ S∗s , then

|a3 − a22| ≤ 1.

Corollary 10. [2] If f ∈ Ks, then

|a3 − a22| ≤
1

3
.

Theorem 11. Let f ∈Ms(α). Then we have the sharp inequality

|H3(1)| ≤ 1

(1 + 2α)3(1 + 3α)2(1 + 4α)
·

max

{
52α4 + 124α3 + 88α2 + 25α+ 2, 5;

D1 +D2

√
3(4α2 + 3α+ 1)(1 + α)(1 + 2α)

9(1 + α)2

}
,

(18)

where

D1 = 18(1 + α)2(1 + 3α)2(2α2 + 4α+ 1) and D2 = 2(1 + 2α)(1 + 4α)(4α2 + 3α+ 1).

Proof. Since a1 = 1, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and applying the triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3 − a22|. (19)

By comparing the coefficients on both sides of equation (10) and using Lemma 1 we
have the sharp estimations

|a3| ≤
1

1 + 2α
, |a4| ≤

1

1 + 3α
and |a5| ≤

1

1 + 4α
. (20)

Using the known inequality |a2a4 − a23| ≤ 1
(1+2α)2

(see [20]) and (20) together with

Theorem 4 and Corollary 8 in (19), the theorem is proved. The inequality (18) is
sharp because each of the components functionals in (19) is sharp.
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Corollary 12. [2] If f ∈ S∗s , then

|H3(1)| ≤ 5

2
.

Corollary 13. [2] If f ∈ Ks, then

|H3(1)| ≤ 19

135
.
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