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SOME PROPERTIES OF CERTAIN SUBCLASSES OF
MEROMORPHIC MULTIVALENT FUNCTIONS OF COMPLEX
ORDER DEFINED BY CERTAIN LINEAR OPERATOR
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ABSTRACT. In this paper we introduce two subclasses Hg(q, s,a1; A, B, b) and
Hy"(q, s,a1; A, B,b) of meromorphic p-valent functions of complex order defined
by certain linear operator. We study the various important properties and charac-
teristics of these two subclasses such as, coefficients estimate, radii of starlikeness
and convexity and closure theorems. We also extend the familiar concept of 4-
neighborhoods of analytic functions to these subclasses.
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1. INTRODUCTION

Let Zp be the class of functions of the form:

f(z)=2z"P+ Z arz®  (pe N=1{1,2,..}), (1.1)
k=1-—p

which are analytic and p-valent in the punctured unit disc U* = {z : z € C and
0 < |z] < 1} = U\{0}. Let f and F two analytic functions in the unit disc U,
we say that f is subordinate to F' if there exists an analytic function w(z) with
w(0) =0 and |w(z)| <1 (z € U) such that f = F(w(z)). We denote by f < F this
subordination. For functions f(z) € >_, given by (1.1) and g(z) € >_,, defined by

g(z) =27+ ) bz" (peN), (1.2)
k=1-p
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then the Hadamard product (or convolution ) of f(z) and g(z) is given by

oo
(Fra)e) =27+ S axbs® = (g% 1)(2). (1.3)
k=1-p
For complex numbers o, ...,y and 5y, ..., Bs (B ¢ Zy = {0,—1,-2,...};5 =1,2,...,5),
we now define the generalized hypergeometric function ,Fs(ov, ..., ag; B, ..., Bs; 2) by
(see, for example, [18, p.19])

) o) = > (al)k...(aq)k i
oFs(on,...;0q; B1, ..., Bs; 2) = kz_o(ﬁl)km(ﬂs)k ¥y (1.4)

(< s+1;q,s € Ng=NU{0};2€U),

where (), is the Pochhammer symbol defined, in terms of the Gamma function T,
by

) O +v) [ 1 (v =0;0 € C* = C\{0}) (1.5)
YT 00 +1)...0+v—1) (vreN;0e€C). '
Corresponding to the function hy(ov, ..., ag; B, ..., Bs; 2), defined by
hp(at,...,oq; B, ..., Bs; 2) = 27 PgFs(ou, ..., aq; 1, -y Bs; 2), (1.6)

we consider a linear operator

Hp(al, ey Qg5 61, ...,,85> : Zp — Zp,
which is defined by the following Hadamard product:
Hy(aq, ..., 0q; 1, ., Bs) [(2) = hp(au, ..., aq; Br, ..., Bs; 2) * f(2). (1.7)
We observe that, for a function f(z) of the form (1.1), we have
Hy(aq, ..., 05 1,0, Bs) f(2) = 27P + Z Fker(al)akzk. (1.8)
k=1-p

where, for convenience

Pi(ar) = S (1.9)
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If, for convenience, we write

Hp7Q75(a1) :Hp(a17"'7aq;/817"'758)7 (110)

then one can easily verify from the definition (1.8) that (see [16])

2(Hpgs(a1)f(2)) = arHpgs(on +1)f(2) = (a1 4 p)Hpg.s(a1) f(2). (1.11)

The linear operator Hp 4 s(1) was investigated recently by Liu and Srivastava [16]
and Aouf [5]. Some interesting subclasses of analytic functions associated with
the generalized hypergeometric function, were considered recently by (for example)
Dziok and Srivastava ([7] and [8]),Gangadharan et al. [9], Liu [14].

In particular, for ¢ = 2,s = 1 and as = 1, we obtain the linear operator

Hpaa(0a1, 15 81)f(2) = Lp(ar, B1)f(2)  (f(z) € ZP; o >0; 1 >0),

which was introduced and studied by Liu and Srivastava [15]. Also we note that,
for any integer n > —p and f(z) € 3_,, we have

: o * 102

Hyo1(n+p,1;1)f(z) = D" f(2) = (1 — 2)ntr

where D"TP~1 f(2) is the differential operator studied by Uralegaddi and Somanatha,
[19] and Aouf [4].
For a function f € 3, we define

IO (Hp7q,s(a1)f(z)) = Hp,q,s(al)f(z)a

' (Hpg (1) f(2)) = 2 (Hy gua(on) f(2)) + 201

9

12 (Hpy o(00)£(2)) = 2 (I' (Hpga(an) f(2))) + 201

and (in general)

2P

" (Hygalon) f(2) = = (1" (Hpg (o) f(2))) + 2

4

1 (e o]
= —+ Z E"Txiparz” (p € N; n € Ng = NU{0}),

2P
k=1-—p

where I'y4, is given by (1.9).
We note that I" (Hp21(,1;8)f(2)) = I" (Lp(a, B)f(2)) (see Ghanim and
Darus [10]).
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Making use of the operator I" (Hp,q,s(c1) f(2)) , we say that a function f(z) € >,
is in the class H,'(q, s, a1; A, B, b) if it satisfies the following inequality:

1 [ 2(I" (Hpqs(a1)f(2))) 1+ Az
p‘b{ 17 (Hyg(a) (=) “’} AT (112)
or, equivalently, to
z (I" (Hp,g,s (o )f(z)))
I (Hy sl /()" .
Bz(I” (Hp,g,s(a1) f(2))) A—B\b+ B
I (Hpgalan fl2)) PP+ 5]
(-1<B<A<1ljo,..,aq € Cand py,...,0; € C\Z ;
peN;qs,neNyq¢<s+1;bC*zel). (1.13)

Let Z; denote the subclass of 3 consisting of functions of the form:
[o.@]
z) :zfp—l—Z\ak\zk (p € N). (1.14)

We now write

Hp™(q,s;a13 A, B,b) = H)(q, s; al,ABbﬁZ

We note the following interesting relationship with some of the special function
classes which were investigated recently:

(i) HY*(q,s;01; A, B, 1) = > g (A, B) (see Goyal et al. [12]) ;

(ii) Hg’*(Q, La,1,¢;A,B,b) = Hf .(p; A, B,b,1) (a € R; ¢ € R\ {0,—1,-2,...})(see
Aqlan and Kulkarni [6]).

Also, we note that:

(i) Hp" (g, s; 013 8, =B, b) = Hp" (g, 5313 3, b)
z(I" (Hpg,s( )f(Z»)
n > +p
_ f(Z)GZ*: nl(pq,( )f(/)) <3
P z (I (Hp,q,S( 1) ( ))) +p(1 o 2())
I (Hp,q,s<a1)f(z))
(0<p<1;beC a,...,aq € C and By, ..., 0, € C\Zy; o (1.15)

g<s+1;peN;qsneNy zeU)
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(11) H;’*(Q,S;Oél;ﬁ,_ (27 - 1) 67 b) = H;’*(qa«?%al%ﬁ,% b)

’

2 (I" (Hpgs(1)f(2))) +p

— P * . I (Hp,q,s(al)f(z))
flz) € ZP (27— 1) 2(I" (Hpgs(01)£(2)) Fpy(1—b)—1] <7
I (Hp,q,s(a1) f(2))

0<p<1 %S'yg 1; beC* ai,...,aqy € Cand f,...,8; € C\Zy; p; (1.16)
g<s+1; peN; ¢q,s,neNy; z€U)

(ili) Hp"(2,1;6 4+ p,1,1; A, B,b) = D" (6; A, B,b)

P (In (D5+p*1f(z))) .

_ . I (D1 f(z))
e (1" (D771 £(2))) -
oy PIA-B)b+ Bl

(-1<B<A<1;0>-ppeN;neNyubeChzeU) ;; (1.17)

(iv) Hy"(2,1;a,1,¢; A, B,b) = Ly (a,c; A, B, b)

’

(I” (Lp(a,c)f(2))) +p

= f(Z)GZ:,r S0 (La () ((a’c),()) <1
B (w0 (=)

(-1<B<A<1L acR; ceR\{0,-1,-2...}; 5. (1.18)
peEN; neNybeCzel)

2. SOME BASIC PROPERTIES OF THE CLASS H,""(q, s, a1; A, B,b)

We begin by proving the necessary and sufficient condition (invovling coefficient
bounds) for the class Hp " (q, s,a1; A, B, b).
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Theorem 1. Let the function f(z) defined by (1.14) be in the class Z; Then the
function f(z) belongs to the class Hy " (q,s,a1; A, B,b) if and only if

D Kk +p) (1= B) = plbl (A~ B)| Thiplar] < plbl (A= B).  (2.1)
k=p

Proof. Assuming that the inequality (2.1) holds true then from (2.1), we find that

2 (I" (Hpq.5(01) f(2))) + pI" (Hpq5(c1) f(2))
Bz (In (Hp,q,S(al)f(Z)))/ + [Bp(l - b) + Apb] I (Hp,q,S(al)f(z))

K7 (K + p) Thpp |ag] 247
= Of:p <1 (zeU"),
PH(A— B)+ 52 k" [B (k+p) + pb(A — B)] Ty lag] 447
k=p
(2.2)

z€ 0U ={z:2z€Cand |z| =1}. Hence, by the maximum modulus theorem, we
have f(z) € Hy""(q,s,a1; A, B, b).

Conversely, suppose that f(z) is in the class Hp " (q, s,a1; A, B,b) with f(z) of
the form (1.14), then we find from (1.13), that

2 (I" (Hypq5(c1) f(2))) + pI" (Hpg.s(a1) f(2))
Bz (In (Hp,q,S(al)f(Z)))l + [BP (1 - b) + Apb] I (Hp,q,S(al)f(Z))

k" (k‘ + p) Fk’er \ak\ Zhtp
_ = <1 (2.3)
pb(A = B) + 32 k" [B (k + p) + pb(A — B)| Tiyp lar| 2547
k=p

If we choose z to be real and z — 17, we get
D K [(k+p) (1= B)=p[b| (A= B)|Thiplax| <plo| (A= B),  (24)
k=p

which is precisely the assertion (2.1) of Theorem 1.

Corollary 2. Let the function f(z) be defined by (1.14) be in the class Hy" (q, s, a1; A, B, b)
Then

plbl(A - B)
S ST 0 -B) sl (A= BT, 2P (25)
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The result is sharp for the function f(z) given by

. plb|(A - B) B
SO =" BT -B) P (A BTy, ° "z 20

Next we prove the following growth and distortion properties for the class
n,*
Hy,"(q,s,00; A, B, b).

Theorem 3. If a function f(z) defined by (1.14) is in the class Hy""(q, s, a1; A, B, b),

then for |z| =r < 1, we have

{(p+m—1)! B p! |b| (A - B) rzp}r—mm)
(p—1)! 2(1 - B) — [b[ (A= B)]p"(p — m)!T'y,
(m) (p+m—-1! p![b] (A — B) 2} (p+m)
<|roe) < {TCEE - mrmm e
(2.7)
The result is sharp for the function f(z) given by
_ - |b] (A - B)
JO =" o) Pl BTy, 25
Proof. Let f(z) € Hy"(q,8,01; A, B,b). Then we find from Theorem 1 that
p[2(1 = B) — |b| (A — B)|p"(p —m)'Ty k!
p! ’ kzp k—m)! o
< Y [(k+p) (1= B) = pb| (A= B)] K" Tk yp. |ax| < p|b] (A = B),
k=p
which yields
= bl (A—B) .
Z; S R B - A BTy gy &

Now, by differentiating both sides of (1.14) m times with respect to z, we have

f(m)(z)_(_l)m(pz_rnl) 2~ (ptm) +Z |ak|z ™ (pe N;0<m<p)
P k=
p
(2.10)
and Theorem 3 follows easily from (2.9) and (2.10), respectively.

Finally, it is easy to see that the bounds in (2.7) are attained for the function
f(z) given by (2.8).
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Next, we determine the radii of meromorphically p-valent starlikeness and con-
vexity of order ¢ (0 < ¢ < p) for functions in the class H,"*(q, s, a1; A, B, b).

Theorem 4. Let the function f(z) defined by (1.14) be in the class Hy " (q, s, a1; A, B, b),
then we have:

(i) f(z) is meromorphically p-valent starlike of order ¢ (0 < ¢ < p) in the disc
|z| <11, that is,

%{—Z;(S)} > (Jzl<rm; 0<p<p; peN), (2.11)
where
1
o LR (- B) (A= BThey 0~ 0) \ Frp
= Pl (A= B) peaftr e

(ii) f(z) is meromorphically p-valent convex of order ¢ (0 < ¢ < p) in the disc
|z| < 12, that is,

%{—(Hzf (”)}w (fl <ry 0<p<ppel),  (213)

f(z)
where
1
n—1 _ _ — — P
vy — inf {k [(k+p) (1= B) —p[b[(A— B)|Tiipp(p w)}kﬂo_ (2.14)
k>p p[b[ (A - B) (k+ )
Each of these results is sharp for the function f(z) given by (2.6).
Proof. (i) From the definition (1.14), we easily get
ZHCI > (h + p) o |27
/(z) < =p . (2.15)
) ol 20— 6) = X (k= p+20) ay] 2
f(z) k=p
Thus, we have the desired inequality
2f (=
o+
; <1 (0<p<p;peN), (2.16)
T
f(z)
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if
[k
> (B2 ) it <1, 211)

k=p p
Hence, by Theorem 1, (2.17) will be true

(W) 2 < k" [(k+p) (1 —B) —p|b| (A= B)| Tiyp

P—¢ p|bl (A= B)
1
o (LD 0 B) b (A= BTy 0 ) VR p
15 PII(A-D) fgf T e

The last inequality (2.18) leads us immediately to the disc |z| < 71, where r; is given
by (2.12).

(ii) In order to prove the second assertion of Theorem 3, we find from the defi-
nition (1.14) that

142 B, > k(s +p) agl 2/
1) < B . (2.19)
14 2B o) 2 9) = X k(E = p ot 20) [al [
) =
Thus, we have the desired inequality
S+
A2 <1 (0<p<ppeN), (2.20)
zf (2)
[ ()
if -
S (EE2) jwapor <. 221)
—=pr\p-v
Hence, by Theorem 1, (2.21) will be true if
k™ [(k 1-B)—p|b|(A—B)]T
p\p—¢ p[bl(A—B)

The last inequality (2.22) readily yields the disc |z| < ra, where ro defined by (2.14),
and the proof of Theorem 4 is completed by merely verifying that each assertion is
sharp for the function f(z) given by (2.6).
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3. CLOSURE THEOREMS
In this section we first prove:

Theorem 5. The class Hy " (q,s,a1; A, B,b) is closed under convex linear combi-
nations.

Proof. Let each of the functions
o
fi) =224+ arj| ¥ (j=1,2; peN) (3.1)
k=p

be in the class Hy""(q, s,a1; A, B,b). It is sufficient to show that the function f ()
defined by

F(z) = (1 =)fi(2) +tfa(2) (0 <t <1) (3.2)
is also in the class H, " (q,s,a1; A, B,b). Since
F(2) =27+ > [(1=t)|apa] +tlagall 25 (0<t <), (3.3)
k=p

With the aid of Theorem 1, we have

D K[k +p) (1= B) = p[bl (A = B)] Tp- {(1 = t) |aa| + ¢ |arzl}
k=p

= (1= K'[(k+p) (1~ B)~plb| (A~ B)] Tiplana| +
k=p

ty k" [(k+p)(1—B) = plbl (A~ B)] Trsp lar
k=p

< (L=t)p|b|(A—B)+tp[b|(A—B) =p|b (A—B),

which shows that F (2) € Hy " (q,s,a1; A, B,b).
1
Theorem 6. Let f,_1(z) = > and

1 plb|(A—B) ; .
&) = Gt B A-B) —pM@A=DTw,” 2 reN. G4

Then f(z) € Hy*(q,s,0a1; A, B,b) if and only if it can be expressed in the form:

e}

F) =Y mfu(2), (3.5)

k=p—1
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where i, >0 (k>p—1;peN) and >, up=1.
k=p—1

Proof. Let the function f(z) expressed in the form given by (3.5), then

plbl (4~ B) n
[0+ p) (1= B) —p o] (A~ BTy,

f(z)=2"P+ Z,ukkn (3.6)

and for this function, we have

o p|bl (A - B)
zﬁ[%+MG—B%ﬂWMA—BHMMMM«k+MG_B%ﬂwMA_BHHW
=Y wp|bl (A= B) =p|b| (A= B)(1 - pp-1) < p[b] (A - B), (3.7)

k=p

which shows that f(z) € Hp""(q,s,a1; A, B,b) by Theorem 1.
Conversely, suppose that the function f(z) defined by (1.14) belongs to the class
Hy"(q,s,a1; A, B,b). Since
p[b| (A - B)
kM [(k+p)(1—B) —pb| (A= B)]Tiyp

by Corollary 2, setting

k" [(k+p)(1-B) - \b\ (A - B)]
p|bl (A - B)

(k>p; peN),  (3.8)

lag| <

I
1P Jap| (k> p; p € N) (3.9)

Jk =

and
o @]
Hp—1 = 1- Z bk,
k=p

it follows that

o0

F2) =Y mfil2).

k=p—1

This completes the proof of Theorem 6.

4. NEIGHBORHOODS AND PARTIAL SUMS

Following the earlier works (based upon the familiar concept of neighborhoods of
analytic functions) by Goodman [11] and Ruscheweyh [17] and (more recently) by
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Altintas et al. ([1], [2] and [3]), Liu [13] and Liu and Srivastava [15], we begin by
introducing here the §-neighborhoods of a function f(z) € X, of the form (1.1) by
means of the definition given below:

Ns(f)=19: g€ Yps g(z)=z"P+ Z bkzk and

k=1-—p
o~ k" [(k+p) (1+|B]) —p|b| (A - B)]
> Ligp [br — ak| <6
2 P[4~ B)
(0>0;,-1<B<A<Liai,...,ay € Cand p1,....,8, € C\Zy; . (4.1)

peN; ¢ s,nmeNy; g<s+1;beC¥

Making use of the definition (4.1), we now prove:

Theorem 7. Let the function f(z) defined by (1.1) be in the class H,(q, s, a1; A, B, b).
If f(z) satisfies the condition:

—p
f(zi—:_iz € Hy(q,s,a1;A,B,b) (e€C; |e|]<d; 6>0) (4.2)

then
N5(f) CHg(q>$7a17A7B7b) (43)

Proof. 1t is easily from (1.13) that g(2) € H}/(q, s, a1; A, B,b) if and only if, for any
complex number o with |o| = 1, we have

2 (1" (Hpgs(01)f(2))) +pI" (Hpqs(01)f(2)) Lo (e
Bz (I" (Hp,g,s(01) f(2))) + [Bp (1 = b) + Apb] I" (Hpq,5(c1) () (4’4)
which is equivalent to |
(9”;2(2) £0 (ze), (4.5)
where, for convenience,
h(z) =277+ 3 cpzt
k=1-—p
 » . = k"[(k+p)(1—Bo)—pbo(A—B)]
=z +k§p pbo(A—B) Fk+pzk. (4.6)
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From (4.6), we have

k™ [(k +p) (1 — Bo) — pbo(A — B)]F

pbo(A— B) ktp
< K (k+p) (1 +|B]) —p[b| (A~ B)]
- p|b[ (A - B)

k] =

Teyp (k>pip€N). (4.7)

o8]
If f(z) =277+ Y agz® € %, satisfies the condition (4.2), then (4.5) yields

k=1-p
’UZQ(Z) >0 (z€U*0>0). (4.8)
Next, if we suppose that
(e}
(z)=2"+ Y dpz" € Ns(f) (4.9)
k=1-p
we easily see that
®(z) — f(2)] * h(z >
LEEYCLVCTI S Sy
k=1-p
o~ k" [(k+p) (1+[B]) —p|b| (A - B)]
< |z r drp, —a

(4.10)
<6d (2€U; §>0).

Thus we have (4.5), and hence also (4.4) for any ¢ € C such that |o| = 1, which
implies that ®(2) € H}(q,s,a1; A, B,b). This evidently proves the assertion (4.3) of
Theorem 7.

We now define the d-neighborhoods of a function f(z) € ¥ of the form (1.14)
as follows:
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N;(f) = g€X, g9(2) = Z_p—i-z ]bk|zk and

k=p
o K" [(k +p) (1+|B|) — p[b| (A - B)]
T br| — <
= p|b| (A—B) k+pH k| |ak|| <9

(6>0;;-1<B<A<1l;04,...,049 € C and fy,...,8s € C\Z ;
peEN; ¢,8,n€Ny; ¢<s+1; beCr)

(4.11)

Theorem 8. Let —1 < B < 0. If the function f(z) given by (1.14) is in the class
Hp*(q,8,a1 +1; A, B,b), then

* 2
N;—(f) C H}? (q787a1;AaB7b) (5 = o f2p) (412)

The result is sharp in the sense that § cannot be increased.

Proof. Making use of the same method as in the proof of Theorem 7, we can show
that [cf. Equation (4.6)]

h(z) =27P + Z crzt
k=p

_ vy 3o R p) (L= Bo) = pho(d — B)

k
pbO'(A — B) Fk+p2 . (413)

k=p
Thus, under the hypothesis -1 < B < A<1; 1< B<0;¢q<s+1;p€eN;
q,s,n € No; b € C*, if f(2) € Hy"(¢, 8,1 + 1; A, B,b) is given by (1.14), we obtain

'(fzhz(Z) _ 1+§:Ck|ak|zk+p
k=p
— . [(k+p)(1+|B|) —p|b| (A B)]
> 1- 2k Pl (A~ B) Pieplax
a1 K [(k+p) (14 |B]) — p|b| (A B)]
= 1—m+2p,§:; plbl (A~ B) Pito s
a1 2p

= = 0.
a1 +2p a1 +2p
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The remaining part of the proof of Theorem 8 is similar to that of Theorem 8 and
we skip the details involved.

Theorem 9. Let f(z) € X, defined by (1.1) and —1 < B <0, we define the partial
sums S1(z) and Sy(z) as follows

qg—1
Si(z) =27 and Sy(z)=z"+ > az" (geN\{1}), (4.14)
k=1-p

it beging understood that an empty sum is (as usual) nil. Suppose also that

0o n _ A —
D Chaplar] <1 (Ck+p - Flik+) (; \_lt ’(iD_ BZ;“)‘( B)]Fk—i-p) - (4.15)

k=1-p

Then

(1) f(2) € Hy (g, 5,005 A, B,b)

(m‘)m{ /(z) } S1-X (zeUgen)

Sq(2) q
(4.16)
and
Sq(2) c
L 1 U; N).
(i1i) {f(z)}>1+cq (z€U;qeN)
(4.17)
The estimates in (4.16) and (4.17) are sharp.
. z7P 4 ez7P _
Proof. Since EETET I z7P € H}(q,8,01;4,B,b), |e| < 1, then by Theo-

rem 7, we have Ns(f) C H}j(q,s,01;A,B,b), p € N (Ni(277) denoting the 1-

neighbourhood). Now since

> enlar <1, (4.18)

k=1-p

then f € Ni(27P) and f € H}(q,s,a1; A, B,b).(ii) Since {cx} is an increasing se-
quence, we obtain

1

q—pP— oo o0
Sodarl+cg Y larl € D crpplar] <1, (4.19)
k::l,p k:qu k:l—p
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where we have used the hypothesis (4.15) again. By seeting

hl(z):cq{f(z) (11)}:1+ k=q—p

Sq(z ¢ ap-1
() I 14+ > |ag|2Ftr
k=1-p
and applying (4.19), we find that
cg > lakl
h -1 Sl
(z) =1 h=ap <1 (zeU), (4.20)
hi(z) +1 ¢-p-1 e
2-2 3 lag|—cqg 22 |axl
k=1-p k=q—p

which readily yields the assertion (4.16) of Theorem 9. If we take

fz)=27" - - (4.21)
Cq

then i
1
f(z)zl_z —+1—-—, asz—17,
Sq(2) Cq q
which shows that the bound in (4.16) is the best possible for each ¢ € N. (iii) Just
as in part (ii) above, if we put

00
(L+eg) X laxl2"*P
k=q—

_ c Sq(2) G —1_ P
hale) = (L4 ¢4) { flz) 1+ Cq} ! 1+ io: |ay| z%+P , (1.22)
k=1-p

and make use of (4.19), we can deduce that

hQ(Z) - 1 < k’:q—p < 17
ho(z) +1] = _aarl > =
2-2 3 ap| = (T —cq) 32 |axl
k=1—p k=q—p

which leads us immediately to the assertion (4.17) of Theorem 9.
The bound in (4.17) is sharp for each n € N, with the extremal function f(z)
given by (4.21). The proof of Theorem 9 is thus completed.

Remark 1. Taking n=0,¢q=2,s=1, a1 =a (a >0),ap =1 and p; =c
(¢ > 0), in all our results, we obtain the results obtained by Aglan and Kulkarni [6].
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